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New Bayesian features

New Bayesian features in a nutshell

New Bayesian features in a nutshell

Stata 16 provides many new Bayesian features: multiple chains,
Gelman–Rubin convergence diagnostic, predictions, posterior
predictive checks, and more.
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New Bayesian features

New Bayesian features in a nutshell

Multiple chains

Multiple chains. Simulate multiple chains conveniently using new
option nchains() with bayes: and bayesmh.

Type

. bayes, nchains(#): ...

or

. bayesmh ..., nchains(#) ...

The commands will properly combine all chains to produce a
more precise final result.

Use default chain-specific initial values or use new options
initall() and init#() to specify your own.
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New Bayesian features

New Bayesian features in a nutshell

Multiple chains

Bayesian postestimation features will automatically handle
multiple chains properly. For instance, simply type

. bayesgraph diagnostics ...

to see graphical diagnostics for all chains. Or use new options
chains() and sepchains to obtain results for specific chains.

Use unofficial command bayesparallel to simulate chains in
parallel using multiple processors:

. net install bayesparallel, from("https://www.stata.com/users/nbalov")

. bayesparallel, nproc(#): bayes, nchains(#): ...

. bayesparallel, nproc(#): bayesmh ..., nchains(#)
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New Bayesian features

New Bayesian features in a nutshell

Gelman–Rubin convergence diagnostic

Gelman–Rubin convergence diagnostic. When you run multiple
chains, bayesmh and bayes: automatically compute and report
the maximum Gelman–Rubin statistic across model parameters.

Type

. bayesstats grubin

to obtain the Gelman–Rubin diagnostic for each model parameter.
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New Bayesian features

New Bayesian features in a nutshell

Bayesian predictions

Bayesian predictions. Use bayespredict to compute various
Bayesian predictions and their posterior summaries.

Compute and save simulated outcomes, their expected values,
and residuals in a new dataset:

. bayespredict { ysim} { mu} { resid}, saving(filename)

Or compute posterior summaries of simulated outcomes and
save them in a new variable in the current dataset:

. bayespredict pmean, mean

Compute posterior means, medians, credible intervals, and
more.

Summarize predicted quantities as any other model parameter:

. bayesstats summary { ysim} using filename

Use with any other Bayesian postestimation command.
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New Bayesian features

New Bayesian features in a nutshell

Posterior predictive checks and more

Posterior predictive checks. Use bayespredict to compute
replicated outcomes for comparison with the observed outcomes.
Follow up with bayesstats ppvalues to compute posterior
predictive p-values for a more formal comparison.

MCMC replicates. Use bayesreps to generate a subset of
Markov chain Monte Carlo (MCMC) replicates for a quick
comparison of the observed and replicated data.

New priors: Pareto for continuous positive parameters, pareto();
multivariate beta (Dirichlet) for probability vectors, dirichlet();
and geometric for count parameters, geometric().

Faster Bayesian multilevel models. bayes: with multilevel
models such as bayes: mixed now runs faster!
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New Bayesian features

Stata’s Bayesian suite of commands

Commands

Stata’s Bayesian suite of commands

Command Description

Estimation
bayes: Bayesian regression models

(with multiple chains in Stata 16)
bayesmh General Bayesian models using MH

(with multiple chains in Stata 16)
bayesmh evaluators User-defined Bayesian models using MH

Postestimation
bayesgraph Graphical convergence diagnostics

bayesstats ess Effective sample sizes and more
bayesstats summary Summary statistics
bayesstats ic Information criteria and Bayes factors
bayesstats ppvalues Posterior predictive p-values New in Stata 16

bayestest model Model posterior probabilities
bayestest interval Interval hypothesis testing

bayespredict Bayesian predictions New in Stata 16

bayesreps MCMC replicates New in Stata 16
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New Bayesian features

Introduction to Bayesian analysis

What is Bayesian analysis?

What is Bayesian analysis?

Bayesian analysis is a statistical paradigm that answers research
questions about unknown parameters using probability statements.

What is the probability that a person accused of a crime is
guilty?

What is the probability that treatment A is more cost effective
than treatment B for a specific health care provider?

What is the probability that the odds ratio is between 0.3 and
0.5?

What is the probability that three out of five quiz questions
will be answered correctly by students?
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New Bayesian features

Introduction to Bayesian analysis

Why Bayesian analysis?

Why Bayesian analysis?

