

Interactive Graphs with Stata M.E. et al.

Introduction

NCA

Coincidenc

Adjacency

Example

coin

netcoin

Remarks

Final

Interactive Graphs with Stata

M. Escobar (modesto@usal.es)

C. Prieto (cprietos@usal.es)

P. Cabrera (pablocal@usal.es)

D. Barrios (metal@usal.es)

University of Salamanca

2019 Spanish Stata Users Group meeting

Madrid, 17th October

Presentation

Aims

Interactive Graphs with Stata

M.E. et al.

Introduction

NCA

- Coincidenc
- Types
- Graphs
- Adjacency
- Example
- coin
- netcoin
- Remarks
- Final

The aims of this presentation are:

- To show *network coincidence analysis*, which is a statistical framework to study concurrence of events.
- To present coin, an ado program that is able to perform this analysis.
- To show interactive graphs with Stata with the command netcoin.
- As an example, an analysis of people in the picture albums of an eminent character in the early 20th century will be presented.
- This kind of representations can also be applied to
 - Social media analysis.
 - Content analysis of media and textbooks.
 - Multiresponse, glm and sem analysis in questionnaires.
 - Historical representation of eminent figures.

Coincidence analysis

Interactive Graphs with Stata

M.E. et al.

Introduction

NCA

Coincidence

Types

Graphs

- - -

coin

netcoin

Remarks

- Coincidence analysis is a set of techniques whose object is to detect which people, subjects, objects, attributes or events tend to appear at the same time in different delimited spaces.
- These delimited spaces are called *n* scenarios, and are considered as units of analysis (*i*).
- In each scenario a number of J events X_j may occur (1) or may not (0) occur.
- We call incidence matrix (X) an n × J matrix composed by 0 and 1, according to the incidence or not of every event X_i.
- In order to make comparative analysis of coincidences, these scenarios may be classified in *H* sets

with

Coincidence

An example of incidences matrix

Meeting the people

Graphs with Stata

Coincidence

An example of incidences matrix

Coding the people

Input of the analyses

Incidences matrix (appearance or not appearance of 8 events in 4 scenarios)

Interactive Graphs with Stata

M.E. et al.

Introduction

NCA

Coincidence

Types

Graphs

Adjacency

coin

netcoin

Remarks

Final

The input of the analysis is a X matrix constructed with *i* rows representing scenarios, and the *j* columns representing events:

Coincidences matrix

Definition

Interactive Graphs with Stata

M.E. et al.

Introduction

NCA

Coincidence

Types

Graphs

Adjacency

coin

netcoin

Remarks

Final

• From the incidence matrix (**X**), the coincidences matrix (**F**) can be obtained by

$\mathbf{F}=\mathbf{X}'\mathbf{X}$

- where each element f_{jk} represents the number of scenarios where X_j and X_k are both 1, that is to say, the two events coincide.
- As may be imagined, there are special elements (f_{jj}) in the diagonal, which represent the number of incidences of X_j in the *n* scenarios.

Example of coincidences matrix

Coincidences matrix (co-appearances in the pictures)

Interactive Graphs The symmetric **F** matrix is compose by *i* rows and *j* columns with Stata representing incidences (diagonal) and coincidences of events: M.E. et al. $\mathbf{F} = \begin{bmatrix} \mathbf{3} & \mathbf{4} & & & \\ 2 & 2 & \mathbf{2} & & \\ 3 & 4 & 2 & \mathbf{4} & & \\ 3 & 4 & 2 & \mathbf{4} & \mathbf{4} & & \\ 3 & 4 & 2 & 4 & \mathbf{4} & \mathbf{4} & & \\ 3 & 4 & 2 & 4 & 4 & \mathbf{4} & \mathbf{4} & & \\ 3 & 4 & 2 & 4 & 4 & 4 & \mathbf{4} & & \\ 3 & 4 & 2 & 4 & 4 & 4 & \mathbf{4} & & \\ 1 & 2 & 0 & 2 & 2 & 2 & 2 & 2 & \mathbf{2} & \mathbf{2} & \\ & & & 1 & 2 & 2 & 2 & 2 & 2 & \mathbf{2} & \mathbf{2} & \mathbf{2} \end{bmatrix}$ Coincidence

3 grades of coincidence

Mere and probable events

- Interactive Graphs with Stata
- M.E. et al.
- Introduction
- NCA
- Coinciden
- Types
- Graphs Adjacency
-
- coin
- netcoin
- Remarks
- Final

- Two events (X_j and X_k) are defined as 1) merely coincident if they occur in the same scenario at least once:
 [∃_i(x_{ij} = 1 ∧ x_{ik} = 1)] ∨ f_{jk} ≥ 1
- Additionally, two events (X_j and X_k) are defined as 2) conditionally coincident if they occur more frequently than if they are independent:

$$f_{jk} > rac{f_{jj}f_{kk}}{n}$$

3 grades of coincidence (cont.)

