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Robust estimators

Consider regression model

)/[ - X,'t9+£[

where Y is the dependent variable, X; is the vector of covariates
and g; is the error term (i =1, ..., n).

To estimate 6, an aggregate prediction error, based on residuals
ri(0) = Y; — X!6, is minimized.

o LS-estimator: 0,5 = arg mein Y. r?(0) (regress)
=1

=

fragile to all types of outliers
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Robust estimators

Consider regression model

Y= X,'t9+5i

where Y is the dependent variable, X; is the vector of covariates
and g; is the error term (i =1, ..., n).

To estimate 6, an aggregate prediction error, based on residuals
ri(0) = Y; — X!6, is minimized.

~ n
@ LS-estimator: 6,5 = arg mein Y r?(0) (regress)
=1

=

fragile to all types of outliers

e M-estimators: 0y = arg mein Yp (”Ep) (qreg, rreg)
i=1

fragile to bad leverage points
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Robust estimators

Consider regression model

Y = X,'t9+€i

where Y is the dependent variable, X; is the vector of covariates
and ¢; is the error term (i =1, ..., n).

To estimate 6, a measure s of the dispersion of the residuals
ri(6) = Y; — X!6 is minimized.

. n
@ LS-estimator: 6,5 = arg mein ! '21 r?(6) or equivalently
=
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Robust estimators

Consider regression model

Y = X,'t9+€i

where Y is the dependent variable, X; is the vector of covariates
and ¢; is the error term (i =1, ..., n)

To estimate 6, a measure s of the dispersion of the residuals
ri(6) = Y; — X!6 is minimized.

N n
@ LS-estimator: 6,5 = arg mein + Y r?(6) or equivalently
=

mgins(rl(e) o rn(6))
s.t.%_i < xf9> =1

i=1

o LS-estimator:

[m] = =
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Robust estimators

S-estimator of regression

The square function in LS awards excessive importance to outliers.
To increase robustness, another function p () (even, non
decreasing for positive values, less increasing than the square with
a minimum at zero) should be preferred

mein s(rn(0),...,m(0))
@ LS-estimator: n (Yi_X’_te)z _

s.t.- )

i=1

3|

S

Remark: for a thorough description of the robust M, S, MM, MS and SD
estimators presented in this talk, we advice to refer to: Maronna, R., Martin,
D.R. and Yohai, V.J. (2006). "Robust Statistics: Theory and Methods", Wiley.

Ref: Rousseeuw, P. and Yohai, V. (1984), "Robust Regression by Means of S-estimators" in
Robust and nonlinear time series analysis, pages 256-272.

o F = = £ DA
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Robust estimators

S-estimator of regression

The square function in LS awards excessive importance to outliers.
To increase robustness, another function p () (even, non

decreasing for positive values, less increasing than the square with
a minimum at zero) should be preferred

meins(rl(G) o tn(6))
%é (Y xfe) -1

@ LS-estimator:

mein s(r(0),...,m(0))
4 Yi—Xf0\ _
st L 6o (Z29) =

S

@ S-estimator:

where 6 = E [p, (u)] with v« N(0,1)
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Tukey Biweight Function

Several p, functions can be used. We chose Tukey's Biweight
function here defined as

po(u) = G (1_ [1_ (%)2]3) if Jul <c

2

= if |u] > ¢

There is a trade-off between robustness and Gaussian efficiency

@ ¢ = 1.56 leads to a 50% BDP and an efficiency of 28%
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Tukey Biweight Function

Several p, functions can be used. We chose Tukey's Biweight
function here defined as

po(u) = 5 (1_ [1— (%)2]3) if |ul <c

2

= if |u] > ¢
There is a trade-off between robustness and Gaussian efficiency
@ ¢ = 1.56 leads to a 50% BDP and an efficiency of 28%
@ ¢ = 3.42 leads to a 20% BDP and an efficiency of 85%
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Robust estimators
Tukey Biweight Function

Several p, functions can be used. We chose Tukey's Biweight
function here defined as