You may be interested in Bayesian analysis if

you have some prior information available from previous
studies that you would like to incorporate in your analysis. For
example, in a study of preterm birthweights, it would be
sensible to incorporate the prior information that the
probability of a mean birthweight above 15 pounds is
negligible. Or,
your research problem may require you to answer a question:
What is the probability that my parameter of interest belongs
to a specific range? For example, what is the probability that
an odds ratio is between 0.2 and 0.5? Or,
you want to assign a probability to your research hypothesis.
For example, what is the probability that a person accused of
a crime is guilty?
And more.
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New Bayesian features

Introduction to Bayesian analysis

Assumptions

Assumptions

Observed data sample D is fixed and model parameters θ are
random.
D is viewed as a result of a one-time experiment.
A parameter is summarized by an entire distribution of values
instead of one fixed value as in classical frequentist analysis.
There is some prior (before seeing the data!) knowledge about
θ formulated as a prior distribution p(θ).
After data D are observed, the information about θ is
updated based on the likelihood f (D|θ).
Information is updated by using the Bayes rule to form a
posterior distribution p(θ|D):

p(θ|D) =
f (D|θ)p(θ)

p(D)

where p(D) is the marginal distribution of the data D.
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New Bayesian features

Introduction to Bayesian analysis

Inference

Inference

Estimating a posterior distribution p(θ|D) is at the heart of
Bayesian analysis.
Various summaries of this distribution are used for inference.
Point estimates: posterior means, modes, medians,
percentiles.
Interval estimates: credible intervals (CrI)—(fixed) ranges to
which a parameter is known to belong with a pre-specified
probability.
Monte-Carlo standard error (MCSE)—represents precision
about posterior mean estimates.
Hypothesis testing—assign probability to any hypothesis of
interest
Model comparison: model posterior probabilities, Bayes factors
Prediction: out-of-sample, future observations, posterior
predictive p-values, and more
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New Bayesian features

Introduction to Bayesian analysis

Challenges

Challenges

Potential subjectivity in specifying prior information—
noninformative priors or sensitivity analysis to various choices
of informative priors.

Computationally demanding—involves intractable integrals
that can only be computed using intensive numerical methods
such as MCMC.
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New Bayesian features

Introduction to Bayesian analysis

Advantages

Advantages

Bayesian inference:

is universal—it is based on the Bayes rule which applies
equally to all models;

incorporates prior information;

provides the entire posterior distribution of model parameters;

is exact, in the sense that it is based on the actual posterior
distribution rather than on asymptotic normality in contrast
with many frequentist estimation procedures; and

provides straightforward and more intuitive interpretation of
the results in terms of probabilities.
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New Bayesian features

Motivating example: Bayesian lasso

Diabetes data

Diabetes data (Efron et al. 2004)

442 diabetes patients

Outcome of interest: Measure of disease progression (one year
after baseline)

10 baseline covariates: age, sex, body mass index, mean
arterial pressure, and 6 blood serum measurements

Covariates standardized to have mean zero and a sum of
squares across all observations of one

Objectives: Determine which variables are important to
predict the outcome and obtain accurate predictions for future
patients
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New Bayesian features

Motivating example: Bayesian lasso

Diabetes data

. use diabetes_std
(Diabetes data from Efron et al. (2004) with standardized covariates)

. describe

Contains data from diabetes_std.dta
obs: 442 Diabetes data from Efron et al.

(2004) with standardized
covariates

vars: 12 9 Sep 2020 17:11
(_dta has notes)

storage display value
variable name type format label variable label

y int %8.0g Measure of disease progression
age float %9.0g Age
sex float %9.0g Sex
bmi float %9.0g Body mass index
map float %9.0g Mean arterial pressure
tc float %9.0g Total cholesterol
ldl float %9.0g LDL cholesterol level
hdl float %9.0g HDL cholesterol level
tch float %9.0g TCh blood serum level
ltg float %9.0g LTG blood serum level
glu float %9.0g Glucose blood serum level
id int %9.0g * Subject ID

* indicated variables have notes
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New Bayesian features

Motivating example: Bayesian lasso

Bayesian lasso

Bayesian lasso (Park and Casella 2008)

Idea: Use Laplace prior with penalty parameter for regression
coefficients to mimic the L1 penalty used in classical lasso

Advantages: Proper inference for model parameters and
estimating uncertainty for predictions

Linear regression to model outcome y—likelihood function

Priors for regression coefficients—Laplace prior with zero
mean and the scale parameter that depends on the error
variance and penalty parameter

Prior for intercept—vague Normal prior, N(0, 106)

Prior for error variance—Jeffreys, 1/σ2

Prior for penalty parameter—Gamma prior with shape 1 and
scale 1/1.78 (per authors); 1.78 is specific to this dataset

We sample all parameters in separate blocks to improve
sampling efficiency
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New Bayesian features

Motivating example: Bayesian lasso

Bayesian lasso

. bayesmh y age sex bmi map tc ldl hdl tch ltg glu, ///
> likelihood(normal({sigma2})) ///
> prior({y:age sex bmi map tc ldl hdl tch ltg glu}, ///
> laplace(0, (sqrt({sigma2}/{lam2})))) ///
> prior({sigma2}, jeffreys) ///
> prior({y:_cons}, normal(0, 1e6)) ///
> prior({lam2=1}, gamma(1, 1/1.78)) ///
> block({y:} {sigma2} {lam2}, split) ///
> rseed(16) dots

(Continued on next page)
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New Bayesian features

Motivating example: Bayesian lasso

Bayesian lasso

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
y ~ normal(xb_y,{sigma2})

Priors:
{y:age sex bmi map tc ldl hdl tch ltg glu} ~ laplace(0,<expr1>) (1)

{y:_cons} ~ normal(0,1e6) (1)
{sigma2} ~ jeffreys

Hyperprior:
{lam2} ~ gamma(1,1/1.78)

Expression:
expr1 : sqrt({sigma2}/{lam2})

(1) Parameters are elements of the linear form xb_y.