Statistically probable events

Interactive Graphs with Stata

M.E. et al.

Introduction

NCA

Coincic

Graphs

Adjacency

coin

netcoin

Remarks

Final

• And two events are 3) **statistically conditional** if the joint frequency of their events meets one of the following inequalities:

$$\begin{split} \mathrm{P}(r_{jk} \leq 0) < c \\ \mathrm{P}(\theta_{jk} \leq 1) < c \\ \mathrm{P}(\mathrm{p}(X_j) - \mathrm{p}(X_j | X_k) \leq 0) < c \end{split}$$

• where r_{jk} is the Haberman residual, θ_{jk} is the odd ratio, and the third equation represents a one tailed Fisher exact test. Furthermore, c is the selected level of significance, normally 0.05)

Statistical dependence

Measurement

Interactive Graphs with Stata

M.E. et al.

Introduction

NCA

Coinciden

Types

Graphs Adjacency

E.surri

coin

netcoin

Remarks

Final

• Haberman residuals (*r_{jk}*) with normal distribution may be used to assess statistically conditional events:

$$r_{jk} = rac{f_{jk} - rac{f_{jj}f_{kk}}{n}}{\sqrt{rac{f_{jj}f_{kk}(n - f_{jj})(n - f_{kk})}{n^3}}}$$

Graph Definition

Interactive Graphs with Stata M.E. et al.

Introduction

NCA

Coincidenc

Granhs

Adjacency

coin

netcoin

Remarks

Final

"A graph G consist of two sets of information: a set of Nodes (events), N = {n₁, n₂, ..., n_g}, and a set of lines (adjacencies), L = {l₁, l₂, ..., l_L} between pair of nodes ". (Wasserman and Faust 1994).

Adjacencies

Elaboration of the adjacency matrices

Interactive Graphs with Stata

M.E. et al.

Introduction

NCA

Coincidenc

Types

Adiacency

....,

coin

netcoir

Remarks

Final

• From the residual matrix, an adjacency $J \times J$ matrix **A** may be elaborated with all the elements equal to 0, but 1 in the case where r_{ik} is significantly below the level *c*.

$$\mathbf{A}[j,k] = 1 \Leftrightarrow [\mathrm{P}(\mathbf{r}_{jk} \leq \mathbf{0}) < \mathbf{c}] \land j \neq k$$

- By extension, other adjacency matrices can be elaborated following
 - The mere coincidence criterion

$$\mathbf{A}[j,k] = 1 \Leftrightarrow f_{jk} \ge 1$$

• Or the conditional coincidence criterion

$$\mathbf{A}[j,k] = 1 \Leftrightarrow [\mathrm{P}(r_{jk} \le 0) < 0.5] \land j \neq k$$

Graph representation

Fruchterman-Reingold layout

Eruchtormon Roingold coordinator

Social network programs

Stata program

Interactive Graphs with Stata

M.E. et al.

Introduction

NCA

Coincidenc Types Graphs

- Adjacency
- Example

coin

netcoin

Remarks

- Stata has no tools for SNA.
- However, some advanced users have begun to write some routines. I wish to highlight the following works from which I have obtained insights:
 - Corten (2010) wrote a routine to visualize social networks [netplot].
 - Mihura (2012) created routines (SGL) to calculate networks centrality measures, including two Stata commands [netsis and netsummarize].
 - Afterwards, White (2013) presented a suite [network] of Stata programs for meta-analysis which includes the network graphs of Anna Chaimani in the UK. users group meeting.
 - And Grund (2013-2018, forthcoming) have presented a collection of programs to plot and analyze social networks [nwcommands].

COIN What is it?

Interactive Graphs with Stata

M.E. et al.

Introduction

NCA Coincidence Types Graphs Adjacency Example

coin

netcoin

Remarks

- coin is an ado program in its development phase, which is capable of performing coincidence analysis.
- Its input is a dataset with scenarios as rows and events as columns.
- Its outputs are:
 - Different matrices (frequencies, percentages, residuals (3), distances, adjacencies and edges).
 - Several bar graphs, network graphs (circle, mds, pca, ca, biplot) and dendrograms (single, average, waverage, complete, wards, median, centroid).
 - Measures of centrality (degree, closeness, betweenness, information) (eigenvector and power)
 - Options to export to excel and .csv files.
- Its syntax is simple, but flexible. Many options such as output, bonferroni, p value, minimum, special event, graph controls, ...

Command

coin

Interactive Graphs with Stata

M.E. et al.

