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Objective

Build a unified framework to ask questions about model estimates
Learn to apply this unified framework using Stata
Unique to Stata
Excuse to talk about estimation topics
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Factor variables

Distinguish between discrete and continuous variables
Way to create “dummy-variables”, interactions, and powers
Works with most Stata commands
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Using factor variables

. import excel apsa, firstrow

. tabulate d1
d1 Freq. Percent Cum.

0 2,000 20.00 20.00
1 2,000 20.00 40.00
2 2,044 20.44 60.44
3 2,037 20.37 80.81
4 1,919 19.19 100.00

Total 10,000 100.00

. summarize 1.d1
Variable Obs Mean Std. Dev. Min Max

1.d1 10,000 .2 .40002 0 1

. summarize i.d1
Variable Obs Mean Std. Dev. Min Max

d1
1 10,000 .2 .40002 0 1
2 10,000 .2044 .4032827 0 1
3 10,000 .2037 .4027686 0 1
4 10,000 .1919 .3938145 0 1
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Using factor variables

. summarize ibn.d1

Variable Obs Mean Std. Dev. Min Max

d1
0 10,000 .2 .40002 0 1
1 10,000 .2 .40002 0 1
2 10,000 .2044 .4032827 0 1
3 10,000 .2037 .4027686 0 1
4 10,000 .1919 .3938145 0 1

. summarize ib2.d1

Variable Obs Mean Std. Dev. Min Max

d1
0 10,000 .2 .40002 0 1
1 10,000 .2 .40002 0 1
3 10,000 .2037 .4027686 0 1
4 10,000 .1919 .3938145 0 1
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Using factor variables

. summarize d1##d2

Variable Obs Mean Std. Dev. Min Max

d1
1 10,000 .2 .40002 0 1
2 10,000 .2044 .4032827 0 1
3 10,000 .2037 .4027686 0 1
4 10,000 .1919 .3938145 0 1

1.d2 10,000 .4986 .500023 0 1

d1#d2
1 1 10,000 .1009 .3012113 0 1
2 1 10,000 .1007 .3009461 0 1
3 1 10,000 .1035 .304626 0 1
4 1 10,000 .0922 .2893225 0 1
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Using factor variables

. summarize c.x1##c.x1 c.x1#c.x2 c.x1#i.d1, separator(4)

Variable Obs Mean Std. Dev. Min Max

x1 10,000 .0110258 .9938621 -4.095795 3.714316

c.x1#c.x1 10,000 .9877847 1.416602 4.18e-09 16.77553

c.x1#c.x2 10,000 .000208 1.325283 -7.469295 6.45778

d1#c.x1
1 10,000 .0044334 .4516058 -3.021819 3.286315
2 10,000 .0008424 .4432188 -4.095795 3.178586
3 10,000 .0025783 .4533505 -3.374062 3.428311
4 10,000 -.0014739 .4379122 -3.161604 3.714316
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Models and Quantities of Interest

We usually model an outcome of interest, Y , conditional on
covariates of interest X :

I E (Y |X ) = Xβ (regression)
I E (Y |X ) = exp(Xβ) (poisson)
I E (Y |X ) = P (Y |X ) = Φ (Xβ) ( probit)
I E (Y |X ) = P (Y |X ) = [exp (Xβ)] [1ι+ exp (Xβ)]−1 (logit)
I E (Y |X ) = g (X ) (nonparametric regression)
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Questions

Population averaged
I Does a medicaid expansion improve health outcomes ?
I What is the effect of a minimum wage increase on employment ?
I What is the effect on urban violence indicators, during the

weekends of moving back the city curfew ?
At a point

I What is the effect of loosing weight for a 36 year, overweight
hispanic man?