(Continued on next page)
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Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 442
Acceptance rate = .4379
Efficiency: min = .0152

avg = .1025
Log marginal-likelihood = -2415.7171 max = .2299

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

y
age -2.478525 52.97851 1.26623 -2.593401 -108.3303 104.2442
sex -209.4461 61.21979 1.70006 -211.1479 -330.2515 -85.52568
bmi 522.1367 66.76557 1.8115 520.6348 393.4224 656.4993
map 304.1617 65.26244 1.77912 306.1749 175.0365 432.3554
tc -172.2847 157.5097 12.7739 -159.4816 -523.0447 110.226

ldl 1.304382 128.3598 9.96343 -7.796492 -251.2571 298.4382
hdl -158.8146 112.6562 6.82563 -158.1347 -378.4126 48.93263
tch 91.27437 111.8483 6.06667 86.32462 -114.675 319.0824
ltg 515.5167 94.06607 5.83902 509.9952 342.9893 715.739
glu 67.94583 62.86024 1.69235 66.11433 -51.1174 197.7894

_cons 152.0964 2.545592 .053095 152.0963 146.9166 157.1342

sigma2 2961.246 207.0183 4.79372 2949.282 2587.023 3389.206
lam2 .0889046 .055257 .001899 .0769573 .020454 .229755

Note: Adaptation tolerance is not met in at least one of the blocks.



New Bayesian features

Motivating example: Bayesian lasso

Objectives

Objective 1—Important predictors:

. bayesstats summary (age:{y:age}<0) (sex:{y:sex}<0) (bmi:{y:bmi}<0) ///
> (map:{y:map}<0) (tc:{y:tc}<0) (ldl:{y:ldl}<0) (hdl:{y:hdl}<0) ///
> (tch:{y:tch}<0) (ltg:{y:ltg}<0) (glu:{y:glu}<0), nolegend

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

age .5277 .4992571 .011353 1 0 1
sex .9997 .0173188 .000224 1 1 1
bmi 0 0 0 0 0 0
map 0 0 0 0 0 0
tc .8815 .3232154 .018971 1 0 1

ldl .5301 .4991181 .029122 1 0 1
hdl .9226 .2672384 .01198 1 0 1
tch .1992 .3994187 .016507 0 0 1
ltg 0 0 0 0 0 0
glu .1417 .3487596 .008577 0 0 1

The probabilities that the coefficients for age and ldl are less
than 0 are close to 0.5, so we may consider these two variables not
important.

Objective 2—Predictions; see next
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New Bayesian features

Bayesian predictions

What are Bayesian predictions?

What are Bayesian predictions?

Bayesian predictions play two important roles in Bayesian analysis:

Prediction (estimation) of new or future outcomes, and

Model goodness of fit, also known as posterior predictive
model checks.

Bayesian predictions are outcome values simulated from the
posterior predictive distribution, which is the distribution of the
unobserved (future) data given the observed data.

More generally, Bayesian predictions can be viewed as any function
of simulated outcomes.

Yulia Marchenko (StataCorp) 23 / 59



New Bayesian features

Bayesian predictions

Posterior predictive distribution (PPD)

Posterior predictive distribution (PPD)

Posterior predictive distribution (PPD) for a new outcome value
ynew given observed data y:

p(ynew |y) =

∫
f (ynew |θ)p(θ|y)dθ

where f (ynew |θ) is the likelihood of ynew given θ and p(θ|y) is the
posterior distribution of θ given y.

Bayesian prediction for ynew is a realization from the above PPD. I
will also use the term simulated outcomes to refer to such
realizations.
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New Bayesian features

Bayesian predictions

Simulating from PPD

Simulating from PPD

Like posterior distribution of model parameters p(θ|y), PPD
p(ynew |y) usually does not have a closed form and must be
approximated. Formula

p(ynew |y) =

∫
f (ynew |θ)p(θ|y)dθ

provides a way to simulate values from PPD using the following
two-step procedure.

1 Simulate θt from p(θ|y)
2 Simulate y t from f (ynew |θt)
3 Repeat steps 1 and 2 for t = 1, 2, . . . ,T MCMC iterations

A sample {y1, y2, . . . , yT} represents a sample from p(ynew |y).
Unlike classical predictions, we will have a sample of T values for
each (new) observation.

