Handling missing data in Stata: Imputation and likelihood-based approaches

Rose Medeiros

StataCorp LP

2016 Swiss Stata Users Group meeting

STa

Missing Values

- Missing values are ubiquitous in many disciplines
 - Respondents fail to fully complete questionnaires
 - Follow-up points are missing
 - Equiptment malfunctions
- A number of methods of handling missing values have been developed

Traditional Methods

- Complete case analysis—analyze only those cases with complete data on some set of variables
 - Potentially biased unless the complete cases are a random sample of the full sample
- Hot deck—picking a fixed value from another observation with the same covariates
 - Not necessarily deterministic if there were many observations with the same covariate pattern
- Mean imputation—replacing with a mean
- Regression imputation—replacing with a single fitted value
- The last three methods all suffer from too little variation
 - Replace each missing value with a single good estimate

Principled Methods

- Methods that produce
 - Unbiased parameter estimates when assumptions are met
 - Estimates of uncertainty that account for increased variability due to missing values
- This presentation focuses on how to implement two of these methods Stata
 - Multiple Imputation (MI)
 - Full information maximum likelihood (FIML)
- Other principled methods have been developed, for example Bayesian approaches and methods that explicitely model missingness

Missing Data Mechanisms

The classic typology of missing data mechanisms, introduced by Rubin:

- Missing completely at random (MCAR)
 - Missingness on *x* is unrelated to observed values of other variables and the unobserved values of *x*
- Missing at random (MAR)
 - Missingness on *x* uncorrelated with the unobserved value of *x*, after adjusting for observed variables
- Missing not at random (MNAR)
 - Missingness on *x* is correlated with the unobserved value of *x*
- MI and FIML both assume that missing data is either MAR or MCAR

Sta

- The example used throughout this presentation uses data from the National Health and Nutrition Examination Survey II contained in nhanes2.dta
- We'll regress diastolic blood pressure (bpdiast) on body mass index (bmi) and age in years (age)
- The starting dataset contains no missing values on the analysis variables
- Missing values were created for bmi and age
 - The missing values are MAR

Analysis with Complete Data

- . webuse nhanes2
- . regress bpdiast bmi age

Source	I SS	df	MS	Numb	er of obs	=	10,351
Model Residual	330967.862 1398651.4	2 10,348	165483.93 135.16153	F(2, 31 Prob 19 R-sq Adi	10348) > F uared R-squared	=	0.0000 0.1914 0.1912
Total	1729619.26	10,350	167.1129	72 Root	MSE	=	11.626
bpdiast	Coef.	Std. Err.	t	P> t	[95% Cc	nf.	Interval]
bmi age _cons	.9303882 .1530495 50.67308	.023599 .0067377 .6425594	39.42 22.72 78.86	0.000 0.000 0.000	.884129 .139842 49.4135	5 3 4	.9766469 .1662567 51.93262

14

stata

イロト イ団ト イヨト イヨト

Summarizing Missing Values

use nh2miss

Switching to the version of the dataset with missing values, we can summarize the missing values

misstable summarize Obs<. _____ Unique Obs=. Obs>. Obs<. | values Min Variable | Max _____ _____ age | 976 9,375 | 55 20 74 bmi I 1,858 8,493 | >500 12.3856 61.1297

Medeiros

stata

Missing Value Patterns

```
. misstable patterns
  Missing-value patterns
     (1 means complete)
                  Pattern
   Percent
                    2
       76%
                 1
                   1
       14
                 1
                    0
        6
                 0
                   1
        4
                    0
     100%
 Variables are (1) age (2) bmi
```


stata

イロト イ団ト イヨト イヨト

Estimation Using Complete Case Analysis

By default, regress performs complete case analysis

. regress bpdiast bmi age

Source	SS	df	MS	Number	c of obs	s =	7,915
+				- F(2, 7	7912)	=	689.23
Model	143032.35	2	71516.1748	8 Prob >	> F	=	0.0000
Residual	820969.154	7,912	103.762532	2 R-squa	ared	=	0.1484
+				- Adj R-	-squared	= b	0.1482
Total	964001.504	7,914	121.809642	2 Root N	4SE	=	10.186
bpdiast	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
bmi age _cons	.7273228 .1215468 53.93006	.0255498 .0066455 .6638102	28.47 18.29 81.24	0.000 0.000 0.000	.67723 .10853 52.628	383 198 882	.7774072 .1345738 55.2313

stata

< ロ > < 同 > < 回 > < 回 >

Comparing Complete Data to Listwise Deletion

Coefficients				
	Complete	Listwise		
bmi	.93	.727		
age	.153	.122		
intercept	50.7	53.9		

