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Introduction



Motivation

A tremendous surge of empirical analysis with spatial data:

• Growing availability of geocoded data

• Integration of geographic information systems (GIS) in the toolkit

of economists

Network relations among individuals known and easily accessible

Need for econometric methods to obtain asymptotically valid

inference in settings with varying types of spatial, network, and

temporal dependence between observation units

Absence of Stata commands, especially in the 2SLS setting
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This paper

Proposes an approach to obtain asymptotically valid inference in

the presence of arbitrary correlation (spatial or within a network) in

both OLS and 2SLS settings

Provides a package, acreg, for the statistical software Stata

Performs Monte Carlo simulations (using spatial data on U.S.

towns and counties) to show the properties and performance of the

proposed estimator

• Generate random variables and check how close we get to 5% null-rejection

rate at 5% test level, following Bertrand, Duflo, and Mullainathan (2004)
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Stata command: acreg

What is new in acreg compared to existing packages?

• Performs standard error correction in both OLS and 2SLS settings following

White (1980)

• Correlation weights can be given as input or computed from spatial or

network relations or multi-way clustering (Cameron et al., 2011)

• Spatial relations can be defined both with a distance cutoff and a contigu-

ity/distance matrix (neighboring observations only)

• Network relations can be defined both with a matrix of links or a distance

matrix or with any arbitrary cluster structure that user defines

• Allows for observation i in time t to be correlated with observation j in its

cluster in time t + s

• HAC standard errors and distance decays are optional

• Fixes some bugs that exist in Conley (1999) and Hsiang (2010)
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Arbitrary Clustering



Spatial - 1 Cluster
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Spatial - 2 Overlapping clusters
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Network
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Network - Adjacency matrix

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11

j1 1 0 1 0 0 1 1 0 0 0 1

j2 0 1 1 0 1 0 0 1 0 0 1

j3 1 1 1 0 0 0 0 0 0 1 0

j4 0 0 0 1 0 0 1 1 0 1 0

j5 0 1 0 0 1 0 0 0 0 0 1

j6 1 0 0 0 0 1 1 0 0 0 0

j7 0 0 0 1 0 1 1 0 0 1 0

j8 0 1 0 1 0 0 0 1 1 0 0

j9 1 0 0 0 0 0 0 1 1 0 0

j10 0 0 1 1 0 0 1 0 0 1 0

j11 1 1 0 0 1 0 0 0 0 0 1
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Conceptual Framework



Theoretical VCV of the 2SLS estimator

Standard IV Estimator

b2SLS = (X̂ ′X̂ )−1(X̂ ′y)

With Variance

VCV (b2SLS) = (X̂ ′X̂ )−1X̂ ′ΩX̂ (X̂ ′X̂ )−1

Where:

y is the Dependent Variable

X is the Matrix of Regressors (exogenous and endogenous)

Z is the Matrix of Instruments (excluded and included)

X̂ = Z(Z ′Z)−1(Z ′X ) is the fitted values from the First Stage Regression

Ω is the VCV of errors
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Estimating the VCV of the 2SLS estimator

Proposed Estimator for X̂ ′ΩX̂ is:

X̂ ′(S .× (uu′))X̂ =
n∑

i=1

T∑
t=1

n∑
j=1

T∑
s=1

x̂ituitujs x̂jssitjs

Where:

u ≡ y − X̂ β̂2SLS are the estimated residuals

• Each itjs-th component of s is a correlation weight [0,1]

• The correlation weight can be arbitrarily set

• The correlation weight should reflect the dependence of the error of
observation it on the error of observation js
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Asymptotics of the proposed estimator (work in progress)

Equivalence with multi-way clustering

• Any bilateral links structure can be represented by a multi-way clustering

structure.

