Ensemble Learning Targeted Maximum Likelihood Estimation for Stata Users

Miguel Angel Luque Fernandez (PhD), Matthew J. Smith (PhD), and Camille Maringe (PhD)

Medical Research Council, UK Inequalities in Cancer Outcomes Network London School of Hygiene and Tropical Medicine Department of Statistics and Operations Research, University of Granada https://github.com/migariane/SUGML

2022 Spanish Stata Conference

October 20, 2022

@icon_lshtm

ELTMLE

October 20, 2022

Table of Contents

- Background and notation
- ATE estimators
 - Estimators: Drawbacks
- 3 Targeted Maximum Likelihood Estimation
- Stata Implementation
 - Simulations
 - Links: online tutorial and GitHub open source eltmle
 - eltmle one sample simulation
- Next steps

References

- Additional material
 - Why care about TMLE
 - TMLE road map
 - Non-parametric theory and empirical efficiency: Influence Cy
 - Machine learning: ensemble learning

@icon_lshtm

Causal Inference Tutorial

Link to the tutorial

https://onlinelibrary.wiley.com/doi/10.1002/sim.9234?af=R

@icon_lshtm

October 20, 2022

Causal Inference Tutorial

Link to the tutorial

https://onlinelibrary.wiley.com/doi/10.1002/sim.9234?af=R

Stata Implementation: source code

@icon_lshtm

Causal Inference Tutorial

Link to the tutorial

https://onlinelibrary.wiley.com/doi/10.1002/sim.9234?af=R

Stata Implementation: source code

https://github.com/migariane/TutorialComputationalCausalInferenceEstimators

Observed Data

• Treatment A.

@icon_lshtm

October 20, 2022

Observed Data

• Treatment A.

Often, A = 1 for treated and A = 0 for control.

@icon_lshtm

Observed Data

• Treatment A.

Often, A = 1 for treated and A = 0 for control.

• Confounders W.

Observed Data

• Treatment A.

Often, A = 1 for treated and A = 0 for control.

- Confounders W.
- Outcome Y.

Observed Data

• Treatment A.

Often, A = 1 for treated and A = 0 for control.

- Confounders W.
- Outcome Y.

Potential Outcomes

Observed Data

• Treatment A.

Often, A = 1 for treated and A = 0 for control.

- Confounders W.
- Outcome Y.

Potential Outcomes

For patient i Y_i(1) and Y_i(0) set to A = a Y^(a), namely A = 1 and A = 0.

Observed Data

• Treatment A.

Often, A = 1 for treated and A = 0 for control.

- Confounders W.
- Outcome Y.

Potential Outcomes

@icon_lshtm

Causal Effects

ELTMLE

Observed Data

• Treatment A.

Often, A = 1 for treated and A = 0 for control.

- Confounders W.
- Outcome Y.

Potential Outcomes

For patient i Y_i(1) and Y_i(0) set to A = a Y^(a), namely A = 1 and A = 0.

Causal Effects

Average Treatment Effect: E[Y(1) - Y(0)].

@icon_lshtm

Observed Data

• Treatment A.

Often, A = 1 for treated and A = 0 for control.

- Confounders W.
- Outcome Y.

Potential Outcomes

For patient i Y_i(1) and Y_i(0) set to A = a Y^(a), namely A = 1 and A = 0.

Causal Effects

Average Treatment Effect: E[Y(1) - Y(0)].

@icon_lshtm

Nonparametric

• G-formula plug-in estimator (generalization of standardization).

@icon_lshtm

Nonparametric

• G-formula plug-in estimator (generalization of standardization).

Parametric

• Regression adjustment (RA).

@icon_lshtm

Nonparametric

• G-formula plug-in estimator (generalization of standardization).

Parametric

- Regression adjustment (RA).
- Inverse probability treatment weighting (IPTW).

Nonparametric

• G-formula plug-in estimator (generalization of standardization).

- Regression adjustment (RA).
- Inverse probability treatment weighting (IPTW).
- Inverse-probability treatment weighting with regression adjustment (IPTW-RA) (Kang and Schafer, 2007).

Nonparametric

• G-formula plug-in estimator (generalization of standardization).

Parametric

- Regression adjustment (RA).
- Inverse probability treatment weighting (IPTW).
- Inverse-probability treatment weighting with regression adjustment (IPTW-RA) (Kang and Schafer, 2007).

Semi-parametric Double robust (DR) methods

 Augmented inverse-probability treatment weighting (Estimation Equations) (AIPTW) (Robins, 1994).

Nonparametric

• G-formula plug-in estimator (generalization of standardization).

Parametric

- Regression adjustment (RA).
- Inverse probability treatment weighting (IPTW).
- Inverse-probability treatment weighting with regression adjustment (IPTW-RA) (Kang and Schafer, 2007).

Semi-parametric Double robust (DR) methods

- Augmented inverse-probability treatment weighting (Estimation Equations) (AIPTW) (Robins, 1994).
- Targeted maximum likelihood estimation (TMLE) (van der Laan, 2006).

Nonparametric

• G-formula plug-in estimator (generalization of standardization).

Parametric

- Regression adjustment (RA).
- Inverse probability treatment weighting (IPTW).
- Inverse-probability treatment weighting with regression adjustment (IPTW-RA) (Kang and Schafer, 2007).

Semi-parametric Double robust (DR) methods

- Augmented inverse-probability treatment weighting (Estimation Equations) (AIPTW) (Robins, 1994).
- Targeted maximum likelihood estimation (TMLE) (van der Laan, 2006).

@icon_lshtm

October 20, 2022

Nonparametric

Curse of dimensionality (sparsity: zero empty cell)

@icon_lshtm

October 20, 2022

Nonparametric

• Curse of dimensionality (sparsity: zero empty cell)

Parametric

• Parametric models are misspecified (all models are wrong but some are useful, Box, 1976), and break down for high-dimensional data.

Nonparametric

• Curse of dimensionality (sparsity: zero empty cell)

- Parametric models are misspecified (all models are wrong but some are useful, Box, 1976), and break down for high-dimensional data.
- (RA) Issue: extrapolation and biased if misspecification, no information about treatment mechanism.

Nonparametric

• Curse of dimensionality (sparsity: zero empty cell)

- Parametric models are misspecified (all models are wrong but some are useful, Box, 1976), and break down for high-dimensional data.
- (RA) Issue: extrapolation and biased if misspecification, no information about treatment mechanism.
- (IPTW) Issue: sensitive to curse of dimensionality, inefficient in case of extreme weights and biased if misspecification. Non information about the outcome.

Nonparametric

• Curse of dimensionality (sparsity: zero empty cell)

- Parametric models are misspecified (all models are wrong but some are useful, Box, 1976), and break down for high-dimensional data.
- (RA) Issue: extrapolation and biased if misspecification, no information about treatment mechanism.
- (IPTW) Issue: sensitive to curse of dimensionality, inefficient in case of extreme weights and biased if misspecification. Non information about the outcome.

