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About me

▶ I currently work at Karolinska Institutet (70%), and
Red Door Analytics (30%)

▶ Background in maths and biostatistics
▶ Defended my thesis at Karolinska Institutet in March 2018

▶ Flexible parametric models for cancer patient survival: loss in
expectation of life and further developments
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Timescales

▶ Defining the timescale(s) of interest is essential in any time-to-event
analysis

▶ Two main components of survival analysis are the event/outcome of
interest and time(scale)

▶ The timescale is defined by the start and stop of follow-up time, and
a time origin

Time

Event?

X
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Timescales

▶ Different timescales could be important for different outcomes
▶ Time since a cancer diagnosis to death
▶ Attained age for the incidence disease

▶ Several timescales may also be simultaneously of interest
▶ Incidence of breast cancer (attained age, time since childbirth)
▶ Mortality rates in the population (calendar year, attained age)
▶ Risk of infection after admittance to intensive care unit (time since

admittance, calendar time)
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Timescales

Years since breast cancer diagnosis to death
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How to model with multiple timescales?

▶ Common to model multiple timescales by splitting one one or more
timescales[1, 2].

▶ For example, if we were to use a piece-wise constant exponential
(Poisson) model:
▶ Split your dataset up according to timescale 1
▶ Split your dataset up according to timescale 2
▶ Fit a Poisson model to this stacked dataset with

▶ Categories for the timescales
▶ Could use some smoothed function (e.g. spline)

▶ This can be computationally intensive.
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Example of split data

. list id hormon _t0 _t _d in 1/10

id hormon _t0 _t _d

1. 1 0 0 4.9665973 1
2. 2 1 0 5.5251342 1
3. 3 1 0 1.9494031 1
4. 4 1 0 4.9474318 1
5. 5 0 0 2.1136787 1

6. 6 0 0 1.2265907 1
7. 7 1 0 5.9467747 0
8. 8 0 0 5.9166575 0
9. 9 0 0 1.289563 1

10. 10 0 0 5.5141825 0

. list id hormon fu _t0 _t _d in 1/10

id hormon fu _t0 _t _d

1. 1 0 0 0 2 0
2. 1 0 2 2 4.9665973 1
3. 2 1 0 0 2 0
4. 2 1 2 2 5 0
5. 2 1 5 5 5.5251342 1

6. 3 1 0 0 1.9494031 1
7. 4 1 0 0 2 0
8. 4 1 2 2 4.9474318 1
9. 5 0 0 0 2 0

10. 5 0 2 2 2.1136787 1
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Flexible parametric models on the hazard scale

▶ Flexible parametric survival model (FPM) use restricted cubic splines
to model the baseline function

▶ Here the restricted cubic splines model the baseline log hazard
function ln h(t)

▶ With one timescale:

ln(h(t|x)) = s(f (t)|γ0) + x ′β

where s(f (t); γ0) represents the spline function, x are covariates, t is
time.
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Flexible parametric models on the hazard scale

▶ Note that it is more common to fit FPM on the log cumulative
hazard scale

▶ To maximise the likelihood when modelling on the log hazard scale we
have to numerically integrate

▶ FPMs are flexible, easy to include time-dependent effects, software
allows for nice predictions [3].

Hannah Bower Multiple timescales using FPMs 23rd February 2023 9 / 37



Multiple timescales, again

To incorporate multiple timescales we utilise the fact that timescales
increase with the same unit [4, 5, 6]
▶ One timescale is a function of the other
▶ Have to consider where the origin of each timescale is
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Multiple timescales, again

To illustrate, say an individual is diagnosed with a disease at age 55 and
has follow-up for 5 years:

Time since diagnosis

0 1 2 3 4 5 6 7 8 9 10

+50

Attained age

0 55 60
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Multiple timescales, again

Then we can extend this idea to the following:
▶ tdiag = time since diagnosis of a disease
▶ tage = attained age
▶ a = age at diagnosis (constant offset)

Then, we can write
tage = tdiag + a

Flexible parametric model with two timescales becomes:

ln(h(tdiag |a, x)) = s1(f (tdiag)|γ1)︸ ︷︷ ︸
Time since diagnosis

+ s2(f (tdiag + a)|γ2)︸ ︷︷ ︸
Attained age

+x ′β
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Why use multiple timescales?

