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Causal Inference Tutorial

Link to the tutorial
https://onlinelibrary.wiley.com/doi/10.1002/sim.9234?af=R

Stata Implementation: source code
https://github.com/migariane/TutorialComputationalCausalInferenceEstimators
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Notation and definitions

Observed Data

Treatment A.

Often, A = 1 for treated and A = 0 for control.

Confounders W.

Outcome Y.

Potential Outcomes

For patient i Yi (1) and Yi (0) set to A = a Y(a), namely A = 1 and A =
0.

Causal Effects

Average Treatment Effect: E[Y(1) - Y(0)].
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ATE estimators

Nonparametric
G-formula plug-in estimator (generalization of standardization).

Parametric
Regression adjustment (RA).

Inverse probability treatment weighting (IPTW).

Inverse-probability treatment weighting with regression adjustment
(IPTW-RA) (Kang and Schafer, 2007).

Semi-parametric Double robust (DR) methods
Augmented inverse-probability treatment weighting (Estimation
Equations) (AIPTW) (Robins, 1994).
Targeted maximum likelihood estimation (TMLE) (van der Laan,
2006).
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ATE estimators: drawbacks

Nonparametric
Curse of dimensionality (sparsity: zero empty cell)

Parametric
Parametric models are misspecified (all models are wrong but some
are useful, Box, 1976), and break down for high-dimensional data.

(RA) Issue: extrapolation and biased if misspecification, no
information about treatment mechanism.

(IPTW) Issue: sensitive to curse of dimensionality, inefficient in case
of extreme weights and biased if misspecification. Non information
about the outcome.
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Double-robust (DR) estimators

Pros: Semi-parametric Double-Robust Methods
DR methods give two chances at consistency if any of two
nuisance parameters is consistently estimated.

DR methods are less sensitive to curse of dimensionality.

Cons: Semi-parametric Double-Robust Methods
DR methods are unstable and inefficient if the propensity score (PS)
is small (violation of positivity assumption) (van der Laan, 2007).

AIPTW and IPTW-RA do not respect the limits of the boundary
space of Y.

Poor performance if dual misspecification (Benkeser, 2016).
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Targeted Maximum Likelihood Estimation (TMLE)

Pros: TMLE
(TMLE) is a general algorithm for the construction of double-robust,
semiparametric MLE, efficient substitution estimator (Van der Laan,
2011)

Better performance than competitors has been largely documented
(Porter, et. al.,2011).

(TMLE) Respect bounds on Y, less sensitive to misspecification and
to near-positivity violations (Benkeser, 2016).

(TMLE) Reduces bias through ensemble learning if misspecification,
even dual misspecification.

For the ATE, Inference is based on the Efficient Influence Curve.
Hence, the CLT applies, making inference easier.

Cons: TMLE
The procedure is only available in R: tmle package (Gruber, 2011).
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Stata ELTMLE

Ensemble Learning Targeted Maximum Likelihood Estimation
eltmle is a Stata program implementing R-TMLE for the ATE for a
binary or continuous outcome and binary treatment.

eltmle includes the use of a super-learner(Polley E., et al. 2011).
I used the default Super-Learner algorithms implemented in the
base installation of the tmle-R package v.1.2.0-5 (Susan G. and Van
der Laan M., 2007).
i) stepwise selection, ii) GLM, iii) a GLM interaction.
Additionally, eltmle users will have the option to include Bayes GLM
and GAM.
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Stata ELTMLE

Syntax eltmle Stata command
eltmle Y A W [, tmle tmlebgam tmleglsrf bal]

Y: Outcome: numeric binary or continuous variable.

A: Treatment or exposure: numeric binary variable.

W: Covariates: vector of numeric and categorical variables.

@icon lshtm ELTMLE October 20, 2022 10 / 44



Stata ELTMLE

Syntax eltmle Stata command
eltmle Y A W [, tmle tmlebgam tmleglsrf bal]

Y: Outcome: numeric binary or continuous variable.