Standard errors					
Complete Listwise					
bmi	.023	.025			
age	.007	.006			
intercept	.643	.663			

stata

イロト イ団ト イヨト イヨト

What is Multiple Imputation?

- Multiple imputation (MI) is a simulation-based approach for analyzing incomplete data
- Multiple imputation:
 - replaces missing values with multiple sets of simulated values to complete the data—*imputation step*
 - applies standard analyses to each completed dataset—*data analysis step*
 - adjusts the obtained parameter estimates for missing-data uncertainty—pooling step
- The objective of MI is to analyze missing data in a way that results in in valid statistical inference (Rubin 1996)
- MI does not attempt to produce imputed values that are as close as possible the missing values

Sta

< ロ > < 同 > < 回 > < 回 >

Preparing the Data for Imputation

First, we need to tell Stata how to store the imputations. Stata call these mi styles.

. mi set wide

Next we tell Stata what variables we plan to impute

. mi register imputed bmi age

Optionally, we can also tell Stata what variables we don't plan to impute

. mi register regular bpdiast

< ロ > < 同 > < 回 > < 回 >

Imputing Missing Values

. mi impute mvn bmi age = bpdiast, add(20)

Performing EM optimization: note: 398 observations omitted from EM estimation because of all imputation variables missing observed log likelihood = -47955.552 at iteration 8

Performing MCMC data	augmentation						
Multivariate imputat	ion	Im	putations =	20			
Multivariate normal	regression	-	added =	20			
Imputed: m=1 through		updated =	0				
Prior: uniform	It	terations =	2000				
			burn-in =	100			
			between =	100			
1		Observation	s per m				
Variable	Complete	Incomplete	Imputed	Total			
bmi	8493	1858	1858 j	10351			
age	9375	976	976	10351			
(complete + incomple of the number of fi	complete + incomplete = total; imputed is the minimum across m of the number of filled-in observations.)						
			Image:	 < □ > < □ > 			

stata

< ∃ →

Obtaining MI Estimates

. mi estimate: regress bpdiast bmi age

Nultiple-imputation estimates				Imputations		=	20
Linear regressio	n			Number	of obs	=	10,351
				Average	RVI	=	0.1619
				Largest	FMI	=	0.2424
				Complet	e DF	-	10348
DF adjustment:	Small sam	ple		DF:	min	-	322.12
					avg	=	706.73
					max	-	969.86
Model F test:	Equal	FMI		F(2,	838.8)	=	970.30
Within VCE type:		OLS		Prob > 1	7	=	0.0000
bpdiast	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
bmi	.9283816	.0263465	35.24	0.000	.8766	5788	.9800844
age	.1510538	.0076479	19.75	0.000	.1360	076	.1660999
_cons	50.86274	.7051584	72.13	0.000	49.47	7863	52.24685

stata 14

イロト イ団ト イヨト イヨト

Comparing MI Estimates

Coefficients					
Complete Listwise M					
bmi	.93	.727	.928		
age	.153	.122	.151		
intercept	50.7	53.9	50.9		

	Standard errors					
	Complete Listwise MI					
bmi	.023	.025	.026			
age	.007	.006	.008			
intercept	.643	.663	.705			

stata

크

イロト イ団ト イヨト イヨト

Adding Categorical Variables

- If the analysis model includes categorical variables, we'll want to include those in the imputation model as well
- To demonstrate we'll add three categorical variables to our analysis model
- The analysis model is now

regress bpdiast bmi age i.race i.female i.region

- Respondent's race (race) takes on 3 values and has missing values
- Resondent's sex (female) is binary and has missing values
- Region of the U.S. (region) takes on 4 values and is complete