Introduction

NCA Coincidence Types Graphs Adjacency Example

coin

netcoin

Remarks

Final

coin varlist [if] [in] [weight] [, options]

Options can be classified into the following groups:

- Outputs: f, g, v, h, e, r, s, n, ph, o, po, pf, t, a, d, l, c, all, x, xy.
- Controls: head(varlist), variable(varname), ascending, descending, minimum (#), support(#), pvalue(#), levels(# # #), bonferroni, lminimum(#), iterations(#).
- Plots
 - Bar: bar, cbar(*varname*)
 - Graph: plot(circle|mds|ca|pca|biplot)
 - Dendrograms: dendrogram(single|complete|average|wards)

Coincidences matrix of Unamuno's nuclear family

Interactive Graphs with Stata M.E. et al. . coin Unamuno-Jugo, f 329 scenarios. 51 probable coincidences amongst 11 events. Density: 0.93. Components: 1. 11 events(n>=5): Unamuno Lizarraga Fernando Pablo Salome Felisa Jose Maria Rafael Ramon Jugo Frequencies Una~o Liz~a Fer~o Pablo Sal~e Fel~a Jose Maria Raf~l Ramon Jugo Unamuno y Jugo, Migu~e Lizárraga, Concepción Unamuno, Fernando de з Unamuno, Pablo de Unamuno, Salomé de Unamuno, Felisa de coin Unamuno, José de Unamuno, María de Unamuno, Rafael de Unamuno, Ramon de Jugo, Salomé

Haberman's residuals matrix of Unamuno's nuclear family

Interactive Graphs with Stata

M.E. et al.

Introduction

. coin Unamuno-Jugo, normalized

329 scenarios. 51 probable coincidences amongst 11 events. Density: 0.93. Components: 1. 11 events(n>=5): Unamuno Lizarraga Fernando Pablo Salome Felisa Jose Maria Rafael Ramon Jugo

Haberman residuals	Una~o	Liz~a	Fer~o	Pablo	Sal~e	Fel~a	Jose	Maria	Raf~l	Ramon	Jugo
Unamuno y Jugo, Migu~e	18.1										
Lizárraga, Concepción	0.9	18.1									
Unamuno, Fernando de	1.0	5.9	18.1								
Unamuno, Pablo de	-0.0	7.5	4.6	18.1							
Unamuno, Salomé de	1.9	9.7	5.9	8.9	18.1						
Unamuno, Felisa de	2.1	10.5	3.6	9.8	12.4	18.1					
Unamuno, José de	1.1	10.2	6.2	10.9	11.9	11.4	18.1				
Unamuno, María de	1.7	11.2	5.3	11.9	13.5	14.4	12.5	18.1			
Unamuno, Rafael de	1.2	8.5	7.0	10.7	13.4	12.8	12.0	14.1	18.1		
Unamuno, Ramón de	-3.2	2.5	0.8	3.7	5.1	4.8	4.2	4.5	6.2	18.1	
Jugo, Salomé	-1.5	1.4	2.8	1.5	2.1	2.0	2.2	1.9	2.6	-0.6	18.1

Final

coin

Adjacency matrix from Haberman's residuals matrix

Interactive Graphs with Stata

M.E. et al.

. coin Unamuno-Jugo, adjacencies

329 scenarios. 51 probable coincidences amongst 11 events. Density: 0.93. Components: 1. 11 events(n>=5): Unamuno Lizarraga Fernando Pablo Salome Felisa Jose Maria Rafael Ramon Jugo

Adjacency matrix	Una~o	Liz~a	Fer~o	Pablo	Sal~e	Fel~a	Jose	Maria	Raf~l	Ramon	Jugo
Unamuno y Jugo, Migu~e	0										
Lizárraga, Concepción	1	0									
Unamuno, Fernando de	1	1	0								
Unamuno, Pablo de	0	1	1	0							
Unamuno, Salomé de	1	1	1	1	0						
Unamuno, Felisa de	1	1	1	1	1	0					
Unamuno, José de	1	1	1	1	1	1	0				
Unamuno, María de	1	1	1	1	1	1	1	0			
Unamuno, Rafael de	1	1	1	1	1	1	1	1	0		
Unamuno, Ramón de	0	1	1	1	1	1	1	1	1	0	
Jugo, Salomé	0	1	1	1	1	1	1	1	1	0	0

Final

coin

Adjacency matrix from significant Haberman's residuals matrix

Interactive
Graphs
with
Stata

M.E. et al.