@icon_lshtm

October 20, 2022

Pros: Semi-parametric Double-Robust Methods

@icon_lshtm

October 20, 2022

Pros: Semi-parametric Double-Robust Methods

• DR methods give **two chances at consistency** if any of two nuisance parameters is consistently estimated.

Pros: Semi-parametric Double-Robust Methods

- DR methods give **two chances at consistency** if any of two nuisance parameters is consistently estimated.
- DR methods are less sensitive to curse of dimensionality.

Pros: Semi-parametric Double-Robust Methods

- DR methods give **two chances at consistency** if any of two nuisance parameters is consistently estimated.
- DR methods are less sensitive to curse of dimensionality.

Cons: Semi-parametric Double-Robust Methods

Pros: Semi-parametric Double-Robust Methods

- DR methods give **two chances at consistency** if any of two nuisance parameters is consistently estimated.
- DR methods are less sensitive to curse of dimensionality.

Cons: Semi-parametric Double-Robust Methods

 DR methods are unstable and inefficient if the propensity score (PS) is small (violation of positivity assumption) (van der Laan, 2007).

Pros: Semi-parametric Double-Robust Methods

- DR methods give **two chances at consistency** if any of two nuisance parameters is consistently estimated.
- DR methods are less sensitive to curse of dimensionality.

Cons: Semi-parametric Double-Robust Methods

- DR methods are unstable and inefficient if the propensity score (PS) is small (violation of positivity assumption) (van der Laan, 2007).
- AIPTW and IPTW-RA do not respect the **limits of the boundary space of Y**.

@icon_lshtm

Pros: Semi-parametric Double-Robust Methods

- DR methods give **two chances at consistency** if any of two nuisance parameters is consistently estimated.
- DR methods are less sensitive to curse of dimensionality.

Cons: Semi-parametric Double-Robust Methods

- DR methods are unstable and inefficient if the propensity score (PS) is small (violation of positivity assumption) (van der Laan, 2007).
- AIPTW and IPTW-RA do not respect the **limits of the boundary space of Y**.
- Poor performance if dual misspecification (Benkeser, 2016).

ELTMLE

@icon_lshtm

Pros: Semi-parametric Double-Robust Methods

- DR methods give **two chances at consistency** if any of two nuisance parameters is consistently estimated.
- DR methods are less sensitive to curse of dimensionality.

Cons: Semi-parametric Double-Robust Methods

- DR methods are unstable and inefficient if the propensity score (PS) is small (violation of positivity assumption) (van der Laan, 2007).
- AIPTW and IPTW-RA do not respect the **limits of the boundary space of Y**.
- Poor performance if dual misspecification (Benkeser, 2016).

ELTMLE
Pros: TMLE

 (TMLE) is a general algorithm for the construction of double-robust, semiparametric MLE, efficient substitution estimator (Van der Laan, 2011)

- (TMLE) is a general algorithm for the construction of double-robust, semiparametric MLE, efficient substitution estimator (Van der Laan, 2011)
- Better performance than competitors has been largely documented (Porter, et. al.,2011).

- (TMLE) is a general algorithm for the construction of double-robust, semiparametric MLE, efficient substitution estimator (Van der Laan, 2011)
- Better performance than competitors has been largely documented (Porter, et. al.,2011).
- (TMLE) Respect bounds on Y, less sensitive to misspecification and to near-positivity violations (Benkeser, 2016).

- (TMLE) is a general algorithm for the construction of double-robust, semiparametric MLE, efficient substitution estimator (Van der Laan, 2011)
- Better performance than competitors has been largely documented (Porter, et. al.,2011).
- (TMLE) Respect bounds on Y, less sensitive to misspecification and to near-positivity violations (Benkeser, 2016).
- (TMLE) **Reduces bias** through **ensemble learning** if misspecification, even dual misspecification.

- (TMLE) is a general algorithm for the construction of double-robust, semiparametric MLE, efficient substitution estimator (Van der Laan, 2011)
- Better performance than competitors has been largely documented (Porter, et. al.,2011).
- (TMLE) Respect bounds on Y, less sensitive to misspecification and to near-positivity violations (Benkeser, 2016).
- (TMLE) Reduces bias through ensemble learning if misspecification, even dual misspecification.
- For the ATE, **Inference** is based on the **Efficient Influence Curve**. Hence, the **CLT** applies, making inference easier.

Pros: TMLE

- (TMLE) is a general algorithm for the construction of double-robust, semiparametric MLE, efficient substitution estimator (Van der Laan, 2011)
- Better performance than competitors has been largely documented (Porter, et. al.,2011).
- (TMLE) Respect bounds on Y, less sensitive to misspecification and to near-positivity violations (Benkeser, 2016).
- (TMLE) Reduces bias through ensemble learning if misspecification, even dual misspecification.
- For the ATE, **Inference** is based on the **Efficient Influence Curve**. Hence, the **CLT** applies, making inference easier.

Cons: TMLE

• The procedure is only available in R: tmle package (Gruber, 2011).

@icon_lshtm

Pros: TMLE

- (TMLE) is a general algorithm for the construction of double-robust, semiparametric MLE, efficient substitution estimator (Van der Laan, 2011)
- Better performance than competitors has been largely documented (Porter, et. al.,2011).
- (TMLE) Respect bounds on Y, less sensitive to misspecification and to near-positivity violations (Benkeser, 2016).
- (TMLE) Reduces bias through ensemble learning if misspecification, even dual misspecification.
- For the ATE, **Inference** is based on the **Efficient Influence Curve**. Hence, the **CLT** applies, making inference easier.

Cons: TMLE

• The procedure is only available in R: tmle package (Gruber, 2011).

@icon_lshtm

Stata **ELTMLE**

Ensemble Learning Targeted Maximum Likelihood Estimation

• **eltmle** is a Stata program implementing R-TMLE for the ATE for a binary or continuous outcome and binary treatment.

- **eltmle** is a Stata program implementing R-TMLE for the ATE for a binary or continuous outcome and binary treatment.
- eltmle includes the use of a super-learner(Polley E., et al. 2011).

- **eltmle** is a Stata program implementing R-TMLE for the ATE for a binary or continuous outcome and binary treatment.
- eltmle includes the use of a super-learner(Polley E., et al. 2011).
- I used the default Super-Learner algorithms implemented in the base installation of the tmle-R package v.1.2.0-5 (Susan G. and Van der Laan M., 2007).

- **eltmle** is a Stata program implementing R-TMLE for the ATE for a binary or continuous outcome and binary treatment.
- eltmle includes the use of a super-learner(Polley E., et al. 2011).
- I used the default Super-Learner algorithms implemented in the base installation of the tmle-R package v.1.2.0-5 (Susan G. and Van der Laan M., 2007).
- i) stepwise selection, ii) GLM, iii) a GLM interaction.

