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distribution of estimates across
bootstrap samples generated
from the observed data

— How to generate bootstrap
samples?

— How to make inference from
them (confidence intervals)?
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The bootstrap approach to statistical inference
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(Efron and Tibshirani, 1993, Davison and Hinkley, 1997)

— Non-parametric bootstrap
» Classic paired boostraps — bsample
» Block bootstraps — bsample
» Balanced bootstraps — bsweights (Kolenikov, 2010)
» Survey bootstraps — bsweights, rhsbsample (Van Kerm, 2013);

» Exchangeable (weighted) bootstrap — exbsample
(Praestgaard and Wellner, 1993) (also see Chernozhukov et al., 2013)
— Residual bootstrap
» Wild bootstrap — boottest (Roodman et al., 2019)

(Fuzzy classification — incomplete and not mutually exclusive)
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— Paired bootstrap: obs appear an integer number of times in bootstrap samples
— ‘frequency weighting’ of original sample
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Exchangeable (weighted) bootstrap

— Paired bootstrap: obs appear an integer number of times in bootstrap samples
— ‘frequency weighting’ of original sample
— Poisson bootstrap: draw from a Poisson(1) distribution to set the bootstrap
frequency weight

— Why stick to integer weights? Exponential bootstrap: make a draw from an
exponential(1) distribution
» each observation has a positive (non-integer) weight
» advantage: no observation is ever ‘excluded’ from the sample
= no issues of ‘no observations’ in resamples (e.g., in logits on rare events) or
perfect collinearity; bootstrap for matching estimators (Otsu and Rai, 2017))

» rescale the weights to average to 1 (sum to n) = Bayesian Bootstrap (Rubin,
1981) (Dirichlet distribution)
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Exponential bootstrap draws
Bootstrap replications

Poisson bootstrap draws
Bootstrap replications
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The command exbsample generates bootstrap replication weights using Poisson or
Exponential draws

Syntax
exbsample [#] [if] [in] [Weight] [using filename]
[, stub (newvarnameprefix) distribution(poisson|exponential) norescale

balance(#) strata(varlist) cluster(varlist) frame(name) ... ]

(A simple command really, but which takes care of nitty-gritty details.)

ssc install exbsample
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— The flexible (but hardest) way: repeat analysis with alternative weight variables

» e.g., passing weights as argument to do files (and looping):
do mydofile.do rweightvar‘i’

» post results in files (‘resultssets’)

.. and combine resulting estimates ‘manually’ (allows flexibility in how Cls are
constructed)

— Use the svy bootstrap prefix (instead of standard bootstrap: prefix)
— Use Jeff Pitblado’s bs4rw prefix (a predecessor of svy bootstrap:)




Generate the bootstrap weights

. sysuse auto , clear
(1978 Automobile Data)

. exbsample 499 , stub(rw)

// vars rwl - rw499 created

2 000000000000050D000000000000000C000AD0K0AG0A00000000000D0A0ADOD000A0DO000000A0000
2 06000000000000000000000000000000000000000000000006000000000000000600600000000005
2 ©000000600000000000G006000A0000G000600000A0AG000A0000DOBG00600000A0AG000A000000AG
2 06000000000000000000000000000000000000000000000000000000Aa0000000600600000000000
2 ©000000060000000D00GG0000000006G0000000A00GG0000000006G0000000000GG000000000a0
® 00000000000000000000000060000
. summarize rwl rw2 rw3 rw499
Variable Obs Mean Std. Dev. Min Max
rwl 74 1 1.014414 .0495382  4.726035
rw2 74 1 1.152799 .0043677  8.042064
rw3 74 1 .9435121 .0204333  3.754344
rw499 74 1 1.12571 .0051524  5.829083
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Option 1: J Pitblado’s bs4rw prefix command

bs4rw (Bootstrapped command needs to accept iweight-s)

. qui net install , from(http://www.stata.com/users/jpitblado/)
o B nodots : mean price
Mean estimation Number of obs = 74
Replications S 499
Observed Bootstrap Normal-based
Mean  Std. Err. [95% Conf. Intervall
price 6165.2567  328.3822 5521.639 6808.874
. mn=r (mean) , nodots : summarize price
BS4Rweights results Number of obs = 74
Replications S 499
command: summarize price
mn: r(mean)
Observed Bootstrap Normal-based
Coef.  Std. Err. z P>|z| [95% Conf. Intervall
mn 6165.2567  328.3822 18.77  0.000 5521.639 6808.874
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svy bootstrap (Bootstrapped command needs to accept iweight-s)

. svyset , bsrweight(rw*) vce(bootstrap)

(output omitted')