An MCMC sample {θ1,θ2, . . . ,θT} is usually available after the
main estimation, so Bayesian prediction simplifies to step 2 only.
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New Bayesian features

Bayesian predictions

Example: Bayesian lasso prediction

Example: Bayesian lasso prediction

Recall our Bayesian lasso model:

. bayesmh y age sex bmi map tc ldl hdl tch ltg glu, ///
> likelihood(normal({sigma2})) ///
> prior({y:age sex bmi map tc ldl hdl tch ltg glu}, ///
> laplace(0, (sqrt({sigma2}/{lam2})))) ///
> prior({sigma2}, jeffreys) ///
> prior({y:_cons}, normal(0, 1e6)) ///
> prior({lam2=1}, gamma(1, 1/1.78)) ///
> block({y:} {sigma2} {lam2}, split) ///
> rseed(16) dots

(output omitted )

Save MCMC posterior sample of model parameters:

. bayesmh, saving(blasso_mcmc)
note: file blasso_mcmc.dta saved
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New Bayesian features

Bayesian predictions

Example: Bayesian lasso prediction

Compute Bayesian predictions

Use bayespredict to simulate and save outcome values:

. bayespredict {_ysim}, saving(blasso_pred) rseed(16)

Computing predictions ...

file blasso_pred.dta saved
file blasso_pred.ster saved

Option saving() is required when simulating outcome values
{ ysim}.

Simulated values and other system variables are saved in
blasso pred.dta.

Auxiliary estimation results used by bayespredict are saved
in blasso pred.ster.

Remember to erase these files when you no longer need them.
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New Bayesian features

Bayesian predictions

Example: Bayesian lasso prediction

Stata dataset created by bayespredict with simulated values:

. describe using blasso_pred

Contains data
obs: 10,000 9 Sep 2020 14:30

vars: 887

storage display value
variable name type format label variable label

_chain int %8.0g Chain identifier
_index int %8.0g Iteration number
_ysim1_1 double %10.0g Simulated y, obs. #1
_ysim1_2 double %10.0g Simulated y, obs. #2

(output omitted )
_ysim1_441 double %10.0g Simulated y, obs. #441
_ysim1_442 double %10.0g Simulated y, obs. #442
_mu1_1 double %10.0g Expected values for y, obs. #1
_mu1_2 double %10.0g Expected values for y, obs. #2

(output omitted )
_mu1_441 double %10.0g Expected values for y, obs. #441
_mu1_442 double %10.0g Expected values for y, obs. #442
_frequency byte %8.0g Frequency weight

Sorted by:
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New Bayesian features

Bayesian predictions

Example: Bayesian lasso prediction

Histograms of Bayesian predictions

Histograms of simulated values for the first 12 observations:

. bayesgraph histogram {_ysim[1/12]} using blasso_pred, byparm
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New Bayesian features

Bayesian predictions

Example: Bayesian lasso prediction

Summary of Bayesian predictions

. bayesstats summary {_ysim[1/12]} using blasso_pred

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

_ysim1_1 203.7014 54.97776 .558382 203.1887 98.05673 312.5681
_ysim1_2 71.25238 55.05362 .550536 70.95502 -35.91061 179.3321
_ysim1_3 175.3088 55.09297 .55093 175.3602 67.95822 284.0823
_ysim1_4 161.6022 55.3058 .577559 161.149 53.56015 273.678
_ysim1_5 127.0087 55.34909 .553491 127.128 18.79625 235.7958
_ysim1_6 104.5405 54.35416 .543542 105.0999 -2.76073 211.2213
_ysim1_7 80.33914 55.64711 .55933 80.04908 -28.58423 189.9953
_ysim1_8 124.9409 55.43717 .554372 124.5975 16.57208 234.4114
_ysim1_9 160.7804 55.37094 .561705 160.6604 51.05089 269.877

_ysim1_10 212.4139 54.70172 .554331 211.9675 105.3659 319.5306
_ysim1_11 99.4205 54.82602 .574513 99.69542 -9.512793 203.8927
_ysim1_12 104.5963 55.64342 .588025 104.4855 -4.058576 215.4143
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New Bayesian features

Bayesian predictions

Example: Bayesian lasso prediction

Hypothesis testing for Bayesian predictions

Compute probability that the first simulated value is greater than
100:

. bayestest interval {_ysim[1]} using blasso_pred, lower(100)

Interval tests MCMC sample size = 10,000

prob1 : {_ysim[1]} > 100

Mean Std. Dev. MCSE

prob1 .9733 0.16121 .0016834
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New Bayesian features

Bayesian predictions

Posterior predictive checks

Posterior predictive checks

Bayesian predictions are useful for model checking by
performing so-called posterior predictive checks.

These checks compare various characteristics of the posterior
predictive distribution with those observed in the data.

For regression models, PPD depends on covariate data X,
p(ynew |y) = p(ynew |y,X).