- **eltmle** is a Stata program implementing R-TMLE for the ATE for a binary or continuous outcome and binary treatment.
- eltmle includes the use of a super-learner(Polley E., et al. 2011).
- I used the default Super-Learner algorithms implemented in the base installation of the tmle-R package v.1.2.0-5 (Susan G. and Van der Laan M., 2007).
- i) stepwise selection, ii) GLM, iii) a GLM interaction.
- Additionally, **eltmle** users will have the option to include Bayes GLM and GAM.

- **eltmle** is a Stata program implementing R-TMLE for the ATE for a binary or continuous outcome and binary treatment.
- eltmle includes the use of a super-learner(Polley E., et al. 2011).
- I used the default Super-Learner algorithms implemented in the base installation of the tmle-R package v.1.2.0-5 (Susan G. and Van der Laan M., 2007).
- i) stepwise selection, ii) GLM, iii) a GLM interaction.
- Additionally, **eltmle** users will have the option to include Bayes GLM and GAM.

Stata ELTMLE

Syntax eltmle Stata command

eltmle Y A W [, tmle tmlebgam tmleglsrf bal]

@icon_lshtm

Stata ELTMLE

Syntax eltmle Stata command

eltmle Y A W [, tmle tmlebgam tmleglsrf bal]

Y: Outcome: numeric binary or continuous variable.

Syntax eltmle Stata command

eltmle Y A W [, tmle tmlebgam tmleglsrf bal]

- Y: Outcome: numeric binary or continuous variable.
- A: Treatment or exposure: numeric binary variable.

Syntax eltmle Stata command

eltmle Y A W [, tmle tmlebgam tmleglsrf bal]

- Y: Outcome: numeric binary or continuous variable.
- A: Treatment or exposure: numeric binary variable.
- W: Covariates: vector of numeric and categorical variables.

Syntax eltmle Stata command

eltmle Y A W [, tmle tmlebgam tmleglsrf bal]

- Y: Outcome: numeric binary or continuous variable.
- A: Treatment or exposure: numeric binary variable.
- W: Covariates: vector of numeric and categorical variables.

Stata Implementation: overall structure

🗯 Stat	ta/MP 17.0	File	Edit View	Data	Graphics	Statistics		Us	er V	Vindow	Help	-			۹ 🛢	😂 Thu	7:23:46
••	eltm	le.ado								open →	💾 Save	Print	Q Find	¶ Show		Do Do	
43 43 43 44 45 46 46 46 46 46 47 70 70 70 70 70 70 70 70 70 7	capture program	rogram define syntax version qui exp qui exp qui exp qui exp global local v global local v global global qui sum global qui exp global global else if else	rop eltmle time Jacobia Jac	<pre>=3) [if] { { { {</pre>	<pre>[pw] [, tr "fulldata. ise' s1,1,0) " = `r(min acc using "dan mleglsrf" clebgam" 6 mleglsrf" ti ilebgam" { mleglsrf"</pre>	<pre>nle tmlebgamcsv", nolabe n)') / ('r(ma ta.csy", nola == ""& "ba == "bal" {</pre>	<pre>tmleglsrf bal] l replace x)' = `r(min)' bet replace al'" == ""{ bal" {</pre>										re
Line: 1, C	or:1							। जन्म				~-			Automatic		
<u></u>	13		<u> </u>) 🖉 🧕 🕻	🤌 💐 💽 🖷	🎬 🅶 👱	3 🗹	· 🔍 🚰	12	JE	iii 🕹) 🖪	* ()	<u>B0</u> ==	
												1.4		1.1			

@icon_lshtm

ELTMLE

Stata Implementation: R code for calling the SL

```
program tmle
// Write R Code dependencies: foreign Surperlearner
set more off
qui: file close all
qui: file open rcode using SLS.R, write replace
qui: file write rcode ///
                  "set.seed(123)"' newline ///
                  "list.of.packages <- c("foreign", "SuperLearner")"' newline ///
                  "new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]"' newline ///
                  "if (length (new.packages)) install.packages (new.packages, repos='http://cran.us.r-project.org')" newline ///
                  "library(SuperLearner)"' newline ///
                  "library(foreign)"' newline ///
                  "data <- read.csv("data.csv", sep=",")"' newline ///
                  "attach(data)"' newline ///
                 "SL.library <- c("SL.glm", "SL.step", "SL.glm.interaction")"' newline ///
                  "n <- nrow(data)"' newline ///
                 "nvar <- dim(data)[[2]]"' newline ///
                  "Y <- data[,1]"' newline 7//
                  "A <- data[,2]"' _newline ///
                 "X <- data[,2:nvar]"' newline ///
                  "W <- data[,3:nvar]"' newline ///
                  "X1 <- X0 <- X"' newline ///
                 "X1[,1] <- 1"' newline ///
                  "X0[,1] <- 0"' newline ///
                  "newdata <- rbind(X,X1,X0)"' newline ///
                  "Q <- try(SuperLearner(Y = data[,1], X = X, SL.library=SL.library, family=binomial(), newX=newdata, method="met
                  "Q <- as.data.frame(Q[[4]])"' newline ///
                 "QAW <- Q[1:n,]"' newline ///
                  "Q1W <- Q[((n+1):(2*n)),]"' newline ///
                  "QOW <- Q[((2*n+1):(3*n)),]" newline ///
                  "g <- suppressWarnings(SuperLearner(Y = data[,2], X = W, SL.library = SL.library, family = binomial(), method =
                  "ps <- g[[4]]"' newline ///
                 "ps[ps<0.025] <- 0.025"' newline ///
"ps[ps>0.975] <- 0.975"' newline ///
                  "data <- cbind(data,QAW,Q1W,Q0W,ps,Y,A)"' newline ///
                  "write.dta(data, "data2.dta")"'
mui: file close rcode
                                                                                                                                                                                     b d link b d "sustained and also
also de la sustaine de distriction de la sustaine de la sustaine
Sustaine de la sustaine d
```

Stata Implementation: Batch file executing R

qui: file close rcode 114 // Write bacth file to find R.exe path and R version set more off 116 qui: file close all qui: file open bat using setup.bat, write replace 118 gui: file write bat /// 119 "@echo off"' newline /// "SET PATHROOT=C:\Program Files\R\"' newline /// "echo Locating path of R..."' newline /// "echo."' newline /// "if not exist "%PATHROOT%" goto:NO R"' newline /// 124 `"for /f "delims=" %%r in (' dir /b "%PATHROOT%R*" ') do ("' newline /// "echo Found %%r"' newline /// "echo shell "%PATHROOT%%%r\bin\x64\R.exe" CMD BATCH SLS.R > runr.do"' newline /// "echo All set!"' newline /// "goto:DONE"' newline /// 129 `")"' newline /// ":NO R"' newline /// "echo R is not installed in your system."' newline /// 132 "echo."' newline /// 133 "echo Download it from https://cran.r-project.org/bin/windows/base/"' newline /// 134 "echo Install it and re-run this script" newline /// ":DONE"' newline /// "echo."' newline /// 136 "pause" 138 qui: file close bat 139 140 //Run batch 141 shell setup.bat 142 //Run R 143 do runr.do 144 145 // Read Revised Data Back to Stata 146 clear 147 guietly: use "data2.dta", clear 148 149 // O to logit scale 150 gen logOAW = log(OAW / (1 - OAW))gen logOlW = log(OlW / (1 - OlW))gen logOOW = log(OOW / (1 - OOW))154 // Clever covariate HAW