• ˆVCV (β̂2SLS) in a multi-way cluster environment can be represented as sum

of one-way cluster-robust matrices (Cameron et al. 2011)

• The sandwich estimator of the ˆVCV (β̂2SLS) in a one-way cluster environ-

ment is consistent as G → ∞ (White 1984; Arellano 1987; Rogers 1993;

Hansen 2007)

Dimensionality with arbitrary clustering (work in progress)
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Command



acreg - Syntax: baseline
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acreg - Syntax: Spatial 1
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acreg - Syntax: Spatial 2
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acreg - Syntax: Network 1
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acreg - Syntax: Network 2
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acreg - Syntax: Multiway clustering
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acreg - Additional Options

• Panel Dimension and optional HAC standard errors

• Allows for sampling weights (pweights)

• Allows for ‘if’ and ‘in’ statements

• Allows for partialling out up to 2 high-order fixed effects

• Produces output similar to Stata’s native commands

• Allows for storing distance matrix and weights matrix

• Stores main results in e()
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acreg - Output: Spatial
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acreg - Output: Network

Colella, Lalive, Sakalli, and Thoenig Inference with Arbitrary Clustering



Simulations



Simulations
In each Monte Carlo draw:

1. Generate random variables Y and X1, and random shocks εY and εX1

for each observation Go

2. Distribute the random shocks to ”linked observations” Go

• Spatial Environment: kernel around Counties in U.S. Illustration

• Network Environment: coauthors in economics (RePEc)

3. Introduce the correlation in the model by adding the common shocks
to Y and X1 Go

4. Regression of Y on X1 and a constant. Go

Test: as the number of Monte Carlo draws approaches infinity, the null
hypothesis that β̂ = 0, in a test with α = 0.05, will be rejected 5% of the
times only if spatial correlation is accounted for.
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Results



Spatial setting: Null-rejection rates

Data generating process: Bartlett kernel

Unit: U.S. towns U.S. counties

Sample size: N=101 N=1001 N=3141

(1) (2) (3)

Spatial correlation Correction Endogeneity Estimator Null-rejection rate

Panel A: Cross section, t = 1

OLS 5.9% 5.0% 5.0%

X 2SLS 5.6% 5.1% 5.2%

X OLS 37.8% 50.2% 28.2%

X X 2SLS 33.4% 48.3% 26.5%

X X OLS 16.8% 7.2% 5.6%

X X X 2SLS 16.7% 8.4% 5.5%

Panel B: Panel, t = 5

OLS 5.8% 5.1% 5.3%

X 2SLS 5.3% 5.0% 4.6%

X OLS 39.1% 46.1% 17.9%

X X 2SLS 37.3% 44.3% 15.5%

X X OLS 19.4% 11.2% 10.1%

X X X 2SLS 19.0% 11.1% 9.6%
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Spatial setting: Null-rejection rates by sample size, cross section, t=1
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(b) 2SLS
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Spatial setting: Null-rejection rates by sample size, panel, t=5
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(c) OLS
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(d) 2SLS
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Network setting: Null-rejection rates

Data generating process: First-degree friends

Unit: Top of the distribution Random sample

Sample size: N=1000 N=2500 N=1000 N=2500

(1) (2) (3) (4)

Network correlation Correction Endogeneity Estimator Null-rejection rate

OLS 5.1% 4.7% 4.7% 5.1%

X 2SLS 5.3% 4.9% 5.4% 4.7%

X OLS 64.9% 59.0% 26.9% 36.2%

X X 2SLS 63.0% 58.2% 25.4% 35.4%

X X OLS 13.2% 9.2% 7.5% 8.1%

X X X 2SLS 13.4% 9.7% 7.2% 8.4%
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Conclusions



Conclusions

• We propose a variance-covariance matrix (VCV) estimator, accom-
panied with a companion statistical package acreg for Stata, that
allows researchers to obtain cluster-robust inference in OLS and 2SLS
settings with arbitrary dependence across observations and over time

• We show that arbitrary clustering correction produces consistent es-
timates of the VCV by means of Monte Carlo simulations

• Next step: Facing theoretically the dimensionality problem (suffi-
cient number of clusters) in the arbitrary clustering environment and
produce guidelines for the users
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Thank You
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Appendix