A: Treatment or exposure: numeric binary variable.

W: Covariates: vector of numeric and categorical variables.

@icon lshtm ELTMLE October 20, 2022 10 / 44



Stata ELTMLE

Syntax eltmle Stata command
eltmle Y A W [, tmle tmlebgam tmleglsrf bal]

Y: Outcome: numeric binary or continuous variable.

A: Treatment or exposure: numeric binary variable.

W: Covariates: vector of numeric and categorical variables.

@icon lshtm ELTMLE October 20, 2022 10 / 44



Stata ELTMLE

Syntax eltmle Stata command
eltmle Y A W [, tmle tmlebgam tmleglsrf bal]

Y: Outcome: numeric binary or continuous variable.

A: Treatment or exposure: numeric binary variable.

W: Covariates: vector of numeric and categorical variables.

@icon lshtm ELTMLE October 20, 2022 10 / 44



Stata ELTMLE

Syntax eltmle Stata command
eltmle Y A W [, tmle tmlebgam tmleglsrf bal]

Y: Outcome: numeric binary or continuous variable.

A: Treatment or exposure: numeric binary variable.

W: Covariates: vector of numeric and categorical variables.

@icon lshtm ELTMLE October 20, 2022 10 / 44



Stata Implementation: overall structure
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Stata Implementation: R code for calling the SL
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Stata Implementation: Batch file executing R

@icon lshtm ELTMLE October 20, 2022 13 / 44



Output for continuous outcome
.use http://www.stata-press.com/data/r14/cattaneo2.dta
.eltmle bweight mbsmoke mage medu prenatal mmarried, tmle

Variable | Obs Mean Std. dev. Min Max
-------------+---------------------------------------------------------

POM1 | 4,642 2832.69 74.9141 2550.819 2968.504
POM0 | 4,642 3062.695 91.22898 2844.977 3177.975
ps | 4,642 .1861267 .1106222 .0377472 .8479414

--------------------------------
TMLE: Average Treatment Effect
--------------------------------
ATE: | -230.0
SE: | 24.5
P-value: | 0.0000
95%CI: | -277.9, -182.1
--------------------------------
-----------------------------
TMLE: Causal Risk Ratio (CRR)
-----------------------------
CRR: 0.93; 95%CI:(0.91, 0.94)
-----------------------------
-------------------------------
TMLE: Marginal Odds Ratio (MOR)
-------------------------------
MOR: 0.83; 95%CI:(0.80, 0.87)
-------------------------------
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Output for continuous outcome and balance option
.eltmle bweight mbsmoke mage medu prenatal mmarried, tmle bal
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Simulations comparing Stata ELTMLE vs R-TMLE

. mean psi aipw slaipw tmle
Mean estimation
Number of obs = 1,000
-------------------------

| Mean
-------------+-----------

True | .173
aipw | .170

slaipw | .170
Stata-tmle | .170

-------------------------
R-TMLE | .170

-------------------------
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ONLINE open free tutorial

Link to the tutorial
https://migariane.github.io/TMLE.nb.html

Stata Implementation: source code
https://github.com/migariane/eltmle

Stata installation and step by step commented syntax
github install migariane/eltmle

which eltmle
viewsource eltmle.ado
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eltmle

One sample simulation: TMLE reduces bias
https://github.com/migariane/SUGML

Statistics in Medicine tutorial: TMLE
https://onlinelibrary.wiley.com/doi/full/10.1002/sim.7628
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Next steps for eltmle

Next steps
Stata Journal manuscript introducing eltmle.

Improved eltmle display and user interface.

Keep original data and allow options to get some causal inference
computed data and scalars.

Stata journal manuscript disseminating eltmle use and examples.
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Next steps for ELTMLE

Next steps
Simulated experiment contrasting eltmle and other double robust
alternatives.