@icon_lshtm

October 20, 2022

Output for continuous outcome

.use http://www.stata-press.com/data/r14/cattaneo2.dta .eltmle bweight mbsmoke mage medu prenatal mmarried, tmle										
Variable	Obs	Mean	Std. dev.	Min	Max					
POM1 POM0 ps	4,642 4,642 4,642	2832.69 3062.695 .1861267	74.9141 91.22898 .1106222	2550.819 2844.977 .0377472	2968.504 3177.975 .8479414					
TMLE: Average Treatment Effect										
ATE: -230 SE: 24 P-value: 0.00 95%CI: -277	.0 .5 00 .9, -182.1									
TMLE: Causal Risk Ratio (CRR)										
CRR: 0.93; 95%CI	:(0.91, 0.94									
TMLE: Marginal C	dds Ratio (M	10R)								
MOR: 0.83; 95%CI	:(0.80, 0.87	7)								

Output for continuous outcome and balance option

.eltmle bweight mbsmoke mage medu prenatal mmarried, tmle bal

Simulations comparing Stata ELTMLE vs R-TMLE

@icon_lshtm

ELTMLE

October 20, 2022

Link to the tutorial

https://migariane.github.io/TMLE.nb.html

@icon_lshtm

October 20, 2022

Link to the tutorial

https://migariane.github.io/TMLE.nb.html

Stata Implementation: source code

17/44

@icon_lshtm

Link to the tutorial

https://migariane.github.io/TMLE.nb.html

Stata Implementation: source code

https://github.com/migariane/eltmle

Stata installation and step by step commented syntax

@icon_lshtm

Link to the tutorial

https://migariane.github.io/TMLE.nb.html

Stata Implementation: source code

https://github.com/migariane/eltmle

Stata installation and step by step commented syntax

github install migariane/eltmle which eltmle viewsource eltmle.ado

@icon_lshtm

October 20, 2022

eltmle

One sample simulation: TMLE reduces bias

https://github.com/migariane/SUGML

@icon_lshtm

October 20, 2022

eltmle

One sample simulation: TMLE reduces bias

https://github.com/migariane/SUGML

Statistics in Medicine tutorial: TMLE

https://onlinelibrary.wiley.com/doi/full/10.1002/sim.7628

@icon_lshtm

October 20, 2022

eltmle

One sample simulation: TMLE reduces bias

https://github.com/migariane/SUGML

Statistics in Medicine tutorial: TMLE

https://onlinelibrary.wiley.com/doi/full/10.1002/sim.7628

@icon_lshtm

October 20, 2022

Next steps

• Stata Journal manuscript introducing eltmle.

@icon_lshtm

October 20, 2022

Next steps

- Stata Journal manuscript introducing eltmle.
- Improved eltmle display and user interface.

@icon_lshtm

October 20, 2022

Next steps

- Stata Journal manuscript introducing eltmle.
- Improved eltmle display and user interface.
- Keep original data and allow options to get some causal inference computed data and scalars.

Next steps

- Stata Journal manuscript introducing eltmle.
- Improved eltmle display and user interface.
- Keep original data and allow options to get some causal inference computed data and scalars.
- Stata journal manuscript disseminating eltmle use and examples.

Next steps

- Stata Journal manuscript introducing eltmle.
- Improved eltmle display and user interface.
- Keep original data and allow options to get some causal inference computed data and scalars.
- Stata journal manuscript disseminating eltmle use and examples.

Next steps

 Simulated experiment contrasting eltmle and other double robust alternatives.

Next steps

- Simulated experiment contrasting eltmle and other double robust alternatives.
- Developing Stata native lasso-eltmle.

Next steps

- Simulated experiment contrasting eltmle and other double robust alternatives.
- Developing Stata native lasso-eltmle.
- Include more options for additional machine learning algorithms.

Next steps

- Simulated experiment contrasting eltmle and other double robust alternatives.
- Developing Stata native lasso-eltmle.
- Include more options for additional machine learning algorithms.
- Implementation of Ensemble Learning in Stata (Super-Learner) using Python 3.

Next steps

- Simulated experiment contrasting **eltmle** and other double robust alternatives.
- Developing Stata native lasso-eltmle.
- Include more options for additional machine learning algorithms.
- Implementation of Ensemble Learning in Stata (Super-Learner) using Python 3.
- K-fold and cross-fold Cross-validated eltmle. Recently, we have implemented the cross-validated AUC: https://github.com/migariane/cvAUROC. Also available at ssc: ssc install cvAUROC

Next steps

- Simulated experiment contrasting **eltmle** and other double robust alternatives.
- Developing Stata native lasso-eltmle.
- Include more options for additional machine learning algorithms.
- Implementation of Ensemble Learning in Stata (Super-Learner) using Python 3.
- K-fold and cross-fold Cross-validated eltmle. Recently, we have implemented the cross-validated AUC: https://github.com/migariane/cvAUROC. Also available at ssc: ssc install cvAUROC

References

References

- Bickel, Peter J.; Klaassen, Chris A.J.; Ritov, Yaacov; Wellner Jon A. (1997). Efficient and adaptive estimation for semiparametric models. New York: Springer.
- Hample, F.R., (1974). The influence curve and its role in robust estimation. J Amer Statist Asso. 69, 375-391.
- Robins JM, Rotnitzky A, Zhao LP. Estimation of regression coefficients when some regressors are not always observed. J Amer Statist Assoc. 1994;89:846–866.
- Bang H, Robins JM. Doubly robust estimation in missing data and causal inference models. Biometrics. 2005;61:962–972.
- Statis AA. Semiparametric Theory and Missing Data. Springer; New York: 2006
- Kang JD, Schafer JL. Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science. 2007;22(4):523–539
- Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology. 1974;66:688–701

References

References

- Luque-Fernandez, Miguel Angel. (2017). Targeted Maximum Likelihood Estimation for a Binary Outcome: Tutorial and Guided Implementation.
- StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP.
- Gruber S, Laan M van der. (2011). Tmle: An R package for targeted maximum likelihood estimation. UC Berkeley Division of Biostatistics Working Paper Series.
- Laan M van der, Rose S. (2011). Targeted learning: Causal inference for observational and experimental data. Springer Series in Statistics.626p.
- Van der Laan MJ, Polley EC, Hubbard AE. (2007). Super learner. Statistical applications in genetics and molecular biology 6.
- Bickel, Peter J.; Klaassen, Chris A.J.; Ritov, Ya'acov; Wellner Jon A. (1997). Efficient and adaptive estimation for semiparametric models. New York: Springer.
- E. H. Kennedy. Semiparametric theory and empirical processes in causal inference. In: Statistical Causal Inferences and Their Applications in Public Health Research, in press.

