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1. Summary

¢ Quantile regression (Koenker and Bassett, 1978) is
increasingly used by practitioners but it is still not part of the
standard econometric/statistics courses.

e Road map:
e general introduction to quantile regression

e two topics from recent research:

e models with time-invariant individual (“fixed effects”) effects

e structural quantile function.

o | will present the approach to these problems proposed by
Machado and Santos Silva (2019), and illustrate the use of
the corresponding Stata commands xtqreg and ivqreg?2.




e For 0 < T < 1, the 7-th quantile of y given x is defined by
Q(lx) = min{y|P(y < #lx) = 7}.
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Bernoulli probability mass function with Pr(y =1) = 0.6




3. Basics of quantile regression

e Quantile regression estimates Q, (T|x).
e Throughout we assume linearity: Q, (t|x) = x'B (7).

e With linear quantiles, we can write
y=xB(1)+u(1); Qur)(7lx) = 0.

e Note that the errors and the parameters depend on 7.
e For T = 0.5 we have the median regression.

e We need to restrict the support of x to ensure that quantiles
do not cross.






4. Inference

e The estimator of B (T) is defined by

N 1
B(7) = argmlnf {Zy,>xb ‘y, X; b‘ +Zy<xb —7) ‘y,-—x,-/b‘}.

e The F.O.C. can be written as

*El T=1((ri=xp (1)) <0))) % =0,

e B(7) is invariant to perturbations of y; that do not change
the sign of (y; — x/B (1)).

N

e 5(T) can be estimated by linear programming (see qreg).



e Asymptotic theory is non-standard because the objective
function is not differentiable.

e However, under certain regularity conditions, B () has
standard properties:

Vi (B(r) = (7)) N (0,D71ADY),

D=E [fu(f) (o|x,-)x,-x;} S A=E[(t—1(u(1)

!

<0))%xx/] .

!

e |t is possible to estimate A and D under different assumptions
(see qreg and qreg2).




5. Comments

e The main advantage of quantile regression is the
informational gains they provide.

e Quantiles are “robust” measures of location and are
estimated using a “robust” estimator.

e Quantiles and means have very different properties.

e Quantiles are not additive; the quantile of the sum is not the
sum of the quantiles.

e Quantiles are equivariant to non-decreasing transformations;
for example, if y; is non-negative with

Qy, (tlx;) = exp (i (1)),

then,

QIn(y,-)(T|Xi) = //.B (7).



6. Extensions

e The plain-vanilla quantile regression estimator has been
extended to different settings:

Censored regression; Powell (1984)

Binary data; Manski (1975, 1985), Horowitz (1992)

Ordered data; M.-j. Lee (1992)

Count data; Machado and Santos Silva (2005)
Corner-solutions data; Machado, Santos Silva, and Wei (2016)
Clustering; Parente and Santos Silva (2016)

e Two areas of active research are:

e quantile regressions with time-invariant individual ("fixed")
effects, and
e structural quantile function.



7. Quantiles via moments

e Consider a location-scale model
!/ !/
yi = x;B+ (xv) uj,

where x; and u; are independent and Pr (x/y > 0) = 1.

e In this case the mean and all conditional quantiles are linear

Q(tlx) = xiB+ (xi7) Qu(tlx)
= xip(7)

,B(T) = ﬁ +7QU(T)'

e In this model, the information provided by B, 7, and Q,(7) is
equivalent to the information provided by regression quantiles.
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e Machado and Santos Silva (2019) noted that, assuming
E(U) = 0 and using the normalization E(|U|) =1, B and 7
are identified by conditional expectations:

E [yilxi] = By + Byxi
Elyi — By — Byxil Ixi] = 7o + 71X

e Q,(T|x;) can be estimated from the scaled errors

Yi = By = ByXi
Yo T 71X
e This provides a way to estimate quantile regression using two

OLS regressions and the computation of a univariate quantile.
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e Suppose now that we are interested in estimating
Q. (tlxie. ;) = x4B (T)+7 (1), , withi=1,...,n;t=1,..., T.

e As in mean regression, “fixed effects” can be important.

Py . 8




Estimation of quantile regression with fixed effects is difficult
because there is no transformation that can be used to
eliminate the incidental parameters.