Developing Stata native lasso-eltmle.

Include more options for additional machine learning algorithms.

Implementation of Ensemble Learning in Stata (Super-Learner)
using Python 3.

K-fold and cross-fold Cross-validated eltmle. Recently, we have
implemented the cross-validated AUC:
https://github.com/migariane/cvAUROC. Also available at ssc: ssc
install cvAUROC
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Thank YOU

THANK YOU FOR YOUR TIME
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Background: Potential Outcomes framework

Rubin and Heckman
This framework was developed first by statisticians (Rubin, 1983)
and econometricians (Heckman, 1978) as a new approach for the
estimation of causal effects from observational data.

We will keep separate the causal framework (a conceptual issue
briefly introduce here) and the ”how to estimate causal effects”
(an statistical issue also introduced here)
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Causal effects with OBSERVATIONAL data

ASSUMPTIONS for Identification
Rosebaum & Rubin, 1983: The Ignorable Treatment
Assignment (A.K.A Ignorability, Unconfoundeness or
Conditional Mean Independence).

POSITIVITY.

SUTVA.
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Causal effect with OBSERVATIONAL data

IGNORABILITY

(Yi(1),Yi(0))⊥Ai | Wi

POSITIVITY
POSITIVITY: P(A = a | W) > 0 for all a, W

SUTVA
We have assumed that there is only on version of the treatment
(consistency) Y(1) if A = 1 and Y(0) if A = 0.
The assignment to the treatment to one unit doesn’t affect the
outcome of another unit (no interference) or IID random variables.
The model used to estimate the assignment probability has to be
correctly specified.

@icon lshtm ELTMLE October 20, 2022 26 / 44



Causal effect

Potential Outcomes
We only observe:

Yi(1) = Yi(A = 1) and Yi(0) = Yi(A = 0)

However we would like to know what would have happened if:

Treated Yi(1) would have been non-treated Yi(A = 0) = Yi(0).

Controls Yi(0) would have been treated Yi(A = 1) = Yi(1).

Identifiability

How we can identify the effect of the potential outcomes Ya if they
are not observed?

How we can estimate the expected difference between the potential
outcomes E[Y(1) - Y(0)], namely the ATE.
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G-Formula, (Robins, 1986)

G-Formula for the identification of the ATE with observational data

E(Y a) =
∑

y

E(Y a | W = w)P(W = w)

=
∑

y

E(Y a | A = a,W = w)P(W = w) by consistency

=
∑

y

E(Y = y | A = a,W = w)P(W = w) by ignorability

The ATE=

∑
w

[∑
y

P(Y = y | A = 1,W = w) −
∑

y

P(Y = y | A = 0,W = w)

]
P(W = w)

P(W = w) =
∑
y ,a

P(W = w ,A = a,Y = y)
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G-Formula, (Robins, 1986)

G-Formula for the identification of the ATE with observational data
The ATE=

∑
w

[∑
y

P(Y = y | A = 1,W = w) −
∑

y

P(Y = y | A = 0,W = w)

]
P(W = w)

P(W = w) =
∑
y ,a

P(W = w ,A = a,Y = y)

G-Formula
The sums is generic notation. In reality, likely involves sums and integrals
(we are just integrating out the W’s).

The g-formula is a generalization of standardization and allow to
estimate unbiased treatment effect estimates.
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RA

Regression-adjustment

ÂTERA = N−1
N∑

i=1

[E(Yi | A = 1 ,Wi) − E(Yi | A = 0 ,Wi)]

mA(wi) = E(Yi | Ai = A ,Wi)

ÂTERA = N−1
N∑

i=1

[m̂1(wi) − m̂0(wi)]
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IPTW

IPTW (Inverse probability treatment weighting)
Survey theory (Horvitz-Thompson)

P̂i = E(Ai | Wi) ;So ,
1
p̂i
, if A = 1 and ,

1
(1 − p̂i)