References

References

- Luque-Fernandez, Miguel Angel. (2017). Targeted Maximum Likelihood Estimation for a Binary Outcome: Tutorial and Guided Implementation.
- StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP.
- Gruber S, Laan M van der. (2011). Tmle: An R package for targeted maximum likelihood estimation. UC Berkeley Division of Biostatistics Working Paper Series.
- Laan M van der, Rose S. (2011). Targeted learning: Causal inference for observational and experimental data. Springer Series in Statistics.626p.
- Van der Laan MJ, Polley EC, Hubbard AE. (2007). Super learner. Statistical applications in genetics and molecular biology 6.
- Bickel, Peter J.; Klaassen, Chris A.J.; Ritov, Ya'acov; Wellner Jon A. (1997). Efficient and adaptive estimation for semiparametric models. New York: Springer.
- E. H. Kennedy. Semiparametric theory and empirical processes in causal inference. In: Statistical Causal Inferences and Their Applications in Public Health Research, in press.

Thank YOU

THANK YOU FOR YOUR TIME

@icon_lshtm

October 20, 2022

Background: Potential Outcomes framework

Rubin and Heckman

- This framework was developed first by statisticians (Rubin, 1983) and econometricians (Heckman, 1978) as a new approach for the estimation of **causal effects** from observational data.
- We will keep separate the **causal framework** (a conceptual issue briefly introduce here) and the "**how to estimate causal effects**" (an statistical issue also introduced here)

Causal effects with OBSERVATIONAL data

ASSUMPTIONS for Identification

 Rosebaum & Rubin, 1983: The Ignorable Treatment Assignment (A.K.A Ignorability, Unconfoundeness or Conditional Mean Independence).

• POSITIVITY.

• SUTVA.

Causal effect with OBSERVATIONAL data

IGNORABILITY

$(\boldsymbol{Y}_i(1),\boldsymbol{Y}_i(0)) \bot \boldsymbol{A}_i \mid \boldsymbol{W}_i$

POSITIVITY

POSITIVITY: P(A = a | W) > 0 for all a, W

SUTVA

- We have assumed that there is only on version of the treatment (consistency) Y(1) if A = 1 and Y(0) if A = 0.
- The assignment to the treatment to one unit doesn't affect the outcome of another unit (no interference) or IID random variables.
- The model used to estimate the assignment probability has to **be correctly specified**.

@icon_lshtm

Causal effect

Potential Outcomes

We only observe:

$$Y_i(1) = Y_i(A = 1)$$
 and $Y_i(0) = Y_i(A = 0)$

However we would like to know what would have happened if:

Treated $Y_i(1)$ would have been non-treated $Y_i(A = 0) = Y_i(0)$.

Controls $Y_i(0)$ would have been treated $Y_i(A = 1) = Y_i(1)$.

Identifiability

- How we can identify the effect of the potential outcomes **Y**^a if they are not observed?
- How we can estimate the expected difference between the potential outcomes E[Y(1) - Y(0)], namely the ATE.

G-Formula for the identification of the ATE with observational data

$$E(Y^{a}) = \sum_{y} E(Y^{a} \mid W = w)P(W = w)$$

=
$$\sum_{y} E(Y^{a} \mid A = a, W = w)P(W = w)$$
 by consistency
=
$$\sum_{y} E(Y = y \mid A = a, W = w)P(W = w)$$
 by ignorability

The ATE=

$$\sum_{\mathbf{w}} \left[\sum_{\mathbf{y}} \mathbf{P}(\mathbf{Y} = \mathbf{y} \mid \mathbf{A} = \mathbf{1}, \mathbf{W} = \mathbf{w}) - \sum_{\mathbf{y}} \mathbf{P}(\mathbf{Y} = \mathbf{y} \mid \mathbf{A} = \mathbf{0}, \mathbf{W} = \mathbf{w}) \right] \mathbf{P}(\mathbf{W} = \mathbf{w})$$
$$P(W = w) = \sum_{\mathbf{y}} P(W = w, \mathbf{A} = \mathbf{a}, \mathbf{Y} = \mathbf{y})$$

y,a

@icon_lshtm

MEDICINE

G-Formula, (Robins, 1986)

G-Formula for the identification of the ATE with observational data The ATE=

$$\sum_{\mathbf{w}} \left[\sum_{\mathbf{y}} \mathbf{P}(\mathbf{Y} = \mathbf{y} \mid \mathbf{A} = \mathbf{1}, \mathbf{W} = \mathbf{w}) - \sum_{\mathbf{y}} \mathbf{P}(\mathbf{Y} = \mathbf{y} \mid \mathbf{A} = \mathbf{0}, \mathbf{W} = \mathbf{w}) \right] \mathbf{P}(\mathbf{W} = \mathbf{w})$$

$$P(W = w) = \sum_{y,a} P(W = w, A = a, Y = y)$$

G-Formula

- The sums is generic notation. In reality, likely involves sums and integrals (we are just integrating out the W's).
- The **g-formula** is a **generalization of standardization** and allow to estimate unbiased treatment effect estimates.

@icon_lshtm

October 20, 2022

Regression-adjustment

$$\widehat{ATE}_{RA} = N^{-1} \sum_{i=1}^{N} [E(Y_i \mid A = 1, W_i) - E(Y_i \mid A = 0, W_i)]$$

$$m_{A}(w_{i}) = E(Y_{i} \mid A_{i} = A, W_{i})$$

$$\widehat{ATE}_{RA} = N^{-1} \sum_{i=1}^{N} \left[\hat{m}_1(w_i) - \hat{m}_0(w_i) \right]$$

@icon_lshtm

October 20, 2022

LONDON SCHOOL of HYGIENE &TROPICAL MEDICINE

IPTW

IPTW (Inverse probability treatment weighting)

Survey theory (Horvitz-Thompson)

$$\hat{\mathsf{P}}_i = E(A_i \mid W_i)$$
; So, $\frac{1}{\hat{\mathsf{p}}_i}$, if A = 1 and, $\frac{1}{(1 - \hat{\mathsf{p}}_i)}$, if A = 0

over the total number of individuals

$$\widehat{ATE}_{IPTW} = N^{-1} \sum_{i=1}^{N} \frac{A_i Y_i}{\hat{p}_i} - N^{-1} \sum_{i=1}^{N} \frac{(1 - A_i) Y_i}{(1 - \hat{p}_i)}$$

@icon_lshtm

AIPTW

Á

AIPTW (Augmented Inverse probability treatment weighting)

Solving Estimating Equations

$$\widehat{TE}_{AIPTW} = N^{-1} \sum_{i=1}^{N} \left[(Y(1) \mid A_i = 1, W_i) - (Y(0) \mid A_i = 0, W_i) \right] + N^{-1} \sum_{i=1}^{N} \left(\frac{(A_i = 1)}{P(A_i = 1 \mid W_i)} - \frac{(A_i = 0)}{P(A_i = 0 \mid W_i)} \right) \left[Y_i - E(Y \mid A_i, W_i) \right]$$

Targeted learning

Springer Series in Statistics

Targeted Learning

Causal Inference for Observational and Experimental Data

🙆 Springer

Source: Mark van der Laan and Sherri Rose. Targeted learning: causal inference for observational and experimental data. Springer Series in Statistics, 2011.