I What is the effect on urban violence indicators, during the
weekends of moving back the city curfew, for a large city, in the
southwest of the United States ?
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What are the answers?
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A linear model

y = β0 + x1β1 + x2β2 + x2
1β3 + x2

2β4 + x1x2β5

+ d1β6 + d2β7 + d1d2β8 + x2d1β9 + ε

x1 and x2 are continuous, d2 is binary, and d1 has 5 categories.
There are interactions of continuous and categorical variables
This is simulated data
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Regression results
. regress yr c.x1##c.x2 c.x1#c.x1 c.x2#c.x2 i.d1##i.d2 c.x2#i.d1

Source SS df MS Number of obs = 10,000
F(18, 9981) = 388.10

Model 335278.744 18 18626.5969 Prob > F = 0.0000
Residual 479031.227 9,981 47.9943119 R-squared = 0.4117

Adj R-squared = 0.4107
Total 814309.971 9,999 81.439141 Root MSE = 6.9278

yr Coef. Std. Err. t P>|t| [95% Conf. Interval]

x1 -1.04884 .1525255 -6.88 0.000 -1.347821 -.7498593
x2 .4749664 .4968878 0.96 0.339 -.4990339 1.448967

c.x1#c.x2 1.06966 .1143996 9.35 0.000 .8454139 1.293907

c.x1#c.x1 -1.061312 .048992 -21.66 0.000 -1.157346 -.9652779

c.x2#c.x2 1.177785 .1673487 7.04 0.000 .849748 1.505822

d1
1 -1.504705 .5254654 -2.86 0.004 -2.534723 -.4746865
2 -3.727184 .5272623 -7.07 0.000 -4.760725 -2.693644
3 -6.522121 .5229072 -12.47 0.000 -7.547125 -5.497118
4 -8.80982 .5319266 -16.56 0.000 -9.852503 -7.767136

1.d2 1.615761 .3099418 5.21 0.000 1.008212 2.223309

d1#d2
1 1 -3.649372 .4383277 -8.33 0.000 -4.508582 -2.790161
2 1 -5.994454 .435919 -13.75 0.000 -6.848943 -5.139965
3 1 -8.457034 .4364173 -19.38 0.000 -9.3125 -7.601568
4 1 -11.04842 .4430598 -24.94 0.000 -11.9169 -10.17993

d1#c.x2
1 1.11805 .3626989 3.08 0.002 .4070865 1.829013
2 1.918298 .3592232 5.34 0.000 1.214149 2.622448
3 3.484255 .3594559 9.69 0.000 2.779649 4.188861
4 4.260699 .362315 11.76 0.000 3.550488 4.970909

_cons 1.356859 .4268632 3.18 0.001 .5201207 2.193597October 24, 2018 12 / 110



Effects: x2

Suppose we want to study the marginal effect of x2

∂E (y |x1, x2,d1,d2)

∂x2

This is given by

∂E (y |x1, x2,d1,d2)

∂x2
= β2 + 2x2β4 + x1β5 + d1β9

I can compute this effect for every individual in my sample and
then average to get a population averaged effect
I could evaluate this conditional on values of the different
covariates, or even values of importance for x2
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Population averaged effect manually
. regress, coeflegend

Source SS df MS Number of obs = 10,000
F(18, 9981) = 388.10

Model 335278.744 18 18626.5969 Prob > F = 0.0000
Residual 479031.227 9,981 47.9943119 R-squared = 0.4117

Adj R-squared = 0.4107
Total 814309.971 9,999 81.439141 Root MSE = 6.9278

yr Coef. Legend

x1 -1.04884 _b[x1]
x2 .4749664 _b[x2]

c.x1#c.x2 1.06966 _b[c.x1#c.x2]

c.x1#c.x1 -1.061312 _b[c.x1#c.x1]

c.x2#c.x2 1.177785 _b[c.x2#c.x2]

d1
1 -1.504705 _b[1.d1]
2 -3.727184 _b[2.d1]
3 -6.522121 _b[3.d1]
4 -8.80982 _b[4.d1]

1.d2 1.615761 _b[1.d2]

d1#d2
1 1 -3.649372 _b[1.d1#1.d2]
2 1 -5.994454 _b[2.d1#1.d2]
3 1 -8.457034 _b[3.d1#1.d2]
4 1 -11.04842 _b[4.d1#1.d2]

d1#c.x2
1 1.11805 _b[1.d1#c.x2]
2 1.918298 _b[2.d1#c.x2]
3 3.484255 _b[3.d1#c.x2]
4 4.260699 _b[4.d1#c.x2]