2

po(u) = 5 (1_ [1— (%)2]3) if |ul <c

= if |u] > ¢
There is a trade-off between robustness and Gaussian efficiency
@ ¢ = 1.56 leads to a 50% BDP and an efficiency of 28%
@ ¢ = 3.42 leads to a 20% BDP and an efficiency of 85%

@ ¢ = 4.68 leads to a 10% BDP and an efficiency of 95%
o = - = = DA
"~ VincenzoVerardi  Robustness for Dummies  13/09/2012  7/30
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MM-estimators (Yohai, 1987)
sc-ale pa;am-eter |

Fit an S-estimator of regression with 50% BDP and estimate the

Robust regression models

A

Js

= s(n(s),.

Take another function p > p, and estimate

rn(és))-

Opm = arg min Ep
0

(r,-(e)

i-1 Us
The BDP is set by p, and the efficiency by p.
Ref: Yohai., V, J, (1987) "High Breakdown-Point and High Efficiency Robust Estimates for Regression." Ann.
Statist. 15 (2) 642 - 656.
=} = = E = DA
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P-subset
Subsampling algorithms to approach the best solution
Exact formulas do not exist to estimate these models and
subsampling algorithms are needed:

© Consider enough subsets of p-points to be sure that at least
one does not contain outliers.
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Subsampling algorithms to approach the best solution

Exact formulas do not exist to estimate these models and
subsampling algorithms are needed:

@ Consider enough subsets of p-points to be sure that at least
one does not contain outliers.

@ For each subset fit the hyperplane connecting all points and
use it as a first guess of the robust estimated hyperplane.
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Subsampling algorithms to approach the best solution

Exact formulas do not exist to estimate these models and
subsampling algorithms are needed:

© Consider enough subsets of p-points to be sure that at least
one does not contain outliers.

@ For each subset fit the hyperplane connecting all points and
use it as a first guess of the robust estimated hyperplane.
© Do some fine tuning using iteratively reweighted least squares

based on the residuals estimated in (3) to get closer to the
global solution
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Subsampling algorithms

Subsampling algorithms to approach the best solution

Exact formulas do not exist to estimate these models and
subsampling algorithms are needed:

© Consider enough subsets of p-points to be sure that at least
one does not contain outliers.

@ For each subset fit the hyperplane connecting all points and
use it as a first guess of the robust estimated hyperplane.

© Do some fine tuning using iteratively reweighted least squares
based on the residuals estimated in (3) to get closer to the
global solution

@ Keep the result associated to the refined estimator associated
with the smallest (robust) aggregate error.

o F = = £ DA



Introduction
oo

Subsampling algorithms

Robust regression models
O00000e0000

Scatter diagram

How to deal with dummies
0000000000

15

Examples
000

10

Conclusions
oo

-5

-10

DA™

o
[SIN
o ad
)
o
r o
o -
n
it



Introduction
oo

Subsampling algorithms

[elelelelele]e] Jelele]

First subset

Robust regression models

How to deal with dummies
0000000000

15

Examples
000

10

Conclusions
oo

DA™

o
[SIN
o ad
)
o
r o
o -
n
it



Introduction Robust regression models How to deal with dummies Examples Conclusions
[ee} 00000000e00 0000000000 000 oo
Subsampling algorithms

w |

—

-
e
o —
—
s
s
e
[ s
.
y
o4 L]
o o o o
[Tl
g
L]
o
L]

o

gl L]

T T T T T

-2 0 2 4 6
x1

DA™




Introduction Robust regression models How to deal with dummies Examples Conclusions
[ee} 00000000000 0000000000 000 oo

Subsampling algorithms
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Subsampling algorithms

Problematic when several dummies are present

It is very likely to observe perfectly collinear subsamples.

id y x1 dl
1 | 0.114251 | 0.694536
2 | 0.934258 | 0.029458
3 | 0.565081 | 0.247579
4 | 0.876498 | 0.915357
5
6
7