Thus, a concept of replicated outcomes, yrep, is introduced to
refer to simulated outcomes from PPD p(ynew |y,Xobs) that
uses observed covariate data Xobs .
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New Bayesian features

Bayesian predictions

Posterior predictive p-values (PPPs)

Posterior predictive p-values (PPPs)

Posterior predictive p-values (PPPs) formalize posterior
predictive checks.

They quantify the discrepancy between the summaries of the
observed and replicated data.

Consider a test statistic T (y) such as a sample mean or
median. PPP for T (y) is defined as

q(T ) = Pr(T (yrep) ≥ T (yobs)|yobs ,Xobs)

In a Bayesian context, T (y) = T (y,θ) may also depend on
model parameters θ and is then referred to as a test quantity.

Values of PPPs close to zero or one indicate lack of fit.

Use bayesstats ppvalues to compute PPPs in Stata.
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New Bayesian features

Bayesian predictions

Example: PPPs to check Bayesian lasso fit

PPPs for mean and variance

. bayesstats ppvalues (mean:@mean({_ysim})) (var:@variance({_ysim})) using blasso_pred

Posterior predictive summary MCMC sample size = 10,000

T Mean Std. Dev. E(T_obs) P(T>=T_obs)

mean 152.0664 3.635561 152.1335 .4969
var 5934.96 487.52 5943.331 .4808

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.
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New Bayesian features

Bayesian predictions

Example: PPPs to check Bayesian lasso fit

PPPs for other statistics

Define Mata function skew() that computes skewness:

. mata:
mata (type end to exit)

: real scalar skew(real colvector x) {
> return (sqrt(length(x))*sum((x:-mean(x)):^3)/(sum((x:-mean(x)):^2)^1.5))
> }

: end

Use skew() with bayesstats ppvalues:

. bayesstats ppvalues (skewness:@skew({_ysim})) (min:@min({_ysim})) ///
> (max:@max({_ysim})) using blasso_pred

Posterior predictive summary MCMC sample size = 10,000

T Mean Std. Dev. E(T_obs) P(T>=T_obs)

skewness .0899553 .1045585 .4390664 .0002
min -62.72501 24.93968 25 0
max 381.8695 26.75575 346 .9319

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.
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New Bayesian features

Bayesian predictions

Example: Prediction accuracy of Bayesian and classical lassos

Out-of-sample predictions

Let’s check prediction accuracy of our Bayesian lasso model
and compare it with classical lasso.

We will use splitsample (new in Stata 16) to randomly split
our diabetes data into the training (sample=1) and test
(sample=2) samples.

. use diabetes_std

. splitsample, generate(sample) rseed(12345)

We will fit classical and Bayesian lassos using the training
sample.

We will then predict the outcome using the test sample and
compute mean squared prediction errors for classical and
Bayesian lassos.
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Bayesian predictions

Example: Prediction accuracy of Bayesian and classical lassos

Classical lasso prediction

Fit classical lasso using the training sample and save predicted
values from the test sample in variable yhat:

. lasso linear y age sex bmi map tc ldl hdl tch ltg glu if sample==1, nolog

Lasso linear model No. of obs = 221
No. of covariates = 10

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 44.44473 0 -0.0031 5855.735
33 lambda before 2.264076 6 0.4237 3364.209

* 34 selected lambda 2.062942 6 0.4238 3363.86
35 lambda after 1.879676 6 0.4235 3365.395
38 last lambda 1.421906 6 0.4220 3374.295

* lambda selected by cross-validation.

. predict double yhat if sample==2
(options xb penalized assumed; linear prediction with penalized coefficients)

. gen double err_lasso = (y-yhat)^2
(221 missing values generated)
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Bayesian predictions

Bayesian lasso

Bayesian lasso

Fit Bayesian lasso using the training sample:

. bayesmh y age sex bmi map tc ldl hdl tch ltg glu if sample==1, ///
> likelihood(normal({sigma2})) ///
> prior({y:age sex bmi map tc ldl hdl tch ltg glu}, ///
> laplace(0, (sqrt({sigma2}/{lam2})))) ///
> prior({sigma2}, jeffreys) ///
> prior({y:_cons}, normal(0, 1e6)) ///
> prior({lam2=1}, gamma(1, 1/1.78)) ///
> block({y:} {sigma2} {lam2}, split) ///
> rseed(16) dots saving(blassosplit mcmc)

(Continued on next page)
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New Bayesian features

Bayesian predictions

Bayesian lasso

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
y ~ normal(xb_y,{sigma2})

Priors:
{y:age sex bmi map tc ldl hdl tch ltg glu} ~ laplace(0,<expr1>) (1)

{y:_cons} ~ normal(0,1e6) (1)
{sigma2} ~ jeffreys

Hyperprior:
{lam2} ~ gamma(1,1/1.78)

Expression:
expr1 : sqrt({sigma2}/{lam2})

(1) Parameters are elements of the linear form xb_y.