, if A = 0

over the total number of individuals

ÂTE IPTW = N−1
N∑

i=1

AiYi

p̂i
− N−1

N∑
i=1

(1 − Ai)Yi

(1 − p̂i)
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AIPTW

AIPTW (Augmented Inverse probability treatment weighting)
Solving Estimating Equations

ÂTEAIPTW =

N−1
N∑

i=1

[(Y (1) | Ai = 1,Wi) − (Y (0) | Ai = 0,Wi)]+

N−1
N∑

i=1

(
(Ai = 1)

P(Ai = 1 | Wi)
− (Ai = 0)

P(Ai = 0 | Wi)

)
[Yi − E(Y | Ai ,Wi)]
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Targeted learning

Source: Mark van der Laan and Sherri Rose. Targeted learning: causal
inference for observational and experimental data. Springer Series in
Statistics, 2011.
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Why Targeted learning?

Source: Mark van der Laan and Sherri Rose. Targeted learning: causal
inference for observational and experimental data. Springer Series in
Statistics, 2011.
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TMLE ROAD MAP

MC simulations: Luque-Fernandez et al, 2017 (in press, American
Journal of Epidemiology)

ATE BIAS (%) RMSE 95%CI coverage (%)
N=1,000 N=10,000 N=1,000 N=10,000 N=1,000 N=10,000 N=1,000 N=10,000

First scenario* (correctly specified models)
True ATE -0.1813
Naı̈ve -0.2234 -0.2218 23.2 22.3 0.0575 0.0423 77 89
AIPTW -0.1843 -0.1848 1.6 1.9 0.0534 0.0180 93 94
IPTW-RA -0.1831 -0.1838 1.0 1.4 0.0500 0.0174 91 95
TMLE -0.1832 -0.1821 1.0 0.4 0.0482 0.0158 95 95
Second scenario ** (misspecified models)
True ATE -0.1172
Naı̈ve -0.0127 -0.0121 89.2 89.7 0.1470 0.1100 0 0
BFit AIPTW -0.1155 -0.0920 1.5 11.7 0.0928 0.0773 65 65
BFit IPTW-RA -0.1268 -0.1192 8.2 1.7 0.0442 0.0305 52 73
TMLE -0.1181 -0.1177 0.8 0.4 0.0281 0.0107 93 95
*First scenario : correctly specified models and near-positivity violation
**Second scenario: misspecification, near-positivity violation and adaptive model selection
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TMLE ROAD MAP

TMLE steps
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TMLE STEPS

Substitution estimation: Ê(Y | A,W )

First compute the outcome regression E(Y | A,W) using the
Super-Learner to then derive the Potential Outcomes and compute
Ψ(0) = E(Y (1) | A = 1,W ) − E(Y (0) | A = 0,W ).

Estimate the exposure mechanism P(A=1|,W) using the
Super-Learner to predict the values of the propensity score.

Compute HAW =
(

I(Ai=1)
P(Ai=1|Wi )

− I(Ai=0)
P(Ai=0|Wi )

)
for each individual,

named the clever covariate H.
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Fluctuation step: Epsilon

Fluctuation step (ϵ̂0 , ϵ̂1)

Update Ψ(0) through a fluctuation step incorporating the information
from the exposure mechanism:

H(1)W = I(Ai=1)
P̂(Ai=1|Wi )

and,H(0)W = − I(Ai=0)
P̂(Ai=0|Wi )

.

This step aims to reduce bias minimising the mean squared error
(MSE) for (Ψ) and considering the bounds of the limits of Y.