Imputing Categorical Variables

- The multivariate normal model implemented in mi impute mvn assumes all variables follow a multivariate normal distribution
- However, it turns out to be surprisingly robust to nonnormality (Schafer 1997; Demirtas et al. 2008), even when imputing categorical variables (e.g., Lee and Carlin 2010)
 - To include race and region in a model using mi impute mvn we would need to create k - 1 dummy variables to use in the imputation model
- An alternative is to use the multivariate imputation by chained equations (MICE) approach to impute the missing values

- MICE allows us to specify the method used to impute each of the variables in our model
- In Stata, MICE is implemented in mi impute chained
- For our example, we will use
 - A linear model (regress) to impute bmi and age
 - A logistic model (logit) to impute female
 - A multinomial logit model (mlogit) to impute race
- mi impute chained allows the user to specify models for a variety of variable types, including binary, ordinal, nominal, truncated, and count variables

Using mi impute chained

As before, we prepare the data for imputation

- . mi set wide
- . mi register imputed bmi age race female
- . mi register regular bpdiast region

Then we can run the imputation model

```
. mi impute chained (regress) bmi age (logit) female ///
    (mlogit) race = bpdiast i.region, add(20)
Conditional models:
              age: regress age bmi i.female i.race bpdiast i.region
              bmi: regress bmi age i.female i.race bpdiast i.region
           female: logit female age bmi i.race bpdiast i.region
             race: mlogit race age bmi i.female bpdiast i.region
Performing chained iterations ...
                                          Imputations =
                                                             20
Multivariate imputation
Chained equations
                                               added =
                                                             20
Imputed: m=1 through m=20
                                             updated =
                                                            0
Initialization: monotone
                                           Iterations =
                                                            200
                                                                      Stata
                                             burn-in = 10
```

mi impute chained (continued)

bmi:	linear regression
age:	linear regression
female:	logistic regression
race:	multinomial logistic regression

		Observations per m				
Variable	Complete	Incomplete	Imputed	Total		
bmi age female race	8493 9375 8220 7297	1858 976 2131 3054	1858 976 2131 3054	10351 10351 10351 10351 10351		

of the number of filled-in observations.) (complete + incomplete = total; imputed is the minimum across m

stata

イロト イポト イヨト イヨト

Additional Features mi Suite

We haven't seen Stata's tools for

- Data management with mi data
- Use of mi impute to impute univariate and monotone missing values
- Investigating convergence for both mi impute and mi impute chained
- Hypothesis tests and predictions after mi estimate
- The use of mi estimate with special data types, for example survey or time-series data (see help mi xxxset)
- The dialog box for mi which guides you through the MI process
 - It can be reached from the menus ${\it Statistics} > {\it Multiple imputation} \text{ or } {\it by typing } {\it db } {\it mi}$

Conclusion

📰 MI Multi	ple-Imputation Control Panel	– 🗆 X	
Examin	e Query mi status information.	Submit	
Setup	Tabulate missing values.	Go ->	
Impute	Show a detailed report about mi data. Show the number of missing values in m=1, m=2,	Submit	
Import			
Manag	e		
Estimat	e		
Test			
Predic	t Status: Style = Not Set		
00		Close	stata 🚺
		・ロッ (留) ・ =	▶ ▲ 善 ▶ = • • • • • •

More on the Imputation Step

In practice the imputation process involves a lot of decision making

- Scope of the imputation—Whether to impute for a specific analysis, set of related analyses, or for all analyses on a given dataset
- The type of imputation model to use
- What variables to include in the imputation model
- The number of imputations to create

Selecting an Imputation Model

For the most common missing data pattern the options are

- The multivariate normal model—implemented in (mi estimate mvn)
 - Assumes multivariate normality or all variables
 - If the model includes non-normal or categorical variables, you'll have to decide how to include those
- Multivariate imputation by chained equations—implemented in (mi impute chained)
 - Offers flexibility in how each variable is modeled