(Continued on next page)
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Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 221
Acceptance rate = .4404
Efficiency: min = .02513

avg = .1081
Log marginal-likelihood = -1225.3231 max = .2379

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

y
age 22.90211 70.97209 1.65398 18.49825 -109.8378 167.3328
sex -147.1624 91.8814 2.60312 -144.2808 -335.182 20.59289
bmi 523.9505 99.27119 2.74922 526.4859 326.6205 724.9461
map 279.1178 100.3706 2.87727 280.5395 73.24508 477.0849
tc -10.10333 150.7421 9.50814 -7.539645 -329.4431 290.428

ldl -39.61316 130.3894 7.07092 -29.77871 -317.1814 205.3837
hdl -149.4535 136.8265 6.65266 -145.7912 -437.285 108.0459
tch 161.9482 155.7781 7.82029 147.5103 -115.6871 500.1832
ltg 312.8631 124.2238 5.34773 315.6055 72.72891 559.7625
glu 24.37885 79.45832 1.99475 20.4382 -125.1158 191.8139

_cons 149.7803 3.844837 .078828 149.7844 141.9715 157.2013

sigma2 3310.895 329.993 8.00504 3285.107 2733.671 4015.07
lam2 .1320636 .0896626 .003105 .1123817 .0282763 .3578873

Note: Adaptation tolerance is not met in at least one of the blocks.

file blassosplit_mcmc.dta saved
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Bayesian predictions

Bayesian lasso prediction

Bayesian lasso prediction

Compute posterior means of Bayesian lasso predictions for each
observation in the test sample and save them in the variable pmean:

. bayespredict pmean if sample==2, mean rseed(16) dots

Computing predictions 10000 .........1000.........2000.........3000.........400
> 0.........5000.........6000.........7000.........8000.........9000.........10
> 000 done

. gen double err_blasso = (y-pmean)^2
(221 missing values generated)

Compare mean squared prediction error for classical and Bayesian
lassos:

. summarize err*

Variable Obs Mean Std. Dev. Min Max

err_lasso 221 2875.555 3645.928 .3942694 20429.17
err_blasso 221 2854.459 3622.219 .2838339 19689.97
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New Bayesian features

Bayesian predictions

Bayesian lasso prediction

Credible intervals for Bayesian lasso predictions

Compute 95% credible intervals for Bayesian lasso predictions:

. bayespredict cri_l cri_u if sample==2, cri rseed(16) dots

Computing predictions 10000 .........1000.........2000.........3000.........400
> 0.........5000.........6000.........7000.........8000.........9000.........10
> 000 done

. list y yhat pmean cri* if sample==2 & id<10

y yhat pmean cri_l cri_u

3. 141 171.31446 172.9158 61.21823 287.624
4. 206 155.51477 153.5821 39.70884 268.9385
5. 135 130.15709 129.081 17.57684 243.0658
8. 63 147.79128 144.6209 29.40267 262.7248
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Bayesian predictions

Bayesian lasso prediction
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New Bayesian features

Multiple chains

Multiple chains

Bayesian inference uses MCMC.
MCMC convergence must be established before any inferential
conclusions can be made.
MCMC convergence is often explored visually after the
simulation.
In Stata 16, you can run multiple chains using new option
nchains() to explore convergence both visually and more
formally.
Instead of a single longer Markov chain, you can run several
shorter chains to:

explore convergence from different initial states and potentially
detect pseudoconvergence;
obtain more precise results; and
speed up computation when running the chains in parallel
using multiple processors.
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New Bayesian features

Multiple chains

Gelman–Rubin convergence diagnostic

Gelman–Rubin convergence diagnostic

With multiple chains, you can compute Gelman–Rubin
convergence diagnostics for all parameters and use them for a
more formal assessment of MCMC convergence.

The Gelman–Rubin diagnostic Rc (Brooks and Gelman 1998)
summarizes the differences between multiple chains by
comparing the within-chain and between-chains variances.

An Rc greater than 1.1 for any model parameter is considered
to be indicative of nonconvergence.

In addition to MCMC nonconvergence, poor sampling
efficiency may also lead to large Rc .

You can use bayesstats grubin to compute Gelman–Rubin
diagnostics for all model parameters.
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New Bayesian features

Multiple chains

Example: Convergence of Bayesian lasso

Example: Convergence of Bayesian lasso

Let’s run multiple chains to explore convergence of our earlier
Bayesian lasso model. Here, we will fit Bayesian lasso using
bayes: and simulate three chains. We will also use shorter chains
of 3,500 iterations and display initial values used for each chain.