The fluctuation parameters (ϵ̂0 , ϵ̂1) are estimated using maximum
likelihood procedures (in Stata):

. glm Y HAW, fam(binomial) nocons offset(E(Y| A,W ))

. mat e = e(b),

. gen double ϵ = e[1,1],

@icon lshtm ELTMLE October 20, 2022 38 / 44



Fluctuation step: Epsilon

Fluctuation step (ϵ̂0 , ϵ̂1)

Update Ψ(0) through a fluctuation step incorporating the information
from the exposure mechanism:

H(1)W = I(Ai=1)
P̂(Ai=1|Wi )

and,

H(0)W = − I(Ai=0)
P̂(Ai=0|Wi )

.

This step aims to reduce bias minimising the mean squared error
(MSE) for (Ψ) and considering the bounds of the limits of Y.

The fluctuation parameters (ϵ̂0 , ϵ̂1) are estimated using maximum
likelihood procedures (in Stata):

. glm Y HAW, fam(binomial) nocons offset(E(Y| A,W ))

. mat e = e(b),

. gen double ϵ = e[1,1],

@icon lshtm ELTMLE October 20, 2022 38 / 44



Fluctuation step: Epsilon

Fluctuation step (ϵ̂0 , ϵ̂1)

Update Ψ(0) through a fluctuation step incorporating the information
from the exposure mechanism:

H(1)W = I(Ai=1)
P̂(Ai=1|Wi )

and,H(0)W = − I(Ai=0)
P̂(Ai=0|Wi )

.

This step aims to reduce bias minimising the mean squared error
(MSE) for (Ψ) and considering the bounds of the limits of Y.

The fluctuation parameters (ϵ̂0 , ϵ̂1) are estimated using maximum
likelihood procedures (in Stata):

. glm Y HAW, fam(binomial) nocons offset(E(Y| A,W ))

. mat e = e(b),

. gen double ϵ = e[1,1],

@icon lshtm ELTMLE October 20, 2022 38 / 44



Fluctuation step: Epsilon

Fluctuation step (ϵ̂0 , ϵ̂1)

Update Ψ(0) through a fluctuation step incorporating the information
from the exposure mechanism:

H(1)W = I(Ai=1)
P̂(Ai=1|Wi )

and,H(0)W = − I(Ai=0)
P̂(Ai=0|Wi )

.

This step aims to reduce bias minimising the mean squared error
(MSE) for (Ψ) and considering the bounds of the limits of Y.

The fluctuation parameters (ϵ̂0 , ϵ̂1) are estimated using maximum
likelihood procedures (in Stata):

. glm Y HAW, fam(binomial) nocons offset(E(Y| A,W ))

. mat e = e(b),

. gen double ϵ = e[1,1],

@icon lshtm ELTMLE October 20, 2022 38 / 44



Fluctuation step: Epsilon

Fluctuation step (ϵ̂0 , ϵ̂1)

Update Ψ(0) through a fluctuation step incorporating the information
from the exposure mechanism:

H(1)W = I(Ai=1)
P̂(Ai=1|Wi )

and,H(0)W = − I(Ai=0)
P̂(Ai=0|Wi )

.

This step aims to reduce bias minimising the mean squared error
(MSE) for (Ψ) and considering the bounds of the limits of Y.

The fluctuation parameters (ϵ̂0 , ϵ̂1) are estimated using maximum
likelihood procedures (in Stata):

. glm Y HAW, fam(binomial) nocons offset(E(Y| A,W ))

. mat e = e(b),

. gen double ϵ = e[1,1],

@icon lshtm ELTMLE October 20, 2022 38 / 44



Fluctuation step: Epsilon

Fluctuation step (ϵ̂0 , ϵ̂1)

Update Ψ(0) through a fluctuation step incorporating the information
from the exposure mechanism:

H(1)W = I(Ai=1)
P̂(Ai=1|Wi )

and,H(0)W = − I(Ai=0)
P̂(Ai=0|Wi )

.

This step aims to reduce bias minimising the mean squared error
(MSE) for (Ψ) and considering the bounds of the limits of Y.