▶ In most situations, using one primary timescale should be OK
▶ Survival estimates from models with one timescale may be biased when

the hazard rate of the event of interest is actually a function of two
timescales [7]

▶ Part of the research question
▶ If it is of interest, there is now a user-friendly Stata command stmt

[8]
▶ Note that these models can also be fitted using stmerlin, a more

generalised command (survival analysis using merlin [9])
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Modelling multiple timescales in Stata using stmt

▶ stmt is a Stata command which fits multiple timescales using FPMs
on the log hazard scale [8]

▶ First timescale is specified using the stset command
▶ Second is specified in stmt options
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Modelling multiple timescales in Stata using stmt

▶ Covariates, and interactions with the timescale can be specified
▶ Numerical integration performed via Gauss-Legendre quadrature
▶ Requires rcsgen and stpm2 to be installed
▶ Analytic derivatives for the score and Hessian are included to increase

speed and accuracy when maximising the likelihood
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stmt syntax

stmt syntax
stmt varlist [if] [in], time1(sub-options)
[ time2(sub-options) time3(sub-options) timeint(int list)
timeintknots(int list) timeintbknots(int list)
noconstant nodes(#) noorthog nohr verbose from(matrix) inith(varname)
maximise options]
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stmt syntax

Time-scale specific sub-options include:
▶ The offset between the two timescales (start() option)
▶ Number and position of knots of restricted cubic splines
▶ Interactions with the timescale, i.e. HRs which change over the

timescale
▶ Subgroup-specific timescale
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stmt postestimation command

It is also possible to predict from the fitted model using the predict
command
▶ The linear predictor and hazard function
▶ Can specify which values of each timescale to predict over

predict syntax
predict newvar [if] [in], { hazard |xb}
time1var(varname) time2var(varname) time3var(varname)
[at(varname # [varname # ...]) ci nodes per zeros level(#)]
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Example

▶ 2982 females diagnosed with breast cancer
▶ Our outcome of interest is death (due to any cause)
▶ We follow patients from primary surgery
▶ Grade of cancer is our exposure of interest (2 or 3)
▶ Timescales of interest

1 Time since primary surgery
2 Attained age
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stset

stset with time since surgery as timescale 1:
. stset survtime, f(dead==1) scale(12)

Survival-time data settings
Failure event: dead==1

Observed time interval: (0, survtime]
Exit on or before: failure
Time for analysis: time/12

2,982 total observations
0 exclusions

2,982 observations remaining, representing
1,272 failures in single-record/single-failure data

21,270.702 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 19.28268
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stmt with one timescale

. stmt grade, time1(df(5)) nolog
Log likelihood = -3023.3924 Number of obs = 2,982

Haz. ratio Std. err. z P>|z| [95% conf. interval]

xb
grade 1.659792 .1152621 7.30 0.000 1.448582 1.901798

rcs
__t1_s1 .1130917 .0309638 3.65 0.000 .0524038 .1737795
__t1_s2 .1179876 .0291052 4.05 0.000 .0609425 .1750326
__t1_s3 -.1213544 .0299503 -4.05 0.000 -.1800559 -.062653
__t1_s4 -.0914425 .0299644 -3.05 0.002 -.1501716 -.0327134
__t1_s5 -.026898 .0318642 -0.84 0.399 -.0893507 .0355546

_cons -4.12488 .1960625 -21.04 0.000 -4.509155 -3.740604

Note: Estimates are transformed only in the first equation to hazard ratios.
Quadrature method: Gauss-Legendre with 30 nodes
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stmt with two timescale

We use the time2() option with the start() sub-option to specify our
second timescale, attained age

. stmt grade, time1(df(5)) time2(df(3) start(agesurgery)) nolog
Log likelihood = -2956.7515 Number of obs = 2,982

Haz. ratio Std. err. z P>|z| [95% conf. interval]

xb
grade 1.609036 .1118154 6.84 0.000 1.404151 1.843816

rcs
__t1_s1 .078144 .0316819 2.47 0.014 .0160487 .1402394
__t1_s2 .1307119 .0291879 4.48 0.000 .0735047 .187919
__t1_s3 -.1186399 .0300058 -3.95 0.000 -.1774502 -.0598297
__t1_s4 -.0946102 .0300088 -3.15 0.002 -.1534263 -.0357941
__t1_s5 -.030988 .0318674 -0.97 0.331 -.0934469 .0314709
__t2_s1 .2271669 .0260366 8.72 0.000 .1761361 .2781977
__t2_s2 -.2377882 .0251054 -9.47 0.000 -.2869938 -.1885825
__t2_s3 -.0887876 .0266178 -3.34 0.001 -.1409575 -.0366178

_cons -4.048158 .1961963 -20.63 0.000 -4.432695 -3.66362

Note: Estimates are transformed only in the first equation to hazard ratios.
Quadrature method: Gauss-Legendre with 30 nodes
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stmt with two timescales