Data Generating Process (DGP) - Baseline

For each observational unit we generate two iid random variables Y and
X1

X1 ∼ N(X1, σX1 )

Y ∼ N(Y , σY )1

For each observational unit we also generate two random shocks εY and
εX1 that are independent and identically distributed (iid):

εX1 ∼ (0, σεX1
)

εY ∼ (0, σεY )

1Y and X1 can be any number. Given that Y and X1 are iid, statistical theory predicts that if we regress Y on X1,

the null hypothesis that the β coefficient is equal to 0 at a 5% level, will be rejected with 5% probability.

Back



Data Generating Process (DGP) - Correlation

Spatial Environment
We take each Town/County in US as an observational unit and we dissipate

the shocks εX1i and εYi to all observations js that are within a spatial

distance from observation i . We impose a bartlett kernel such that the

effect is lower as the spatial distance between observations i and j increases.

The total common shock an observation receives are ςξ, with ξ = εX1 , εY :

ςξi = ξi +
N∑
j 6=i

[1− (distij/distcut)]× ξj

Network Environment
We take each author registered at RePEc as an observational unit and we

dissipate the shocks εX1i and εYi to all her coauthors registered at RePEc.

Each coauthor j receives a fraction, ρ, of each shock.

The total common shock an observation receives are ςξ, with ξ = εX1 , εY :

ςξi = ξi +

Ni∑
j 6=i

ρ× ξj ; ρ > 0
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DGP - correlation in the model

We introduce the correlation created into the model by adding the

sum of common shocks to the variables, X1 and Y :

X̂1i = X1i + ςεX1i

Ŷi = Yi + ςεYi

Endogeneity Panel dimension Back



DGP - regression

We estimate the following equation both correcting and not

correcting for the presence of spatial/network correlation using

OLS:

Ŷi = α3i + β̂X̂1i + υi

= α3i + β̂(X1i + ςεX1i
) + (υ′i + ςεYi

)
(1)

Null hypothesis that β̂ = 0 will be rejected 5% of the time at 5%

level if spatial correlation in the model is accounted for.
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Illustration 1: Idiosyncratic shocks

Legend

Idiosyncratic component

-10.82 - -5.0

-4.99 - -3.0

-2.99 - -1.5

-1.49 - 0.0

0.01 - 1.5

1.51 - 3.0

3.01 - 5.0

5.01 - 10.19

Correlated Shocks Back



Illustration 2: Spatially correlated shocks

Legend

Total common shocks

-12.28 - -6.0

-5.99 - -3.5

-3.49 - -1.5

-1.49 - 0.0

0.01 - 3.0

3.01 - 6.5

6.51 - 13.0

13.01 - 23.41
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Data Generating Process, endogeneity

We introduce endogeneity to the model by adding an endogenous variable, End , as a
regressor:

Yi = α1i + δ1X1i + δ2Endi + µi (2)

We generate a random variable IV , which is independent and identically distributed
(iid) to Y and X1:

IV = IV + εIV , εIV ∼ N(0, σεIV );

We define Endi as:

Endi = F (X1i , IVi ) + εYi

We introduce correlation to the 2SLS model by adding the sum of common random
shocks, ςεIVi

, to the variable IV and computing End as a function of correlated
variables and common shocks:

ˆIVi = IVi + ςεIVi

ˆEnd i = F (X̂1i , ˆIV i ) + εYi
+ ςεYi
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Data Generating Process, panel dimension

Before introducing correlation to the model, we introduce auto-correlation of

degree 1 by adding a fraction of the random common shock an observation

receives in time t − 1 to the random common shock it receives in time t:

εYit = εYit + φεYit−1 ;

εX1it = εX1it + φεX1it−1 ;

εIVit = εIVit + φεIVit−1 ;

φ > 0

This ensures that observation i in time t affect observation j in time t + 1 if i

and j are in the same arbitrary spatial cluster, i.e., distij ≤ distcut.
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