@icon_lshtm

October 20, 2022

Why Targeted learning?

Source: Mark van der Laan and Sherri Rose. Targeted learning: causal inference for observational and experimental data. Springer Series in Statistics, 2011.

TMLE ROAD MAP

MC simulations: Luque-Fernandez et al, 2017 (in press, American Journal of Epidemiology)

	ATE		BIAS (%)		RMSE		95%CI coverage (%)	
	N=1,000	N=10,000	N=1,000	N=10,000	N=1,000	N=10,000	N=1,000	N=10,000
First scenario* (correctly specified models)								
True ATE	-0.1813							
Naïve	-0.2234	-0.2218	23.2	22.3	0.0575	0.0423	77	89
AIPTW	-0.1843	-0.1848	1.6	1.9	0.0534	0.0180	93	94
IPTW-RA	-0.1831	-0.1838	1.0	1.4	0.0500	0.0174	91	95
TMLE	-0.1832	-0.1821	1.0	0.4	0.0482	0.0158	95	95
Second scenario ** (misspecified models)								
True ATE	-0.1172							
Naïve	-0.0127	-0.0121	89.2	89.7	0.1470	0.1100	0	0
BFit AIPTW	-0.1155	-0.0920	1.5	11.7	0.0928	0.0773	65	65
BFit IPTW-RA	-0.1268	-0.1192	8.2	1.7	0.0442	0.0305	52	73
TMLE	-0.1181	-0.1177	0.8	0.4	0.0281	0.0107	93	95

*First scenario : correctly specified models and near-positivity violation

**Second scenario: misspecification, near-positivity violation and adaptive model selection

@icon_lshtm

TMLE ROAD MAP

TMLE steps

ELTMLE

October 20, 2022 36/44

Substitution estimation: $\hat{E}(Y | A, W)$

@icon_lshtm

October 20, 2022

Substitution estimation: $\hat{E}(Y \mid A, W)$

First compute the outcome regression E(Y | A, W) using the Super-Learner to then derive the Potential Outcomes and compute Ψ⁽⁰⁾ = E(Y(1) | A = 1, W) - E(Y(0) | A = 0, W).

Substitution estimation: $\hat{E}(Y \mid A, W)$

- First compute the outcome regression E(Y | A, W) using the Super-Learner to then derive the Potential Outcomes and compute Ψ⁽⁰⁾ = E(Y(1) | A = 1, W) E(Y(0) | A = 0, W).
- Estimate the exposure mechanism P(A=1|,W) using the Super-Learner to predict the values of the propensity score.

Substitution estimation: $\hat{E}(Y \mid A, W)$

- First compute the outcome regression $\mathbf{E}(\mathbf{Y} | \mathbf{A}, \mathbf{W})$ using the **Super-Learner** to then derive the Potential Outcomes and compute $\Psi^{(0)} = \mathbf{E}(Y(1) | \mathbf{A} = 1, \mathbf{W}) \mathbf{E}(Y(0) | \mathbf{A} = 0, \mathbf{W}).$
- Estimate the exposure mechanism P(A=1|,W) using the Super-Learner to predict the values of the propensity score.
- Compute **HAW** = $\left(\frac{\mathbb{I}(A_i=1)}{P(A_i=1|W_i)} \frac{\mathbb{I}(A_i=0)}{P(A_i=0|W_i)}\right)$ for each individual, named the **clever covariate H**.

Substitution estimation: $\hat{E}(Y \mid A, W)$

- First compute the outcome regression $\mathbf{E}(\mathbf{Y} | \mathbf{A}, \mathbf{W})$ using the **Super-Learner** to then derive the Potential Outcomes and compute $\Psi^{(0)} = \mathbf{E}(Y(1) | \mathbf{A} = 1, \mathbf{W}) \mathbf{E}(Y(0) | \mathbf{A} = 0, \mathbf{W}).$
- Estimate the exposure mechanism P(A=1|,W) using the Super-Learner to predict the values of the propensity score.
- Compute **HAW** = $\left(\frac{\mathbb{I}(A_i=1)}{P(A_i=1|W_i)} \frac{\mathbb{I}(A_i=0)}{P(A_i=0|W_i)}\right)$ for each individual, named the **clever covariate H**.

Fluctuation step $(\hat{\epsilon}_0, \hat{\epsilon}_1)$

 Update Ψ⁽⁰⁾ through a fluctuation step incorporating the information from the exposure mechanism:

A B > 4
 A
 B > 4
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Fluctuation step $(\hat{\epsilon}_0, \hat{\epsilon}_1)$

 Update Ψ⁽⁰⁾ through a fluctuation step incorporating the information from the exposure mechanism:

$$\mathbf{H(1)W} = rac{\mathbb{I}(A_i=1)}{\hat{P}(A_i=1|W_i)}$$
 and,

Fluctuation step $(\hat{\epsilon}_0, \hat{\epsilon}_1)$

 Update Ψ⁽⁰⁾ through a fluctuation step incorporating the information from the exposure mechanism:

$$\mathbf{H(1)W} = \frac{\mathbb{I}(A_i=1)}{\hat{P}(A_i=1|W_i)} \text{ and,} \mathbf{H(0)W} = -\frac{\mathbb{I}(A_i=0)}{\hat{P}(A_i=0|W_i)}$$

• • • • • • • • •

Fluctuation step $(\hat{\epsilon}_0, \hat{\epsilon}_1)$

 Update Ψ⁽⁰⁾ through a fluctuation step incorporating the information from the exposure mechanism:

$$\mathsf{H}(1)\mathsf{W} = \frac{\mathbb{I}(A_i=1)}{\hat{P}(A_i=1|W_i)} \text{ and,} \mathsf{H}(0)\mathsf{W} = -\frac{\mathbb{I}(A_i=0)}{\hat{P}(A_i=0|W_i)}.$$

 This step aims to reduce bias minimising the mean squared error (MSE) for (Ψ) and considering the bounds of the limits of Y.