_cons 1.356859 _b[_cons] October 24, 2018 14 / 110



Population averaged effect manually

∂E (y |x1, x2,d1,d2)

∂x2
= β2 + 2x2β4 + x1β5 + d1β9

generate double dydx2 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]*1.d1 + _b[2.d1#c.x2]*2.d1 + ///
_b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1
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Population averaged effect manually

. list dydx2 in 1/10, sep(0)

dydx2

1. 4.6587219
2. 4.3782089
3. 7.8509027
4. 10.018247
5. 7.4219045
6. 7.2065007
7. 3.6052012
8. 5.4846114
9. 6.3144353
10. 5.9827419

. summarize dydx2

Variable Obs Mean Std. Dev. Min Max

dydx2 10,000 5.43906 2.347479 -2.075498 12.90448
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margins

A way to compute effects of interest and their standard errors
Fundamental to construct our unified framework
Consumes factor variable notation
Operates over Stata predict, ̂E (Y |X ) = X β̂
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margins, dydx(*)

. margins, dydx(x2)

Average marginal effects Number of obs = 10,000
Model VCE : OLS

Expression : Linear prediction, predict()
dy/dx w.r.t. : x2

Delta-method
dy/dx Std. Err. t P>|t| [95% Conf. Interval]

x2 5.43906 .1188069 45.78 0.000 5.206174 5.671945

Expression, default prediction E (Y |X ) = Xβ
I This means you could access other Stata predictions
I Or any function of the coefficients

Delta method is the way the standard errors are computed
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Expression

. margins, expression(_b[c.x2] + ///
> _b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
> _b[1.d1#c.x2]*1.d1 + _b[2.d1#c.x2]*2.d1 + ///
> _b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1)
Warning: expression() does not contain predict() or xb().
Predictive margins Number of obs = 10,000
Model VCE : OLS
Expression : _b[c.x2] + _b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + _b[1.d1#c.x2]*1.d1 +

_b[2.d1#c.x2]*2.d1 + _b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons 5.43906 .1188069 45.78 0.000 5.206202 5.671917
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Delta Method and Standard Errors

We get our standard errors from the central limit theorem.

β̂ − β d−→ N (0,V )

We can get standard errors for any smooth function g() of β̂ with

g
(
β̂
)
− g (β)

d−→ N
(
0,g′ (β)′ Vg′ (β)

)

October 24, 2018 20 / 110



Effect of x2: revisited

∂E (y |x1, x2,d1,d2)

∂x2
= β2 + 2x2β4 + x1β5 + d1β9

We averaged this function but could evaluate it at different values
of the covariates for example:

I What is the average marginal effect of x2 for different values of d1
I What is the average marginal effect of x2 for different values of d1

and x1
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Different values of d1 a counterfactual

generate double dydx2 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]*1.d1 + _b[2.d1#c.x2]*2.d1 + ///
_b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1

generate double dydx2_d10 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2

generate double dydx2_d11 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]

generate double dydx2_d12 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[2.d1#c.x2]
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Average marginal effect of x2 at counterfactuals: manually

. summarize dydx2_*
Variable Obs Mean Std. Dev. Min Max

dydx2_d10 10,000 3.295979 1.7597 -2.411066 9.288564
dydx2_d11 10,000 4.414028 1.7597 -1.293017 10.40661
dydx2_d12 10,000 5.214277 1.7597 -.4927681 11.20686
dydx2_d13 10,000 6.780233 1.7597 1.073188 12.77282
dydx2_d14 10,000 7.556677 1.7597 1.849632 13.54926
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Average marginal effect of x2 at counterfactuals: margins

. margins d1, dydx(x2)