0.710484 | 0.656413

0.856098 | 0.93658
0.521096 | 0.085324

- -|==eEE

Problem

If there are five independent explanatory dummy variables that, for
example, take value 1 with probability 0.1, the likelihood of
selecting a non-collinear sample of size 5 is only 1.1%
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The MS-estimator is a first solution
Consider regression model
y= X1 i+ Xo bOr+te
~—~— ~—
dummies continuous

o If 62 were known, then 61 could be robustly estimated using a
monotonic M-estimator (no leverage points)

Ref: Maronna, R. A., and Yohai, V. J. (2000). "Robust regression with both continuous and
categorical predictors". Journal of Statistical Planning and Inference 89, 197-214.
o = = = = 9ac
~ VincenzoVerardi  Robustness for Dummies ~ 13/09/2012 16 /30
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y= X 01+ Xo 0r+c¢
N N

dummies continuous

o If 62 were known, then 61 could be robustly estimated using a
monotonic M-estimator (no leverage points)

@ If 61 were known, then 0, should be estimated using an
S-estimator. The subsampling algorithm would not generate

collinear subsamples as only continuous variables would be
present.
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MS-estimator

The MS-estimator is a first solution

Consider regression model

y= X1 61+ Xo 0Or+c¢
N N

dummies continuous

o If 62 were known, then 61 could be robustly estimated using a
monotonic M-estimator (no leverage points)

@ If 61 were known, then 0, should be estimated using an
S-estimator. The subsampling algorithm would not generate
collinear subsamples as only continuous variables would be

present.
Alternate
AMS . n )
0, = arg min Y71 o (lyi — Xaiba] — Xqi61)
1
92/75 = arg n;in o> ([y — X101] — X26,)
2

o F = = £ DA
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The SD-estimator is a second solution solution

Consider regression model

y= X1 61+ Xo 0Or+c¢
~~ ~~

dummies continuous

e To identify outliers matrix M, q = (y, X2) is projected in
"all" possible directions and dummies are partialled out on
each projection using any monotonic M-estimator.

Ref:

Stahel, W. A. (1981). "Robust estimation: Infinitesimal optimality and covariance matrix
estimators". Ph.D. thesis, ETH, Zurich
and

Donoho, D. L. (1982). "Breakdown properties of multivariate location estimators". Qualifying
paper, Dept. Statistics, Harvard Univ.
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y= X1 61+ Xo 0Or+c¢
~~ ~~

dummies continuous

e To identify outliers matrix M, q = (y, X2) is projected in
"all" possible directions and dummies are partialled out on
each projection using any monotonic M-estimator.

@ The outlyingness of a given point is then defined as the
maximum distance from the projection of the point to the

center of the projected data cloud, i.e. §; = max Lzi(a)
Jall=1 *((=)
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SD-estimator
The SD-estimator is a second solution solution

Consider regression model

y= X1 601+ Xo 0Or+c¢
<~ <~

dummies continuous

e To identify outliers matrix M, q = (y, X2) is projected in
"all" possible directions and dummies are partialled out on
each projection using any monotonic M-estimator.

@ The outlyingness of a given point is then defined as the
maximum distance from the projection of the point to the
center of the projected data cloud, i.e. §; = ||m”ax1 %

al|=

@ Outlyingness distance J; is distributed as 1/)(5. We can
therefore define an individual as being an outlier if ; is larger

than a chosen quantile of ,/7(3.
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The SD-estimator: a graphical explanation
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SD-estimator

The SD-estimator: a graphical explanation
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SD-estimator

The SD-estimator: a graphical explanation
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SD-estimator

The SD-estimator: a graphical explanation
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The SD-estimator: a graphical explanation
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SD-estimator

The SD-estimator: a graphical explanation
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SD-estimator

Comparative advantages

@ We programmed both estimators. They are available upon
request; robregms and sdmultiv

@ Both estimators can be used to fit distributed intercept
models (such as LSDV)

@ MS is more intuitive as it relies on IRWLS. SD is slightly more
complicated theoretically.