Introduction

ΝCΔ

Coincider

Types Graphs

Adjacency

coin

netcoin

Remarks

. coin Unamuno-Jugo, ad	jacencie	s pvalu	e(.05)								
329 scenarios. 44 statis	stically	probab	le(p<=.	05) coi	ncidenc	es. Dens	sity: O	.80. Co	mponent	s: 1.	
11 events(n>=5): Unamuno	o Lizarr	aga Fer	nando P	ablo Sa	lome Fe	lisa Jos	se Mari	a Rafae	l Ramon	Jugo	
Adjacency matrix	Una~o	Liz~a	Fer~o	Pablo	Sal~e	Fel~a	Jose	Maria	Raf~1	Ramon	Jugo
Unamuno y Jugo, Migu~e	0										
Lizárraga, Concepción	0	0									
Unamuno, Fernando de	0	1	0								
Unamuno, Pablo de	0	1	1	0							
Unamuno, Salomé de	1	1	1	1	0						
Unamuno, Felisa de	1	1	1	1	1	0					
Unamuno, José de	0	1	1	1	1	1	0				
Unamuno, María de	1	1	1	1	1	1	1	0			
Unamuno, Rafael de	0	1	1	1	1	1	1	1	0		
Unamuno, Ramón de	0	1	0	1	1	1	1	1	1	0	
Jugo, Salomé	0	0	1	0	1	1	1	1	1	0	0

Links list

Interactive Graphs with Stata

M.E. et al.

Introduction

NCA Coincidence Types Graphs Adjacency

coin

netcoin

Remarks

Final

. coin Unamuno-Jugo, list key(normalized) lminimum(10) 329 scenarios. 51 probable coincidences amongst 11 events. Density: 0.93. Components: 1. 11 events: Unamuno Lizarraga Fernando Pablo Salome Felisa Jose Maria Rafael Ramon Jugo

N Edge

14.38 Unamuno, Felisa de <-> Unamuno, María de 14.12 Unamuno, María de <-> Unamuno, Rafael de 13.48 Unamuno, Salomé de <-> Unamuno, María de 13.40 Unamuno, Salomé de <-> Unamuno, Rafael de 12.81 Unamuno, Felisa de <-> Unamuno, Rafael de 12.54 Unamuno, José de <-> Unamuno, María de 12.43 Unamuno, Salomé de <-> Unamuno, Felisa de 12.00 Unamuno, José de <-> Unamuno, Rafael de 11.93 Unamuno, Pablo de <-> Unamuno, María de 11.91 Unamuno, Salomé de <-> Unamuno, José de 11.37 Unamuno, Felisa de <-> Unamuno, José de 11.22 Lizárraga, Concepción <-> Unamuno, María de 10.86 Unamuno, Pablo de <-> Unamuno, José de 10.65 Unamuno, Pablo de <-> Unamuno, Rafael de 10.47 Lizárraga, Concepción <-> Unamuno, Felisa de 10.22 Lizárraga, Concepción <-> Unamuno, José de

netcoin What is it?

Interactive Graphs with Stata

M.E. et al.

Introduction

NCA

Coinciden

Types

Graphs

Adjacency

Examp

coin

netcoin

Remarks

- netcoin is a new ado command in its development phase, which is capable of create interactive graphs in html format.
- Its input is a dataset with scenarios as rows and events as columns.
- It can also use another dataset with the characteristics of the events
- Its output is an interactive graph in html format.
- Its syntax is very simple as it uses coin to calculate its statistics.

Command

netcoin

Interactive Graphs with Stata

M.E. et al.

Introduction

NCA

Coincidence Types

Graphs

Adjacency

coin

netcoin

Remarks

Final

netcoin varlist [if] [in] [weight] [using filename]
[,options]

Options can be classified into the following groups:

- **Controls**: <u>min</u>imum(#) <u>dir</u>ectory(*dirname*) language(en|es|ca)
- **Outputs** (only if using): <u>name(varname)</u> <u>label(varname) size(varname) co</u>lor(varname) <u>shape(varname) image(varname)</u>

Output

Network representation of Unamuno's family album

Remarks

About coincidence analysis

Interactive Graphs with Stata

M.E. et al.

Introduction

NCA

Coincidend

Types

Graphs

Europe

coin

netcoin

Remarks

- I've proposed a manner of analyzing coincidences mixing different statistical tools.
- I think that the novelty of coincidence analysis is combining several techniques in order to represent data with interactive html graphs.
- This may be useful in analyzing dichotomous variables, but also to represent regressions, structural equation models and other networked graphs.
- I think that this approach could be extensively used with the aid of the coin, precoin, netcoin and other forthcoming programs.

Availability of coin and netcoin

Frame Subtitle

Interactive Graphs with Stata

M.E. et al.

- Introduction
- NCA
- Coincidence
- Types
- Graphs
- Adjacency
- --:-

Remarks

- If you are users of a version superior to the 11.2 of Stata, you can have a free copy of coin by typing:
 - net install coin, from(https://sociocav.usal.es/me/stata/)
- It is still a beta version, but it works reasonably well and it is being improved. It could be updated as follows:
 - adoupdate, update
- netcoin is more difficult to install as it requires Stata 16.0, Python and the igraph module.
- Comments and suggestions will be welcome !!

Last slide

Thanks

Graphs with Stata							
M.E. et al.							
Final							

¡Gracias por la atención prestada! modesto@usal.es