Average marginal effects Number of obs = 10,000
Model VCE : OLS

Expression : Linear prediction, predict()
dy/dx w.r.t. : x2

Delta-method
dy/dx Std. Err. t P>|t| [95% Conf. Interval]

x2
d1
0 3.295979 .2548412 12.93 0.000 2.796439 3.795519
1 4.414028 .2607174 16.93 0.000 3.90297 4.925087
2 5.214277 .2575936 20.24 0.000 4.709342 5.719212
3 6.780233 .2569613 26.39 0.000 6.276537 7.283929
4 7.556677 .2609514 28.96 0.000 7.04516 8.068195
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Graphically: marginsplot
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Thou shalt not be fooled by overlapping confidence
intervals

Var (a− b) = Var (a) + Var (b)− 2Cov(a,b)

You have Var (a) and Var (b)

You do not have 2Cov(a,b)
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Thou shalt not be fooled by overlapping confidence
intervals

. margins ar.d1, dydx(x2) contrast(nowald)

Contrasts of average marginal effects
Model VCE : OLS

Expression : Linear prediction, predict()
dy/dx w.r.t. : x2

Contrast Delta-method
dy/dx Std. Err. [95% Conf. Interval]

x2
d1

(1 vs 0) 1.11805 .3626989 .4070865 1.829013
(2 vs 1) .8002487 .3638556 .0870184 1.513479
(3 vs 2) 1.565956 .3603585 .859581 2.272332
(4 vs 3) .7764441 .3634048 .0640974 1.488791
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Thou shalt not be fooled by overlapping confidence
intervals
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Effect of x2: revisited

∂E (y |x1, x2,d1,d2)

∂x2
= β2 + 2x2β4 + x1β5 + d1β9

We averaged this function but could evaluate it at different values
of the covariates for example:

I What is the average marginal effect of x2 for different values of d1
and x1
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Effect of x2: revisited

margins d1, dydx(x2) at(x1=(-3(.5)4))
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Put on your calculus hat or ask a different question

∂E (y |.)
∂x2

This is our object of interest
By definition it is the change in E (y |.) for an infinitesimal change
in x2

Sometimes people talk about this as a unit change in x2
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Put on your calculus hat or ask a different question

. margins, dydx(x2)

Average marginal effects Number of obs = 10,000
Model VCE : OLS

Expression : Linear prediction, predict()
dy/dx w.r.t. : x2

Delta-method
dy/dx Std. Err. t P>|t| [95% Conf. Interval]

x2 5.43906 .1188069 45.78 0.000 5.206174 5.671945

. quietly predict double xb0

. quietly replace x2 = x2 + 1

. quietly predict double xb1

. generate double diff = xb1 - xb0

. summarize diff

Variable Obs Mean Std. Dev. Min Max

diff 10,000 6.616845 2.347479 -.8977125 14.08226
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Put on your calculus hat or ask a different question

. margins, at(x2 = generate(x2)) at(x2=generate(x2+1))
Predictive margins Number of obs = 10,000
Model VCE : OLS
Expression : Linear prediction, predict()
1._at : x2 = x2
2._at : x2 = x2+1

Delta-method
Margin Std. Err. t P>|t| [95% Conf. Interval]

_at
1 -.599745 .0692779 -8.66 0.000 -.7355437 -.4639463
2 6.0171 .1909195 31.52 0.000 5.642859 6.39134

. margins, at(x2 = generate(x2)) at(x2=generate(x2+1)) contrast(at(r) nowald)
Contrasts of predictive margins
Model VCE : OLS
Expression : Linear prediction, predict()
1._at : x2 = x2
2._at : x2 = x2+1

Delta-method
Contrast Std. Err. [95% Conf. Interval]

_at
(2 vs 1) 6.616845 .1779068 6.268111 6.965578

. summarize diff
Variable Obs Mean Std. Dev. Min Max

diff 10,000 6.616845 2.347479 -.8977125 14.08226
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Ask a different question

Marginal effects have a meaning in some contexts but are
misused
It is difficult to interpret infinitesimal changes but we do not need to
We can ask about meaningful questions by talking in units that
mean something to the problem we care about
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A 10 percent increase in x2