Fluctuation step $(\hat{\epsilon}_0, \hat{\epsilon}_1)$

 Update Ψ⁽⁰⁾ through a fluctuation step incorporating the information from the exposure mechanism:

$$\mathsf{H}(1)\mathsf{W} = \frac{\mathbb{I}(A_i=1)}{\hat{P}(A_i=1|W_i)} \text{ and,} \mathsf{H}(0)\mathsf{W} = -\frac{\mathbb{I}(A_i=0)}{\hat{P}(A_i=0|W_i)}.$$

- This step aims to reduce bias minimising the mean squared error (MSE) for (Ψ) and considering the bounds of the limits of Y.
- The fluctuation parameters (\(\{\eta_0\)}, \(\{\eta_1\)}\)) are estimated using maximum likelihood procedures (in Stata):
 - . glm Y HAW, fam(binomial) nocons offset(E(Y| A, W))

38/44

Image: A matrix

Fluctuation step $(\hat{\epsilon}_0, \hat{\epsilon}_1)$

 Update Ψ⁽⁰⁾ through a fluctuation step incorporating the information from the exposure mechanism:

$$\mathsf{H}(1)\mathsf{W} = \frac{\mathbb{I}(A_i=1)}{\hat{P}(A_i=1|W_i)} \text{ and,} \mathsf{H}(0)\mathsf{W} = -\frac{\mathbb{I}(A_i=0)}{\hat{P}(A_i=0|W_i)}.$$

- This step aims to reduce bias minimising the mean squared error (MSE) for (Ψ) and considering the bounds of the limits of Y.
- The fluctuation parameters (\(\eta_0\), \(\eta_1\)) are estimated using maximum likelihood procedures (in Stata):
 - . glm Y HAW, fam(binomial) nocons offset(E(Y| A, W))
 - . mat e = e(b),
 - . gen double $\epsilon = e[1, 1]$,

A B > 4
 A
 B > 4
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Fluctuation step $(\hat{\epsilon}_0, \hat{\epsilon}_1)$

 Update Ψ⁽⁰⁾ through a fluctuation step incorporating the information from the exposure mechanism:

$$\mathsf{H}(1)\mathsf{W} = \frac{\mathbb{I}(A_i=1)}{\hat{P}(A_i=1|W_i)} \text{ and,} \mathsf{H}(0)\mathsf{W} = -\frac{\mathbb{I}(A_i=0)}{\hat{P}(A_i=0|W_i)}.$$

- This step aims to reduce bias minimising the mean squared error (MSE) for (Ψ) and considering the bounds of the limits of Y.
- The fluctuation parameters (\(\eta_0\), \(\eta_1\)) are estimated using maximum likelihood procedures (in Stata):
 - . glm Y HAW, fam(binomial) nocons offset(E(Y| A, W))
 - . mat e = e(b),
 - . gen double $\epsilon = e[1, 1]$,

A B > 4
 A
 B > 4
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Targeted estimate of the ATE $(\widehat{\Psi})$

 $\Psi^{(0)}$ update using ϵ (epsilon)

@icon_lshtm
Targeted estimate of the ATE $(\widehat{\Psi})$

 $\Psi^{(0)}$ update using ϵ (epsilon)

 $\mathbf{E}^{*}(Y \mid A = 1, W) = \operatorname{expit}\left[\operatorname{logit}\left[E(Y \mid A = 1, W)\right] + \hat{\epsilon_{1}}H_{1}(1, W)\right]$

 $\mathbf{E}^{*}(Y \mid A = 0, W) = \operatorname{expit}\left[\operatorname{logit}\left[E(Y \mid A = 0, W)\right] + \hat{\epsilon_{0}}H_{0}(0, W)\right]$

Targeted estimate of the ATE from $\Psi^{(0)}$ to $\Psi^{(1)}$: $(\widehat{\Psi})$

Targeted estimate of the ATE $(\widehat{\Psi})$

 $\Psi^{(0)}$ update using ϵ (epsilon)

 $\mathbf{E}^{*}(Y \mid A = 1, W) = \text{expit} [\text{logit} [E(Y \mid A = 1, W)] + \hat{\epsilon}_{1}H_{1}(1, W)]$

 $\mathbf{E}^{*}(Y \mid \mathbf{A} = \mathbf{0}, \mathbf{W}) = \operatorname{expit}\left[\operatorname{logit}\left[E(Y \mid \mathbf{A} = \mathbf{0}, \mathbf{W})\right] + \hat{\epsilon_{\mathbf{0}}}H_{0}(\mathbf{0}, \mathbf{W})\right]$

Targeted estimate of the ATE from $\Psi^{(0)}$ to $\Psi^{(1)}$: $(\widehat{\Psi})$

 $\Psi^{(1)}: \hat{\Psi} = [\mathbf{E}^*(Y(1) \mid A = 1, W) - \mathbf{E}^*(Y(0) \mid A = 0, W)]$

TMLE inference

@icon_lshtm

October 20, 2022

TMLE inference

@icon_lshtm

October 20, 2022

TMLE inference

$$IC = \left(\frac{(A_i = 1)}{P(A_i = 1 \mid W_i)} - \frac{(A_i = 0)}{P(A_i = 0 \mid W_i)}\right) [Y_i - E_1(Y \mid A_i, W_i)] + [E_1(Y(1) \mid A_i = 1, W_i) - E_1(Y(0) \mid A_i = 0, W_i)] - \psi$$

@icon_lshtm

October 20, 2022

TMLE inference

$$IC = \left(\frac{(A_i = 1)}{P(A_i = 1 \mid W_i)} - \frac{(A_i = 0)}{P(A_i = 0 \mid W_i)}\right) [Y_i - E_1(Y \mid A_i, W_i)] + [E_1(Y(1) \mid A_i = 1, W_i) - E_1(Y(0) \mid A_i = 0, W_i)] - \psi$$

Standard Error : $\sigma(\psi_0) = \frac{SD(IC_n)}{\sqrt{n}}$

TMLE inference

$$IC = \left(\frac{(A_i = 1)}{P(A_i = 1 \mid W_i)} - \frac{(A_i = 0)}{P(A_i = 0 \mid W_i)}\right) [Y_i - E_1(Y \mid A_i, W_i)] + [E_1(Y(1) \mid A_i = 1, W_i) - E_1(Y(0) \mid A_i = 0, W_i)] - \psi$$

Standard Error : $\sigma(\psi_0) = \frac{SD(IC_n)}{\sqrt{n}}$

TMLE inference

 The Efficient IC, first introduced by Hampel (1974), is used to apply readily the CLT for statistical inference using TMLE.

TMLE inference

$$IC = \left(\frac{(A_i = 1)}{P(A_i = 1 \mid W_i)} - \frac{(A_i = 0)}{P(A_i = 0 \mid W_i)}\right) [Y_i - E_1(Y \mid A_i, W_i)] + [E_1(Y(1) \mid A_i = 1, W_i) - E_1(Y(0) \mid A_i = 0, W_i)] - \psi$$

Standard Error : $\sigma(\psi_0) = \frac{SD(IC_n)}{\sqrt{n}}$

- The Efficient IC, first introduced by Hampel (1974), is used to apply readily the CLT for statistical inference using TMLE.
- The Efficient IC is the same as the infinitesimal jackknife and the nonparametric delta method.