Therefore, due to the incidental parameter problem,
consistency requires that both n — o0 and T — oo.

For fixed T, the only realistic option is the "correlated
random effects" (Mundlak) estimator; see Abrevaya and
Dahl (2008).

Roger Koenker (2004) and Canay (2011) proposed estimators
based on the assumption that 77 (T); = 7, but this goes
against the spirit of quantile regression.
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Kato, Galvdo, and Montes-Rojas (2012) studied the properties
of quantile regression in a model where the fixed effects are
explicitly included as dummies.

The estimator is consistent and asymptotically normal when
both n — co and T — oo with n?[In(n)]* /T — 0.

This is an issue because in many applications n is much larger
than T (e.g. for T =40, n =100, n? [In (n)]* / T = 24, 416).

An alternative is to use the quantiles-via-moments estimator.
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Consider the location-scale model for panel data
Yie = o+ xie B+ (0i + X y) it
(1) =i +6iQu(t),  B(1) =B+ 7Qu(T),
where x; and u; are independent and Pr ((6; + x/,y) > 0) = 1.

Estimation is performed using two fixed effects regressions
(xtreg) and computing a univariate quantile.

Consistency requires (n, T) — oo with n = o(T).
For fixed T the estimator will have a bias but:

e simulations suggest that the bias is negligible for n/ T < 10;
e the bias can be removed using jackknife.

The estimator is implemented in the xtqreg command
(available from SSC)
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xtqreg depvar [indepvars] [if] [in] [, options]

quantile(#[#[# ...1]1): estimates # quantile; default is
quantile(.5)

id: specifies the variable defining the panel

1s: displays the estimates of the location and scale
parameters




e Suppose that we have a structural relationship defined by

y = da+xB+u,
d = 6(x,z,v)

where v may not be independent of u

e We are interested in
S, (t]d, x) = da (1) + X'B (1),
the structural quantile function such that:

e Prly < S, (7]d,x)|z,x] =7,
* Sy (t]d x) = Qy (7]z,x) # Q (7]d, x).



Chernozhukov and Hansen (2008) propose an estimator of
Sy (7]d, x) based on the observation that

Q—da(r) (Tlz, %) = X'B (7) + 27 (7)
with 7y () = 0.
We can implement the estimator by:
e estimating B (T) and 7y (T) for a range of values of a (T)
e and choosing as estimates the ones corresponding to the value
of a (T) for which 7 (T) is in some sense closer to zero.
Chernozhukov and Hansen (2008) prove the consistency and

asymptotic normality of the estimator.

The estimator is difficult to implement when there are
multiple endogenous variables, but there have been a number
of recent developments on this.

18



e Again, the quantile-via-moments estimator can be useful.

e Consider a location-scale structural relationship

y=da+xB+ (d5+x")/) u d=96(x,zv),

where v may not be independent of u but u is independent of
x and z.

e Because S, (7|d, x) is such that Pr[y < S,(7|d, x)|z,x] = T,
Sy(tld,x) = da+x'B+ (dé+x"v) Qu(7)

= d(a+6Qu(1)) +x(B+71Qu(1)).



GMM can be used to estimate the structural parameters:

y;—dDC—X/‘B |
e[ (e )| o
lyi — da — X'B|
E|ll+———m— -1 | = 0.
[( doé+ x'y z 0

Q. (7) can be estimated from the standardized errors

(vi—da—x'B) / (dé+x'%) .
The estimator has the usual properties.

The estimator is implemented in the ivqreg2 command
(available from SSC)
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ivqreg?

ivqreg2 depvar [indepvars] [if] [in] [, optioms]

quantile(#[#[# ...]]): estimates # quantile; default is
quantile(.5)

instruments(varlist): list of instruments, including control
variables; by default no instruments are used and
restricted quantile regression is performed

1s: displays the estimates of the location and scale
parameters
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10. Final notes

Quantile regression can be very useful and it is now easy to
implement in a variety of cases.

In some contexts, however, quantile regression can be
challenging.

The Method of Moments-Quantile Regression estimator can
be useful in some of these cases.

xtqreg and ivqreg2 make it easy to estimate quantile

regressions with “fixed effects” or endogenous variables.
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