. margins, at(x2 = generate(x2)) at(x2=generate(x2*1.1)) ///
> contrast(at(r) nowald)

Contrasts of predictive margins
Model VCE : OLS

Expression : Linear prediction, predict()

1._at : x2 = x2

2._at : x2 = x2*1.1

Delta-method
Contrast Std. Err. [95% Conf. Interval]

_at
(2 vs 1) .7562394 .0178679 .7212147 .791264
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What we learned

∂E (y |x1, x2,d1,d2)

∂x2
= β2 + 2x2β4 + x1β5 + d1β9

Population averaged
Counterfactual values of d1

Counterfactual values for d1 and x1

Exploring a fourth dimensional surface
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Discrete covariates

E (Y |d = d1, . . .)− E (Y |d = d0, . . .)

. . .

E (Y |d = dk , . . .)− E (Y |d = d0, . . .)

The effect is the difference of the object of interest evaluated at
the different levels of the discrete covariate relative to a base level
It can be interpreted as a treatment effect
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Effect of d1

. margins d1
Predictive margins Number of obs = 10,000
Model VCE : OLS
Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. t P>|t| [95% Conf. Interval]

d1
0 3.77553 .1550097 24.36 0.000 3.47168 4.079381
1 1.784618 .1550841 11.51 0.000 1.480622 2.088614
2 -.6527544 .1533701 -4.26 0.000 -.9533906 -.3521181
3 -2.807997 .1535468 -18.29 0.000 -3.10898 -2.507014
4 -5.461784 .1583201 -34.50 0.000 -5.772123 -5.151445

. margins r.d1, contrast(nowald)
Contrasts of predictive margins
Model VCE : OLS
Expression : Linear prediction, predict()

Delta-method
Contrast Std. Err. [95% Conf. Interval]

d1
(1 vs 0) -1.990912 .2193128 -2.420809 -1.561015
(2 vs 0) -4.428285 .2180388 -4.855685 -4.000884
(3 vs 0) -6.583527 .2182232 -7.011289 -6.155766
(4 vs 0) -9.237314 .2215769 -9.671649 -8.802979
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Effect of d1

. margins r.d1, contrast(nowald)
Contrasts of predictive margins
Model VCE : OLS
Expression : Linear prediction, predict()

Delta-method
Contrast Std. Err. [95% Conf. Interval]

d1
(1 vs 0) -1.990912 .2193128 -2.420809 -1.561015
(2 vs 0) -4.428285 .2180388 -4.855685 -4.000884
(3 vs 0) -6.583527 .2182232 -7.011289 -6.155766
(4 vs 0) -9.237314 .2215769 -9.671649 -8.802979

. margins, dydx(d1)
Average marginal effects Number of obs = 10,000
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : 1.d1 2.d1 3.d1 4.d1

Delta-method
dy/dx Std. Err. t P>|t| [95% Conf. Interval]

d1
1 -1.990912 .2193128 -9.08 0.000 -2.420809 -1.561015
2 -4.428285 .2180388 -20.31 0.000 -4.855685 -4.000884
3 -6.583527 .2182232 -30.17 0.000 -7.011289 -6.155766
4 -9.237314 .2215769 -41.69 0.000 -9.671649 -8.802979

Note: dy/dx for factor levels is the discrete change from the base level.
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Effect of d1
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Effect of d1 for x2 counterfactuals
margins, dydx(d1) at(x2=(0(.5)3))
marginsplot, recastci(rarea) ciopts(fcolor(%30))
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Effect of d1 for x2 and d2 counterfactuals
margins 0.d2, dydx(d1) at(x2=(0(.5)3))
margins 1.d2, dydx(d1) at(x2=(0(.5)3))
marginsplot, recastci(rarea) ciopts(fcolor(%30))

October 24, 2018 43 / 110



Effect of x2 and d1 or x2 and x1

We can think about changes of two variables at a time
This is a bit trickier to interpret and a bit trickier to compute
margins allows us to solve this problem elegantly
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A change in x2 and d1