TMLE inference

$$IC = \left(\frac{(A_i = 1)}{P(A_i = 1 \mid W_i)} - \frac{(A_i = 0)}{P(A_i = 0 \mid W_i)}\right) [Y_i - E_1(Y \mid A_i, W_i)] + [E_1(Y(1) \mid A_i = 1, W_i) - E_1(Y(0) \mid A_i = 0, W_i)] - \psi$$

Standard Error : $\sigma(\psi_0) = \frac{SD(IC_n)}{\sqrt{n}}$

- The Efficient IC, first introduced by Hampel (1974), is used to apply readily the CLT for statistical inference using TMLE.
- The Efficient IC is the same as the infinitesimal jackknife and the nonparametric delta method. Also named the "canonical gradient" of the pathwise derivative of the target parameter ψ

TMLE inference

$$IC = \left(\frac{(A_i = 1)}{P(A_i = 1 \mid W_i)} - \frac{(A_i = 0)}{P(A_i = 0 \mid W_i)}\right) [Y_i - E_1(Y \mid A_i, W_i)] + [E_1(Y(1) \mid A_i = 1, W_i) - E_1(Y(0) \mid A_i = 0, W_i)] - \psi$$

Standard Error : $\sigma(\psi_0) = \frac{SD(IC_n)}{\sqrt{n}}$

- The Efficient IC, first introduced by Hampel (1974), is used to apply readily the CLT for statistical inference using TMLE.
- The Efficient IC is the same as the infinitesimal jackknife and the nonparametric delta method. Also named the "canonical gradient" of the pathwise derivative of the target parameter ψor "approximation by averages" (Efron, 1982).

TMLE inference

$$IC = \left(\frac{(A_i = 1)}{P(A_i = 1 \mid W_i)} - \frac{(A_i = 0)}{P(A_i = 0 \mid W_i)}\right) [Y_i - E_1(Y \mid A_i, W_i)] + [E_1(Y(1) \mid A_i = 1, W_i) - E_1(Y(0) \mid A_i = 0, W_i)] - \psi$$

Standard Error : $\sigma(\psi_0) = \frac{SD(IC_n)}{\sqrt{n}}$

- The Efficient IC, first introduced by Hampel (1974), is used to apply readily the CLT for statistical inference using TMLE.
- The Efficient IC is the same as the infinitesimal jackknife and the nonparametric delta method. Also named the "canonical gradient" of the pathwise derivative of the target parameter ψor "approximation by averages" (Efron, 1982).

IC: Geometric interpretation

Nonparametric Delta Method : E(x - μ)² Infinitesimal Jackknife

Estimate of the ψ Standard Error using the efficient Influence Curve. Image credit: Miguel Angel Luque-Fernandez

41/44

ELTMLE

Targeted learning

Source: Mark van der Laan and Sherri Rose. Targeted learning: causal inference for observational and experimental data. Springer Series in Statistics, 2011.

Super-Learner: Ensemble learning

To apply the **EIC** we need data-adaptive estimation for both, the model of the outcome, and the model of the treatment.

Asymptotically, the final weighted combination of algorithms (Super Learner) performs as well as or better than the best-fitting algorithm (van der Laan, 2007).

@icon_lshtm

ELTMLE

October 20, 2022

Super-Learner: Ensemble learning

To apply the **EIC** we need data-adaptive estimation for both, the model of the outcome, and the model of the treatment.

Asymptotically, the final weighted combination of algorithms (Super Learner) performs as well as or better than the best-fitting algorithm (van der Laan, 2007).

@icon_lshtm

ELTMLE

October 20, 2022

M-ESTIMATORS: Semi-parametric and Empirical processes theory

An estimator is asymptotically linear with influence function φ (IC) if the estimator can be approximate by an empirical average in the sense that

$$(\hat{\theta} - \theta_0) = \frac{1}{n} \sum_{i=1}^n (IC) + Op(1/\sqrt{n})$$

(Bickel, 1997).

TMLE inference: Bickel (1993); Tsiatis (2007); Van der Laan (2011); Kennedy (2016)

• The IC estimation is a more general approach than M-estimation.

M-ESTIMATORS: Semi-parametric and Empirical processes theory

An estimator is **asymptotically linear** with **influence function** φ **(IC)** if the estimator can be **approximate by an empirical average** in the sense that

$$(\hat{\theta} - \theta_0) = \frac{1}{n} \sum_{i=1}^n (IC) + Op(1/\sqrt{n})$$

(Bickel, 1997).

TMLE inference: Bickel (1993); Tsiatis (2007); Van der Laan (2011); Kennedy (2016)

- The IC estimation is a more general approach than M-estimation.
- The Efficient IC has mean zero $E(IC_{\hat{\psi}}(y_i, \psi_0)) = 0$ and finite variance.

M-ESTIMATORS: Semi-parametric and Empirical processes theory

An estimator is **asymptotically linear** with **influence function** φ **(IC)** if the estimator can be **approximate by an empirical average** in the sense that

$$(\hat{\theta} - \theta_0) = \frac{1}{n} \sum_{i=1}^n (IC) + Op(1/\sqrt{n})$$

(Bickel, 1997).

TMLE inference: Bickel (1993); Tsiatis (2007); Van der Laan (2011); Kennedy (2016)

- The IC estimation is a more general approach than M-estimation.
- The Efficient IC has mean zero $E(IC_{\hat{\psi}}(y_i, \psi_0)) = 0$ and finite variance.
- By the Weak Law of the Large Numbers, the **Op** converges to zero in a rate $1/\sqrt{n}$ as $n \to \infty$ (Bickel, 1993).

M-ESTIMATORS: Semi-parametric and Empirical processes theory

An estimator is **asymptotically linear** with **influence function** φ **(IC)** if the estimator can be **approximate by an empirical average** in the sense that

$$(\hat{\theta} - \theta_0) = \frac{1}{n} \sum_{i=1}^n (IC) + Op(1/\sqrt{n})$$

(Bickel, 1997).

TMLE inference: Bickel (1993); Tsiatis (2007); Van der Laan (2011); Kennedy (2016)

- The IC estimation is a more general approach than M-estimation.
- The Efficient IC has mean zero $E(IC_{\hat{\psi}}(y_i, \psi_0)) = 0$ and finite variance.
- By the Weak Law of the Large Numbers, the **Op** converges to zero in a rate $1/\sqrt{n}$ as $n \to \infty$ (Bickel, 1993).
- The Efficient IC requires asymptotically linear estimators.

M-ESTIMATORS: Semi-parametric and Empirical processes theory

An estimator is **asymptotically linear** with **influence function** φ **(IC)** if the estimator can be **approximate by an empirical average** in the sense that

$$(\hat{\theta} - \theta_0) = \frac{1}{n} \sum_{i=1}^n (IC) + Op(1/\sqrt{n})$$

(Bickel, 1997).

TMLE inference: Bickel (1993); Tsiatis (2007); Van der Laan (2011); Kennedy (2016)

- The IC estimation is a more general approach than M-estimation.
- The Efficient IC has mean zero $E(IC_{\hat{\psi}}(y_i, \psi_0)) = 0$ and finite variance.
- By the Weak Law of the Large Numbers, the **Op** converges to zero in a rate $1/\sqrt{n}$ as $n \to \infty$ (Bickel, 1993).
- The Efficient IC requires asymptotically linear estimators.