@ SD can be used to identify outliers in a wide variety of models
since it does not rely on the dependent-explanatory relation
(i.e. Logit, Heckman)

@ SD can be used in multivariate analysis (i.e. calculate robust
leverage taking into account dummies)
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SD-estimator

Computing time (5% of contamination in x1)

5 K
Model: y = } B;xj+ L 7;dj+efor K=1,11,21,...,191.
j=1 k=1

# Dummies MS SD | # Dummies MS SD
1 252 1.26 101 29.19 1459
11 346 1.73 111 44904 2247
21 403 201 121 4742 2371
31 597 299 131 57.06  28.53
41 8.02 4.01 141 67.19 33.60
51 10.26 5.13 151 69.62 34.81
61 11.73 5.86 161 260.07 130.03
71 16.23 8.12 171 139.56  69.78
81 20.83 10.42 181 13495 67.48
91 27.23 13.61 191 185.18 92.59
N = 1000
=} = = E £ DA
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Simple examples

Creating a contaminated sample

clear
set obs 1000 MS-estimator

drawnorm x1-x5 e
gen y=x1+x2+x3+x4+x5+e

. Robust
fOI’V3|ues |=1(1)5 { v Coef. Std. Err. z
[l -

gen d'i _round(_umform()) x1 1.015749  .0847334 11.99
replace y:y—l-dll' x2 .9840165  .0588595 16.72
%3 1.083979  .0527653 20.54
} xd 1.052281  .0752983 13.97
. x5 1.052403  .0676375 15.55
replace x1=10 in 1/100 di 1.124173  .1066948 10.54
% 1% dz 1.120287  .1195124 9.37

rObreng y X d d3 1.011536  .1144117 8.84
. % 1% a4 .7388712  .1095223 6.75
sdmultiv y X d ' gen(a b) ds 1.124374  .1448934 7.76
reg y x* d* if a==0 _cons -.0289221  .1153601 -0.25

reg y x* d*
o =1 = = = Dace
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Simple examples

Creating a contaminated sample

clear

set obs 1000 SD-estimator
drawnorm x1-x5 e

gen y=x1+x2+x3+x4+x5+e

forvalues i=1(1)5 { v Coet.  std. Err. t
gen d‘i':round(uniform()) ®1 1.041384  .0362514 28.73
_ o %2 1.04519  .0344185  30.37
replace y=y-+d'i x3 1.031552  .0345838  29.83
} x4 1.066473  .0356224  29.94
x5 1.081784 0346054  31.26
replace x1=10 in ]_/]_00 d1 1.061789  .0644784 16.47
az .9851284  .064193 15,35
robregms y x* d* a3 .9224563  .0643582  14.33
d4 .8450953  .0647661  13.05
sdmultiv y x* d*, gen(a b) ds 1.112151  .0643558  17.28
% 1% - _cons .0504445 0767734 0.66

reg y x* d* if a==0

reg y x* d*
o = - = T 9Hace
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Simple examples

Creating a contaminated sample

clear

set obs 1000 LS-estimator
drawnorm x1-x5 e

gen y=x1+x2+x3+x4+x5+e

forvalues i=1(1)5 { v coef. s Err. i
gen d‘i':round(uniform()) ®1 .095752  .0137521 6.96
. 0 ®2 1.041461  .0443404 23.49
replace y_y+d ! X3 1.049491  .0440445 23.83
} x4 9723244 .0442183 21.99
x5 1.031377  .0436638 23.62
replace X].:].O in ]_/]_00 a1 .925825 .0866913 10.68
dz 1.018304  .0866161 11.76
robregms y x* d* ds 1.005827  .0867442 11.60
d4 .9866187  .0868825 11.36
sdmultiv y x* d* gen(a b) das 1.0845286  .0867098 12.51
% 1% - ! _cons -.130481  .1048221 ~1.24

reg y x* d* if a==0

reg y x* d*
o < = E T 9Dace
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Main points of the talk

@ Robust models can cope with dummies

o Codes are relatively fast and stable

@ SD opens the door to outlier identification in a very large
variety of models

@ SD can be used in many other contexts than regression
analysis
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