Sta

Selecting Variables

The imputation model must maintain the existing characteristics of the data, in order to do so it should include

- All variables in the analysis model
- Any interactions that will be tested in the analysis model
- Transformations of variables
- Auxilary variables-variables that do not appear in the analysis model, but
 - Predict missingness, and
 - Are correlated with the variables with missing values

Full Information Maximum Likelihood Estimation

- Full information maximum likelihood (FIML) estimation adjusts the likelihood function so that each case contributes information on the variables that are observed
- Does not create or impute any data, it just analyzes everything that is there
- FIML is implemented as part of Stata's sem command which fits linear structural equation models
- FIML assumes
 - Multivariate normality
 - Missing values are MAR or MCAR

Using sem

- The sem command uses a form of model specification that is different from other commands
 - Direct paths within variables in a model are specified within sets of parentheses
 - Arrows are used to denote the direction of relationships
- The following all regress bpdiast on bmi and age
 - . regress bpdiast bmi age
 - . sem (bpdiast <- bmi age)
 - . sem (bmi age -> bpdiast)
- By default sem performs maximum likelihood estimation on the complete cases
- To request estimation using FIML use the option method (mlmv)

```
. use nh2miss, clear
```

. sem (bpdiast <- bmi age), method(mlmv)

(output omitted)

Structural equation model Number of obs = 10,351 Estimation method = mlmv Log likelihood = -105553.76

1		OIM				
1	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
+-						
Structural						
bpdiast <-						
bmi	.9229957	.0276157	33.42	0.000	.86887	.9771214
age	.152064	.0076274	19.94	0.000	.1371146	.1670133
cons	50.95577	.7217014	70.61	0.000	49.54126	52.37028
+-						
mean(bmi)	25.46282	.0518402	491.18	0.000	25.36121	25.56442
mean(age)	47.72442	.1827953	261.08	0.000	47.36615	48.08269
+-						
var(e.bpdiast)	135.9395	1.985341			132.1035	139.887
var(bmi)	22.67168	.3509293			21.9942	23.37003
var(age)	307.4869	4.563105			298.6722	316.5618
+-						
cov(bmi,age)	16.85967	.965718	17.46	0.000	14.9669	18.75244
LR test of model	vs. saturat	ed: chi2(0)	-	0.00,	Prob > chi2 =	

ਤਾਬਾਬ 🚺

2

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Comparing FIML Estimates

Coefficients						
	Complete	Listwise	MI	FIML		
bmi	.93	.727	.928	.923		
age	.153	.122	.151	.152		
intercept	50.7	53.9	50.9	51		

Standard errors					
	Complete	Listwise	MI	FIML	
bmi	.023	.025	.026	.028	
age	.007	.006	.008	.008	
intercept	.643	.663	.705	.722	

ਤਾਬਾਬ 🚺

크

イロト イ団ト イヨト イヨト

Comparison

Multiple imputation

- If the chained equation approach is used, there is not assumption of multivariate normality
- MI generally makes it easier to include auxilary variables
- Allows for a wide variety of analysis models
- Care is required when constructing the imputation model

Full information maximum likelihood

- Repeated runs of the same model produce the same results
- Easier for others to reproduce, since fewer decisions need to be made and documented

- Stata provides multiple options for analyzing data that contain missing values
- MI and FIML both assume missing values are MAR or MCAR
 - Other solutions are necessary for MNAR data

Demirtas, H., S.A. Freels, RM Yucel. 2008. Journal of Statistical Computation and Simulation 78(1): 69-84.

Lee, K. J., and J. B. Carlin. "Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation." American journal of epidemiology 171.5 (2010): 624-632.

Little, R. J. A., & D. B. Rubin. 2002. Statistical analysis with missing data. Hoboken, N.J: Wiley.

Rubin, D. B. 1996. "Multiple imputation after 18+ years." Journal of the American statistical Association 91(434): 473-489.

Schafer, J. L. 1997. Analysis of Incomplete Multivariate Data. Boca Raton, FL: Chapman & Hall/CRC.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

stata