We can add an interaction using the tvc() and dftvc() options:
. stmt grade, time1(df(5) tvc(grade) dftvc(2)) time2(df(3) start(agesurgery)) nolog

Log likelihood = -2953.3856 Number of obs = 2,982

Haz. ratio Std. err. z P>|z| [95% conf. interval]

xb
grade 1.514219 .1233225 5.09 0.000 1.290816 1.776287

rcs
__t1_s1 .5111851 .2011859 2.54 0.011 .116868 .9055022
__t1_s2 .3295628 .2191507 1.50 0.133 -.0999648 .7590903
__t1_s3 -.098055 .0353463 -2.77 0.006 -.1673326 -.0287775
__t1_s4 -.091684 .0300071 -3.06 0.002 -.1504969 -.0328711
__t1_s5 -.0309256 .0319089 -0.97 0.332 -.093466 .0316147
__t2_s1 .2274068 .0260295 8.74 0.000 .1763899 .2784236
__t2_s2 -.2386316 .0251059 -9.51 0.000 -.2878382 -.189425
__t2_s3 -.0892667 .0266396 -3.35 0.001 -.1414793 -.0370541

__t1_s_grade1 -.1539901 .0712874 -2.16 0.031 -.2937108 -.0142695
__t1_s_grade2 -.068185 .0770798 -0.88 0.376 -.2192586 .0828886

_cons -3.884596 .2262782 -17.17 0.000 -4.328093 -3.441099

Note: Estimates are transformed only in the first equation to hazard ratios.
Quadrature method: Gauss-Legendre with 30 nodes
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Predictions from stmt

We define our own timescale variables
▶ time1 (time since surgery, 0-15 years)
▶ time2 (attained age, 40 to 70 years)

and then predict the hazard using the predict command:

. predict h2, h time1var(time1) time2var(time2) at(grade 3) ci
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Predictions from stmt

. list time1 time2 ageatsurgery h2 in 1/10

time1 time2 ageats˜y h2

1. .2 40 39.8 .00693705
2. .2 40.1 39.9 .00691959
3. .2 40.2 40 .00690231
4. .2 40.3 40.1 .0068852
5. .2 40.4 40.2 .00686827

6. .2 40.5 40.3 .0068515
7. .2 40.6 40.4 .00683491
8. .2 40.7 40.5 .00681849
9. .2 40.8 40.6 .00680223

10. .2 40.9 40.7 .00678614
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Different plots from these predictions

Fixing age at surgery, we can plot the mortality rate across attained age:
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Different plots from these predictions

Fixing age at surgery, we can plot the mortality rate across time since
surgery:
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Different plots from these predictions

Can also show confidence intervals (here for mortality rate for 50 year old
at surgery):
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Different plots from these predictions

Now we fix the attained age timescale:
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Different plots from these predictions

Or we can fix the time since surgery timescale:
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Hazard ratio using predictnl

. predictnl lnhr= ///
> ln(predict(h time1var(time1) time2var(time2) at(grade 3))) ///
>- ln(predict(h time1var(time1) time2var(time2) at(grade 2))) ///
>, ci(lnhr_lci lnhr_uci)

. gen hr=exp(lnhr)

. gen hr_lci=exp(lnhr_lci)

. gen hr_uci=exp(lnhr_uci)
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Other information

▶ See our Stata Journal paper [8], and paper by Batyrbekova et al. [7]
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Other information

▶ Red Door Analytics has plans for a course, see
https://reddooranalytics.se/services/training/ for updates

▶ Others have been working with extending this work:
▶ stmerlin allows for other models with multiple timescales
▶ Extensions to multi-state models to include multiple timescales [10]
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Other information

//cox
stmerlin trt, dist(cox) ///

time2(df(2) offset(agec) time noorthog) ///
time3(df(2) offset(yearc) time noorthog)

// royston parmer (FPM on log cumulative hazard)
stmerlin trt, dist(rp) df(3) noorthog ///

time2(df(2) offset(agec) time noorthog) ///
time3(df(2) offset(yearc) time noorthog)

// stmerlin equivalent to stmt
stmerlin trt, dist(rcs) df(3) noorthog ///

time2(df(2) offset(agec) time noorthog) ///
time3(df(2) offset(yearc) time noorthog)

//stmt
stmt trt, time1(df(3)) noorthog ///

time2(df(2) start(agec) logtoff) ///
time3(df(2) start(yearc) logtoff) ///
nohr

. timer list
1: 99.07 / 1 = 99.0690
2: 0.32 / 1 = 0.3150
3: 7.07 / 1 = 7.0720
4: 2.30 / 1 = 2.2970
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