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» | currently work at Karolinska Institutet (70%), and
Red Door Analytics (30%)
» Background in maths and biostatistics
> Defended my thesis at Karolinska Institutet in March 2018

» Flexible parametric models for cancer patient survival: loss in
expectation of life and further developments
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Timescales

» Defining the timescale(s) of interest is essential in any time-to-event
analysis

» Two main components of survival analysis are the event/outcome of
interest and time(scale)

> The timescale is defined by the start and stop of follow-up time, and

a time origin

Event?

Y

Time
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Timescales

» Different timescales could be important for different outcomes
» Time since a cancer diagnosis to death
> Attained age for the incidence disease
> Several timescales may also be simultaneously of interest
> Incidence of breast cancer (attained age, time since childbirth)
> Mortality rates in the population (calendar year, attained age)
> Risk of infection after admittance to intensive care unit (time since
admittance, calendar time)
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Timescales
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How to model with multiple timescales?

» Common to model multiple timescales by splitting one one or more
timescales[1, 2].

> For example, if we were to use a piece-wise constant exponential
(Poisson) model:

> Split your dataset up according to timescale 1

> Split your dataset up according to timescale 2
» Fit a Poisson model to this stacked dataset with

> Categories for the timescales
» Could use some smoothed function (e.g. spline)

» This can be computationally intensive.
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Example of split data

. list id hormon _tO _t _d in 1/10

SN RIICIN

© 0 N o

id  hormon _to _t _d
1 0 0 4.9665973 1 1.
2 1 0 5.5251342 1 2.
3 1 0 1.9494031 1 3.
4 1 0 4.9474318 1 4.
5 ] 0 2.1136787 1 5.
6 ] 0 1.2265907 1 6.
7 1 0  5.9467747 ] 7.
8 ] 0 5.9166575 0 8.
9 0 0 1.289563 1 9.

10 0 0 5.5141825 0 10.

Hannah Bowe

. list id hormon fu _t0 _t _d in 1/10
id  hormon fu _to _t d
1 0 [ 0 2 [
1 0 2 2 4.9665973 1
2 1 [ [ 2 [
2 1 2 2 5 [
2 1 5 5 5.5251342 1
3 1 [ 0 1.9494031 1
4 1 [ 0 2 [
4 1 2 2 4.9474318 1
5 0 [ 0 2 0
5 0 2 2 2.1136787 1
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Flexible parametric models on the hazard scale

> Flexible parametric survival model (FPM) use restricted cubic splines

to model the baseline function

> Here the restricted cubic splines model the baseline log hazard
function In h(t)

» With one timescale:
In(h(t|x)) = s(f(t)l0) +x'B

where s(f(t);v0) represents the spline function, x are covariates, t is

time.
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Flexible parametric models on the hazard scale

> Note that it is more common to fit FPM on the log cumulative
hazard scale

> To maximise the likelihood when modelling on the log hazard scale we
have to numerically integrate

> FPMs are flexible, easy to include time-dependent effects, software

allows for nice predictions [3].

Hannah Bower Multiple timescales using FPMs 23rd February 2023 9/37



Multiple timescales, again

To incorporate multiple timescales we utilise the fact that timescales

increase with the same unit [4, 5, 6]
» One timescale is a function of the other

> Have to consider where the origin of each timescale is
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Multiple timescales, again

To illustrate, say an individual is diagnosed with a disease at age 55 and

has follow-up for 5 years:

> Time since diagnosis

>

|—¢ ———— > Attained age
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Multiple timescales, again

Then we can extend this idea to the following:
> tyiag = time since diagnosis of a disease
> t.ge = attained age
> a = age at diagnosis (constant offset)

Then, we can write

tage = tdiag +a

Flexible parametric model with two timescales becomes:

In(h(taiag|a, x)) = 51(f(fd:ag)|71) +52(f(td:ag + a)ly2) +x'B

Time since dlagn05|s Attalned age
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Why use multiple timescales?

> In most situations, using one primary timescale should be OK

> Survival estimates from models with one timescale may be biased when
the hazard rate of the event of interest is actually a function of two
timescales [7]

> Part of the research question
> If it is of interest, there is now a user-friendly Stata command stmt
[8]
> Note that these models can also be fitted using stmerlin, a more
generalised command (survival analysis using merlin [9])
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Modelling multiple timescales in Stata using stmt

> stmt is a Stata command which fits multiple timescales using FPMs

on the log hazard scale [8]
> First timescale is specified using the stset command

> Second is specified in stmt options

Title
stmt — Modelling multiple timescales using flexible parametric survival models on the log hazard scale
Syntax
stmt [varlist] [ifl [in] [, timel(sub-options) time2(sub-options) time3(sub-options) options]
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Modelling multiple timescales in Stata using stmt

