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Introduction

Electronic Health Records (EHRs) increasingly used to investigate the
effect of medications

Risks/benefits may be different in routine care versus trials
EHRs often the best available data to answer these questions

Invalid results undermine their use

A key issue is adequate confounder adjustment
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Propensity Scores (PS) in Pharmacoepidemiology

Models the treatment allocation process

Defined as conditional probability of being treated given a set of
observed covariates

Typically estimated using logistic regression model

Methods for estimating treatment effects using PSs include:

Covariate adjustment
Stratification
Matching
Inverse Probability of Treatment Weighting (IPTW)
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High-Dimensional Propensity Score (hd-PS)

Motivation:

Absence/imperfect recording of important confounders in EHR data

hd-PS:

Developed in US health claims data [Schneeweiss et al., 2009]

Information stored as codes in databases are proxies to underlying
confounders (or constructs)

Semi-automated algorithm for selecting confounders

Aim:

Select important confounders to minimise residual confounding
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hd-PS: What do we mean by ‘Proxies’?
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Description of hd-PS Algorithm

Step 0: Prior to running the algorithm

Force clinically important factors and demographics into PS model
e.g. age, sex and calendar time

Define a baseline time-window to assess each individual’s confounder
information

Step 1: Specify a number of data dimensions

Dimensions represent different aspects of care

UK EHRs: clinical information, patterns of drug usage and referrals to
secondary care
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Description of hd-PS Algorithm
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Description of hd-PS Algorithm

Step 2: Within each dimension identify the most prevalent codes
(typically d = 200)

Step 3: Assess the recurrence of each identified covariate

3 indicators of frequency for each code:

Once: Recorded ≥ once for that patient
Sporadic: Recorded ≥ median number of times
Frequent: Recorded ≥ 75th percentile
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Description of hd-PS Algorithm

Step 3: Assess the recurrence of each identified covariate

Example: Code=E10 (Type I diabetes)
Median=2

75th percentile=4

Patient
Code
Count

E10-Once E10-Sporadic E10-Frequent

1 5 1 1 1
2 3 1 1 0
3 1 1 0 0
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Description of hd-PS Algorithm

Step 4: Prioritise covariates (within each dimension)

Covariates with highest potential to bias treatment outcome
relationship selected

Select top empirical candidates from previous step (typically k = 500)

Steps 5/6: Perform standard PS analysis

Estimate treatment PS using predefined and empirically selected
variables

Incorporate PS using standard methods to estimate treatment effect
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hd-PS Software

hd-PS has been implemented in SAS & R:

SAS: www.drugepi.org/dope-downloads/
R: github.com/lendle/hdps

Forthcoming Stata suite: hdps

Implements traditional hd-PS
Extends to hd-PS developments in UK EHRs
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hdps Suite Overview

hdps set

Reads in dimension files

hdps prevalence

Must be ran after hdps set

Step 2: Calculates code prevalences
Returns code summary information for codes selected (d× no. of dims)

hdps recurrence

Requires a study cohort dataset in memory
Step 3: Recurrence of codes identified by hdps prevalence assessed
Returns dataset with set of candidate covariates (at most 3 × d× no.
of dims)
Step 4: Prioritises covariates and returns dataset with top k

John Tazare John Tazare hdps Stata



Introduction hd-PS hd-PS Software Case Study

Table of Contents

1 Introduction

2 Description of hd-PS Algorithm

3 hd-PS Software

4 Case study in CPRD

John Tazare John Tazare hdps Stata



Introduction hd-PS hd-PS Software Case Study

Case study: Background

Example of contradictory results [Douglas et al., 2012]

Population: Clopidogrel and aspirin users in UK Clinical Practice
Research Datalink

Treatment: PPI use vs No PPI use

Outcomes: Myocardial Infarction (MI) analysed using Cox model

Findings:
Pattern of associations strongly suggested residual confounding
between patients
Self-controlled case series - no evidence of increased risk
Subsequent trials/genetic studies confirmed lack of association
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Case study: Methods

Re-analysis of original study:

PS analysis adjusting for the original confounders

Confounders:

Age, sex, smoking status, alcohol consumption, BMI categorised,
diabetes, coronoary heart disease, peripheral vascular disease, ischaemic
stroke, and cancer

PS incorporated using inverse probability of treatment weighting
(IPTW)
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Case study: Methods

hd-PS analysis:

Identified 3 dimensions: Clinical, Referral, Prescription

200 most prevalent variables chosen from each dimension

500 variables added to PS model + original confounders

Aim:

Obtain a point estimate closer to the expected null result with similar
precision to the original study

John Tazare John Tazare hdps Stata



Introduction hd-PS hd-PS Software Case Study

Case study: Results
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Case study: Results

John Tazare John Tazare hdps Stata



Introduction hd-PS hd-PS Software Case Study

Conclusion

hd-PS improved adjustment for confounding compared with
traditional methods

Captured extra predictors of prescribing which were also causing
confounding bias

Potential to improve confounder adjustment in UK EHRs
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Final Thoughts

How best to read/store the dimension files? (datasets vs. matrices)

Thank you for listening

John Tazare
john.tazare1@lshtm.ac.uk

@JohnTStats
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A1: Prioritisation using the Bross formula

Step 4: Prioritise covariates (within each dimension)

Defined for binary confounders

ARR = RR × biasM

ARR: Observed RR treatment on outcome adjusted for individual
binary confounder (confounded)

RR: ‘Unconfounded’ RR treatment on outcome
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A1: Prioritisation using the Bross formula

Step 4: Prioritise covariates (within each dimension)

where biasM =
PC1(RRCD − 1) + 1

PC0(RRCD − 1) + 1

Bross formula [Bross, 1966]

Strength of confounder on outcome - choose covariates with highest
magnitude of bias

PCi : Prevalence of binary confounding factor in treated group (i = 1)
and untreated/comparator group (i = 0)

RRCD : Effect of confounder on outcome
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