The fluctuation parameters (ϵ̂0 , ϵ̂1) are estimated using maximum
likelihood procedures (in Stata):

. glm Y HAW, fam(binomial) nocons offset(E(Y| A,W ))

. mat e = e(b),

. gen double ϵ = e[1,1],
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Fluctuation step: Epsilon

Fluctuation step (ϵ̂0 , ϵ̂1)

Update Ψ(0) through a fluctuation step incorporating the information
from the exposure mechanism:

H(1)W = I(Ai=1)
P̂(Ai=1|Wi )

and,H(0)W = − I(Ai=0)
P̂(Ai=0|Wi )

.

This step aims to reduce bias minimising the mean squared error
(MSE) for (Ψ) and considering the bounds of the limits of Y.

The fluctuation parameters (ϵ̂0 , ϵ̂1) are estimated using maximum
likelihood procedures (in Stata):

. glm Y HAW, fam(binomial) nocons offset(E(Y| A,W ))

. mat e = e(b),

. gen double ϵ = e[1,1],

@icon lshtm ELTMLE October 20, 2022 38 / 44



Targeted estimate of the ATE (Ψ̂)

Ψ(0) update using ϵ (epsilon)

E∗(Y | A = 1,W ) = expit [logit [E(Y | A = 1,W )] + ϵ̂1H1(1,W )]

E∗(Y | A = 0,W ) = expit [logit [E(Y | A = 0,W )] + ϵ̂0H0(0,W )]

Targeted estimate of the ATE from Ψ(0) to Ψ(1): (Ψ̂)

Ψ(1) : Ψ̂ = [E∗(Y (1) | A = 1,W ) − E∗(Y (0) | A = 0,W )]
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TMLE inference: Influence curve

TMLE inference

IC =

(
(Ai = 1)

P(Ai = 1 | Wi)
− (Ai = 0)

P(Ai = 0 | Wi)

)
[Yi − E1(Y | Ai ,Wi)]+

[E1(Y (1) | Ai = 1,Wi) − E1(Y (0) | Ai = 0,Wi)] − ψ

Standard Error : σ (ψ0) =
SD(ICn)√

n

TMLE inference
The Efficient IC, first introduced by Hampel (1974), is used to apply readily
the CLT for statistical inference using TMLE.

The Efficient IC is the same as the infinitesimal jackknife and the
nonparametric delta method.Also named the ”canonical gradient” of the
pathwise derivative of the target parameter ψor ”approximation by
averages”(Efron, 1982).
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IC: Geometric interpretation

Estimate of the ψ Standard Error using the efficient Influence Curve.
Image credit: Miguel Angel Luque-Fernandez

@icon lshtm ELTMLE October 20, 2022 41 / 44



Targeted learning

Source: Mark van der Laan and Sherri Rose. Targeted learning: causal
inference for observational and experimental data. Springer Series in
Statistics, 2011.
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Super-Learner: Ensemble learning

To apply the EIC we need data-adaptive estimation for both, the model of the
outcome, and the model of the treatment.
Asymptotically, the final weighted combination of algorithms (Super Learner)
performs as well as or better than the best-fitting algorithm (van der Laan,
2007).
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TMLE inference: INFLUENCE CURVE

M-ESTIMATORS: Semi-parametric and Empirical processes theory
An estimator is asymptotically linear with influence function φ (IC) if the
estimator can be approximate by an empirical average in the sense that

(θ̂ − θ0) =
1
n

n∑
i=1

(IC) + Op(1/
√

n)

(Bickel, 1997).

TMLE inference: Bickel (1993); Tsiatis (2007); Van der Laan (2011);
Kennedy (2016)

The IC estimation is a more general approach than M-estimation.

The Efficient IC has mean zero E(ICψ̂(yi , ψ0)) = 0 and finite variance.
By the Weak Law of the Large Numbers, the Op converges to zero in a rate
1/

√
n as n →∞ (Bickel, 1993).

The Efficient IC requires asymptotically linear estimators.
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