. bayes, prior({y:age sex bmi map tc ldl hdl tch ltg glu}, ///
> laplace(0, (sqrt({sigma2}/{lam2})))) ///
> prior({sigma2}, jeffreys) ///
> prior({y:_cons}, normal(0, 1e6)) ///
> prior({lam2=1}, gamma(1, 1/1.78)) ///
> block({y:} {sigma2} {lam2}, split) ///
> rseed(16) dots ///
> nchains(3) initsummary mcmcsize(3500) ///
> : regress y age sex bmi map tc ldl hdl tch ltg glu

(output omitted )
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Chain 1
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 3500 .........1000.........2000.........3000..... done

Chain 2
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 3500 .........1000.........2000.........3000..... done

Chain 3
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 3500 .........1000.........2000.........3000..... done

Model summary

Likelihood:
y ~ regress(xb_y,{sigma2})

Priors:
{y:age sex bmi map tc ldl hdl tch ltg glu} ~ laplace(0,<expr1>) (1)

{y:_cons} ~ normal(0,1e6) (1)
{sigma2} ~ jeffreys

Hyperprior:
{lam2} ~ gamma(1,1/1.78)

Expression:
expr1 : sqrt({sigma2}/{lam2})

(1) Parameters are elements of the linear form xb_y.

(output omitted )
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Multiple chains

Example: Convergence of Bayesian lasso

Initial values:
Chain 1: {y:age} -10.0122 {y:sex} -239.819 {y:bmi} 519.84 {y:map} 324.39
{y:tc} -792.184 {y:ldl} 476.746 {y:hdl} 101.045 {y:tch} 177.064 {y:ltg} 751.279
{y:glu} 67.6254 {y:_cons} 152.133 {sigma2} 2932.68 {lam2} 1

Chain 2: {y:age} .856616 {y:sex} .141924 {y:bmi} -.210244 {y:map} -.84781
{y:tc} -3.11354 {y:ldl} .287661 {y:hdl} .007601 {y:tch} -1.11456 {y:ltg}
-1.02858 {y:glu} -.775863 {y:_cons} 428.914 {sigma2} 2943.11 {lam2} .181865

Chain 3: {y:age} -1.69075 {y:sex} -.39084 {y:bmi} .074689 {y:map} -.371372
{y:tc} -.196243 {y:ldl} -1.50958 {y:hdl} .899462 {y:tch} -.265409 {y:ltg}
-1.53079 {y:glu} -.387231 {y:_cons} -1676.45 {sigma2} 2906.83 {lam2} .766684

(output omitted )
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Bayesian linear regression Number of chains = 3
Random-walk Metropolis-Hastings sampling Per MCMC chain:

Iterations = 6,000
Burn-in = 2,500
Sample size = 3,500

Number of obs = 442
Avg acceptance rate = .4401
Avg efficiency: min = .01631

avg = .1081
max = .2282

Avg log marginal-likelihood = -2416.1455 Max Gelman-Rubin Rc = 1.06

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

y
age -2.217509 53.09013 1.2185 -2.023093 -107.2715 102.7923
sex -205.5805 62.72992 1.61611 -207.3534 -329.1627 -83.28759
bmi 520.648 66.46239 1.75237 519.7247 393.3882 656.7785
map 302.2608 64.14865 1.60709 305.1601 174.4888 426.939
tc -154.7892 156.5725 11.9657 -141.3851 -485.8309 114.466

ldl -14.18946 130.7579 9.50712 -20.58282 -264.0704 265.0667
hdl -163.6772 105.5633 6.6184 -165.3641 -362.3713 40.72074
tch 92.444 111.6599 5.78541 85.0718 -109.9963 331.8837
ltg 510.006 93.71682 5.14455 506.4445 341.4745 707.1959
glu 66.79432 60.65255 1.59444 65.17973 -44.24351 192.3846

_cons 152.1796 2.629443 .053714 152.1549 146.8562 157.2639

sigma2 2961.205 212.3299 4.70581 2948.655 2576.092 3397.092
lam2 .0919228 .0572705 .001712 .0785825 .0213069 .2371047

Note: Default initial values are used for multiple chains.
Note: Adaptation tolerance is not met in at least one of the blocks in at

least one of the chains.
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Multiple chains

Example: Convergence of Bayesian lasso

Graphical diagnostics for multiple chains

. bayesgraph diagnostics {y:bmi}
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New Bayesian features

Multiple chains

Example: Convergence of Bayesian lasso

Summary for each chain

. bayesstats summary {y:bmi}, sepchains

Posterior summary statistics

Chain 1 MCMC sample size = 3,500

Equal-tailed
y Mean Std. Dev. MCSE Median [95% Cred. Interval]

bmi 519.3121 65.38551 3.07014 517.8948 387.1325 648.7197

Chain 2 MCMC sample size = 3,500

Equal-tailed
y Mean Std. Dev. MCSE Median [95% Cred. Interval]

bmi 522.8732 65.67219 2.89163 520.5146 400.4887 658.6483

Chain 3 MCMC sample size = 3,500

Equal-tailed
y Mean Std. Dev. MCSE Median [95% Cred. Interval]

bmi 519.7587 68.23592 3.15049 520.5898 384.0506 657.4678
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New Bayesian features