. svy bootstrap , nodots

: mean price

Survey: Mean estimation Number of obs = 74
Population size = 74
Replications = 499
Observed Bootstrap Normal-based
Mean Std. Err. [95% Conf. Interval]
price 6165.257 328.053 5522.285 6808.229

. di el(r(table),2,1)*sqrt(499/498)

328.38223

UNIVERSITE DU




svy bootstrap (force non-estimation commands)

: summarize price

. sVy bootstrap mn=r(mean), nodots force

Bootstrap results
Population size

Number of obs = 74
S 74
Replications = 499

summarize price

Normal-based
[95% Conf. Intervall

5522.285 6808.229




The benefit of exponential bootstrap in action

. bootstrap : logit foreign length i.rep78 if rep78>2
Bootstrap replications (50)

i 1 i 2 i 3 f 4 f 5
50
Logistic regression Number of obs = 59
Replications = 41
Wald chi2(3) = 18.77
Prob > chi2 = 0.0003
Log likelihood = -19.697108 Pseudo R2 = 0.4872
(output omitted')
Note: H

standard-error estimates include only complete replications.

. bs4rw , rweight(rwl-rwb0) : logit foreign length i.rep78 if rep78>2
(running logit on estimation sample)

BS4Rweights replications (50)
|

‘ 1 i 2 i 3 i 4 i 5
.................................................. 50
Logistic regression Number of obs = 64
Replications = 50
Wald chi2(3) = 10.44
Prob > chi2 = 0.0152
Log likelihood = -19.697108 Pseudo R2 = 0.4872

(output omitted ) !||||.|!!



Generate weighted replication weights

. exbsample 499 [iw=weight] , stub(rw) replace // vars rwl - rw4999 created

2 00000DAB00000000D0AG00000A0ADAB000600000A0AG000A0A0ADAG000600000A0AG000A0A0ADAA0
® 06000000000000000000000000000000000000000000000006000000030000000600600000000000
2 ©0000000660000000D0AG00000000006G0000000A0AGG0000000006G0000000A00GG000000000A0
2 0600000000005000000000000000000000A0000A0000000000000D0A3000000A6006000000600000
2 ©0000000600000000000G0000000006G00000000000G0000000006G00000000006G0000000000 G0
2 00000000000000D000GD000000000
. bs4rw , rweight (rwl-rw499) nodots : mean price [iw=weight]
Mean estimation Number of obs = 74
Replications = 499
Observed Bootstrap Normal-based
Mean  Std. Err. [95% Conf. Intervall
price 6568.637  382.1837 5819.571 7317.703
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Bootstrapped commands must accept both iw and pw with svy bootstrap

. svyset [pw=weight] , bsrweight(rw#*) vce(bootstrap)

(output omitted)
. svy bootstrap , nodots :

mean price

Survey: Mean estimation Number of obs = 74
Population size = 223,440
Replications = 499
Observed Bootstrap Normal-based
Mean Std. Err. [95% Conf. Intervall]
price 6568.637  381.8005 5820.322 7316.952
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Weighted calculations with svy bootstrap

Bootstrapped commands must accept both iw and pw with svy bootstrap

. // convert pw into iw

. pr def , properties(svyb)
1. if (ustrregexm(€"€0°"> , "\[(\s*pwe?i?g?h?t?\s*=) .*\s*x\]")==1) {
2. loc 0 = subinstr("‘0’", "‘=ustrregexs(1)’", "ig=", 1)
3. }
4. su ‘0’
5. end
. svy bootstrap mu=r(mean) , nodots : price
Bootstrap results Number of obs = 74
Population size = 223,440
Replications = 499
command: mysu price
mu: r(mean)
Observed Bootstrap Normal-based
Coef . Std. Err. z P>|z| [95% Conf. Interval]
mu 6568.637  381.8005 17.20  0.000 5820.322 7316.952
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Statisti

cal properties of exchangeable bootstraps similar to paired bootstrap

Ex.: coverage rate of 95% bootstrapped Cl (normal approximation) for inequality measures
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Does it really ‘work’?

Statistical properties of exchangeable bootstraps similar to paired bootstrap

Ex.: coverage rate of 95% bootstrapped Cl (normal approximation) for inequality measures
GE(1) - Theil
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Does it really ‘work’?

Statistical properties of exchangeable bootstraps similar to paired bootstrap

Ex.: coverage rate of 95% bootstrapped Cl (normal approximation) for inequality measures
GE(2) - .5CoVA2
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— Exchangeably weighted bootstrap schemes are straightforward and attractive
(exponential bootstrap in particular)

— ... and exbsample can help

— Exploiting replication weights is admittedly limited if using built-in (prefix)
commands only (some further programming for handling replications may be
needed for more than small-scale applications)
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