» Covariates, and interactions with the timescale can be specified
» Numerical integration performed via Gauss-Legendre quadrature
» Requires rcsgen and stpm2 to be installed

> Analytic derivatives for the score and Hessian are included to increase

speed and accuracy when maximising the likelihood
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stmt syntax

stmt syntax

stmt varlist [if] [in], timel (sub-options)
[ time2(sub-options) time3(sub-options) timeint (int_list)
timeintknots(4int_list) timeintbknots(int_list)

noconstant nodes(#) noorthog nohr verbose from(matrix) inith(varname)
maximise_options]
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stmt syntax

Time-scale specific sub-options include:
» The offset between the two timescales (start () option)
» Number and position of knots of restricted cubic splines

> Interactions with the timescale, i.e. HRs which change over the

timescale

» Subgroup-specific timescale
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stmt postestimation command

It is also possible to predict from the fitted model using the predict

command
» The linear predictor and hazard function

> Can specify which values of each timescale to predict over

predict syntax

predict newvar [if] [in], { hazard |xb}

timelvar (varname) time2var(warname) time3var (warname)

[at (varname # [varname # ...]) ci nodes per zeros level (#)]
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Example

> 2982 females diagnosed with breast cancer
» Our outcome of interest is death (due to any cause)
> We follow patients from primary surgery

» Grade of cancer is our exposure of interest (2 or 3)
> Timescales of interest

@ Time since primary surgery

Q Attained age
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stset with time since surgery as timescale 1:

. stset survtime, f(dead==1) scale(12)

Survival-time data settings

Failure event:
Observed time interval:
Exit on or before:
Time for analysis:

dead==1
(0, survtime]
failure
time/12

2,982 total observations

0 exclusions

2,982 observations remaining, representing
1,272 failures in single-record/single-failure data
21,270.702 total analysis time at risk and under observation

nnah Bower

At risk from t = 0
Earliest observed entry t = 0
Last observed exit t = 19.28268
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stmt with one timescale

. stmt grade, timel(df(5)) nolog
Log likelihood = -3023.3924

Number of obs = 2,982

Haz. ratio Std. err. z P>|z| [95% conf. intervall

xb
grade 1.659792 .1152621 7.30 0.000 1.448582 1.901798

rcs
__tl_s1 .1130917 .0309638 3.65 0.000 .0524038 .1737795
__tl_s2 .1179876 .0291052 4.05 0.000 .0609425 .1750326
__t1_s3 -.1213544 .0299503 -4.05 0.000 -.1800559 -.062653
__tl_s4 -.0914425 .0299644 -3.05 0.002 -.1501716 -.0327134
__t1_s5 -.026898 .0318642 -0.84 0.399 -.0893507 .0355546
_cons -4.12488 .1960625 -21.04 0.000 -4.509155 -3.740604

Note: Estimates are transformed only

in the first equation to hazard ratios.

Quadrature method: Gauss-Legendre with 30 nodes
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stmt with two timescale

We use the time2() option with the start () sub-option to specify our

second timescale, attained age

. stmt grade, timel(df(5)) time2(df(3) start(agesurgery)) nolog

Log likelihood = -2956.7515 Number of obs = 2,982
Haz. ratio Std. err. z P>zl [95% conf. intervall

xb
grade 1.609036 .1118154 6.84 0.000 1.404151 1.843816

rcs
__tl_s1 .078144 .0316819 2.47 0.014 .0160487 .1402394
__tl_s2 .1307119 .0291879 4.48 0.000 .0735047 .187919
__t1_s3 -.1186399 .0300058 -3.95  0.000 -.1774502 -.0598297
__til_s4 -.0946102 .0300088 -3.15  0.002 -.1534263 -.0357941
__tl_sb -.030988 .0318674 -0.97 0.331 -.0934469 .0314709
__t2_s1 .2271669 .0260366 8.72  0.000 .1761361 .2781977
__t2_s2 -.2377882 .0251054 -9.47  0.000 -.2869938 -.1885825
__t2_s3 -.0887876 .0266178 -3.34 0.001 -.1409575 -.0366178
_cons -4.048158 .1961963 -20.63  0.000 -4.432695 -3.66362

Note: Estimates are transformed only in the first equation to hazard ratios.
Quadrature method: Gauss-Legendre with 30 nodes

PMs 23rd
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stmt with two timescales

We can add an interaction using the tvc() and dftvc() options:

. stmt grade, timel(df(5) tvc(grade) dftvc(2)) time2(df(3) start(agesurgery)) nolog