Multiple chains

Example: Convergence of Bayesian lasso

Gelman–Rubin statistics

. bayes, nomodelsummary notable

Bayesian linear regression Number of chains = 3
Random-walk Metropolis-Hastings sampling Per MCMC chain:

Iterations = 6,000
Burn-in = 2,500
Sample size = 3,500

Number of obs = 442
Avg acceptance rate = .4401
Avg efficiency: min = .01631

avg = .1081
max = .2282

Avg log marginal-likelihood = -2416.1455 Max Gelman-Rubin Rc = 1.06

Maximum Gelman–Rubin Rc = 1.06 < 1.1.
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Given the maximum Rc of 1.06, all other model parameters will
also have Rc values less than 1.1:

. bayesstats grubin, sort

Gelman-Rubin convergence diagnostic

Number of chains = 3
MCMC size, per chain = 3,500
Max Gelman-Rubin Rc = 1.059548

Rc

y
ldl 1.059548
tc 1.043915

ltg 1.017272
tch 1.016441
hdl 1.014299
map 1.002838
glu 1.001849

lam2 1.001789

y
age 1.001506
sex 1.001356

_cons 1.000939
bmi 1.000795

sigma2 1.000684

Convergence rule: Rc < 1.1



New Bayesian features

Multiple chains

Example: Convergence of Bayesian lasso

Based on the Gelman–Rubin statistics and visual diagnostics, it is
reasonable to assume that MCMC converged in our example. For
an example of MCMC nonconvergence, see, for instance,
https://www.stata.com/new-in-stata/gelman-rubin-convergence-

diagnostic/

Yulia Marchenko (StataCorp) 54 / 59

https://www.stata.com/new-in-stata/gelman-rubin-convergence-diagnostic/
https://www.stata.com/new-in-stata/gelman-rubin-convergence-diagnostic/


New Bayesian features

Clean up

Clean up

Remove the generated files if you no longer need them:

. erase blasso mcmc.dta

. erase blasso pred.dta

. erase blasso pred.ster

. erase blassosplit mcmc.dta
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Summary

Summary

Bayesian prediction is a powerful tool not only for predicting
future observations but also for model checking.
It provides an entire distribution for each predicted
observation, which allows you to assess the uncertainty about
the estimated predicted values.
Use bayespredict to compute various Bayesian predictions.
Use bayesreps and bayesstats ppvalues to perform
posterior model checks.
Use new option nchains() with bayesmh and bayes: to
simulate multiple chains.
Use unofficial command bayesparallel to generate multiple
chains simultaneously.
Use bayesstats grubin to compute the Gelman–Rubin
convergence diagnostics for all model parameters.
Revisit section New Bayesian features in a nutshell for details.
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Additional resources

Additional resources

Quick overview of new Bayesian features in Stata 16:
https://www.stata.com/new-in-stata/new-in-bayesian-analysis/

Bayesian predictions: [BAYES] bayespredict and
https://www.stata.com/new-in-stata/bayesian-predictions/

Multiple chains:
https://www.stata.com/new-in-stata/multiple-chains-in-bayesian-estimation/

Running multiple chains in parallel:
https://www.stata.com/support/faqs/statistics/bayesian-analysis-parallel-

multiple-chains/

Gelman–Rubin convergence diagnostic: [BAYES] bayesstats

grubin and
https://www.stata.com/new-in-stata/gelman-rubin-convergence-diagnostic/

Yulia Marchenko (StataCorp) 57 / 59

https://www.stata.com/new-in-stata/new-in-bayesian-analysis/
https://www.stata.com/manuals/bayesbayespredict.pdf
https://www.stata.com/new-in-stata/bayesian-predictions/
https://www.stata.com/new-in-stata/multiple-chains-in-bayesian-estimation/
https://www.stata.com/support/faqs/statistics/bayesian-analysis-parallel-multiple-chains/
https://www.stata.com/support/faqs/statistics/bayesian-analysis-parallel-multiple-chains/
https://www.stata.com/manuals/bayesbayesstatsgrubin.pdf
https://www.stata.com/manuals/bayesbayesstatsgrubin.pdf
https://www.stata.com/new-in-stata/gelman-rubin-convergence-diagnostic/


New Bayesian features

Additional resources

Additional resources (cont.)

Overview of Bayesian features:
https://www.stata.com/features/overview/bayesian-analysis/

https://www.stata.com/features/bayesian-analysis/

Stata Bayesian Analysis Reference Manual:
https://www.stata.com/manuals/bayes.pdf

YouTube: Bayesian analysis in Stata
https://www.stata.com/links/video-tutorials

https://www.youtube.com/playlist?list=PLN5IskQdgXWnvvLNIeGpL2u1Jg739jsqd
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