Log likelihood = -2953.3856 Number of obs = 2,982
Haz. ratio Std. err. z P> |zl [95% conf. intervall

xb
grade 1.514219 .1233225 5.09 0.000 1.290816 1.776287

rcs
__tl_s1 .5111851 .2011859 2.54 0.011 .116868 .9055022
__t1_s2 .3295628 .2191507 1.50 0.133 -.0999648 .7590903
__t1_s3 -.098055 .0353463 -2.77 0.006 -.1673326 -.0287775
__tl_s4 -.091684 .0300071 -3.06 0.002 -.1504969 -.0328711
__t1_s5 -.0309256 .0319089 -0.97 0.332 -.093466 .0316147
__t2_s1 .2274068 .0260295 8.74 0.000 .1763899 .2784236
__t2_s2 -.2386316 .0251059 -9.51 0.000 -.2878382 -.189425
__t2_s3 -.0892667 .0266396 -3.35 0.001 -.1414793 -.0370541
__tl_s_gradel -.1539901 .0712874 -2.16 0.031 -.2937108 -.0142695
__tl_s_grade2 -.068185 .0770798 -0.88 0.376 -.2192586 .0828886
_cons -3.884596 .2262782 -17.17 0.000 -4.328093 -3.441099

Note: Estimates are transformed only in the first equation to hazard ratios.
Quadrature method: Gauss-Legendre with 30 nodes
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Predictions from stmt

We define our own timescale variables
> timel (time since surgery, 0-15 years)
> time2 (attained age, 40 to 70 years)
and then predict the hazard using the predict command:

. predict h2, h timelvar(timel) time2var(time2) at(grade 3) ci
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Predictions from stmt

. list timel time2 ageatsurgery h2 in 1/10

timel time2 ageats-y h2

1. 2 40 39.8  .00693705
2. 2 40.1 39.9  .00691959
3. 2 40.2 40  .00690231
4. 2 40.3 40.1 .0068852
5. 2 40.4 40.2 .00686827
6 .2 40.5 40.3 .0068515
7 .2 40.6 40.4  .00683491
8 .2 40.7 40.5 .00681849
9. .2 40.8 40.6  .00680223
10. .2 40.9 40.7  .00678614
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Different plots from these predictions

Fixing age at surgery, we can plot the mortality rate across attained age:
0.084
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0.02

Mortality rate (per person-year)

0.00
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Different plots from these predictions

Fixing age at surgery, we can plot the mortality rate across time since
surgery:
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Different plots from these predictions

Can also show confidence intervals (here for mortality rate for 50 year old

at surgery):
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Different plots from these predictions

Now we fix the attained age timescale:
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Different plots from these predictions

Or we can fix the time since surgery timescale:
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Hazard ratio using predictnl

. predictnl lnhr= ///
> 1n(predict(h timelvar(timel) time2var(time2) at(grade 3))) ///
>- 1n(predict(h timelvar(timel) time2var(time2) at(grade 2))) ///

>, ci(lnhr_lci 1lnhr_uci)

. gen hr=exp(lnhr)
. gen hr_lci=exp(lnhr_lci)
. gen hr_uci=exp(lnhr_uci)

10.0
il
B
°
R 504
©
I
0.04
.

5 10
Time since surgery (years)
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Other information

> See our Stata Journal paper [8], and paper by Batyrbekova et al. [7]

The Stata Journal (2022)
22, Number 3, pp. 679-701 DOL: 10.1177/1536867X221124552

Flexible parametric survival analysis with
multiple timescales: Estimation and
implementation using stmt
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Other information

» Red Door Analytics has plans for a course, see
https://reddooranalytics.se/services/training/ for updates
» Others have been working with extending this work:

> stmerlin allows for other models with multiple timescales
> Extensions to multi-state models to include multiple timescales [10]
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Other information

//cox

stmerlin trt, dist(cox) ///
time2(df (2) offset(agec) time noorthog) /17
time3(df (2) offset(yearc) time noorthog)

// royston parmer (FPM on log cumulative hazard)

stmerlin trt, dist(rp) df(3) mnoorthog ///
time2(df (2) offset(agec) time noorthog) /17
time3(df (2) offset(yearc) time noorthog)

// stmerlin equivalent to stmt

stmerlin trt, dist(rcs) df(3) noorthog ///
time2(df(2) offset(agec) time noorthog) /17
time3(df (2) offset(yearc) time noorthog)
//stmt
stmt trt, timel(df(3)) noorthog ///
time2(df(2) start(agec) logtoff) 11/
time3(df(2) start(yearc) logtoff) /17
nohr

. timer list

1: 9.07 / 1 99.0690
2: 0 32/ 1= 0.3150
3: 7.07 / 1= 7.0720
4: 2.30 / 1= 2.2970
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