. margins r.d1, dydx(x2) contrast(nowald)

Contrasts of average marginal effects
Model VCE : OLS

Expression : Linear prediction, predict()
dy/dx w.r.t. : x2

Contrast Delta-method
dy/dx Std. Err. [95% Conf. Interval]

x2
d1

(1 vs 0) 1.11805 .3626989 .4070865 1.829013
(2 vs 0) 1.918298 .3592232 1.214149 2.622448
(3 vs 0) 3.484255 .3594559 2.779649 4.188861
(4 vs 0) 4.260699 .362315 3.550488 4.970909
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A change in d1 and d2

. margins r.d1, dydx(d2) contrast(nowald)

Contrasts of average marginal effects
Model VCE : OLS

Expression : Linear prediction, predict()
dy/dx w.r.t. : 1.d2

Contrast Delta-method
dy/dx Std. Err. [95% Conf. Interval]

0.d2 (base outcome)

1.d2
d1

(1 vs 0) -3.649372 .4383277 -4.508582 -2.790161
(2 vs 0) -5.994454 .435919 -6.848943 -5.139965
(3 vs 0) -8.457034 .4364173 -9.3125 -7.601568
(4 vs 0) -11.04842 .4430598 -11.9169 -10.17993

Note: dy/dx for factor levels is the discrete change from the
base level.
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A change in x2 and x1

. margins, expression(_b[c.x2] + ///
> _b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
> _b[1.d1#c.x2]*1.d1 + _b[2.d1#c.x2]*2.d1 + ///
> _b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1) ///
> dydx(x1)
Warning: expression() does not contain predict() or xb().

Average marginal effects Number of obs = 10,000
Model VCE : OLS

Expression : _b[c.x2] + _b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + _b[1.d1#c.x2]*1.d1 +
_b[2.d1#c.x2]*2.d1 + _b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1

dy/dx w.r.t. : x1

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

x1 1.06966 .1143996 9.35 0.000 .8454411 1.293879
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Framework

An object of interest, E (Y |X )

Questions
I ∂E(Y |X)

∂xk
I E (Y |d = dlevel ) - E (Y |d = dbase)
I Both
I Second order terms, double derivatives

Explore the surface
I Population averaged
I Effects at fixed values of covariates (counterfactuals)
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Binary outcome models

The data generating process is given by:

y =

{
1 if y∗ = xβ + ε > 0
0 otherwise

We make an assumption on the distribution of ε, fε
I Probit: ε follows a standard normal distribution
I Logit: ε follows a standard logistic distribution
I By construction P (y = 1|x) = F (xβ)

This gives rise to two models:

1 If F (.) is the standard normal distribution we have a Probit
2 If F (.) is the logistic distribution we have a Logit model

P (y = 1|x) = E (y |x)
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Effects

The change in the conditional probability due to a change in a
covariate is given by

∂P (y |x)

∂xk
=

∂F (xβ)

∂xk
βk

= f (xβ)βk

This implies that:

1 The value of the object of interest depends on x

2 The β coefficients only tell us the sign of the effect given that
f (xβ) > 0 almost surely

For a categorical variable (factor variables)

F (xβ|d = dl)− F (xβ|d = d0)
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Coefficient table
. probit ypr c.x1##c.x2 i.d1##i.d2 i.d1#c.x1, nolog

Probit regression Number of obs = 10,000
LR chi2(16) = 2942.75
Prob > chi2 = 0.0000

Log likelihood = -5453.1739 Pseudo R2 = 0.2125

ypr Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 -.3271742 .0423777 -7.72 0.000 -.4102329 -.2441155
x2 .3105438 .023413 13.26 0.000 .2646551 .3564325

c.x1#c.x2 .3178514 .0258437 12.30 0.000 .2671987 .3685041

d1
1 -.2927285 .057665 -5.08 0.000 -.4057498 -.1797072
2 -.6605838 .0593125 -11.14 0.000 -.7768342 -.5443333
3 -.9137215 .0647033 -14.12 0.000 -1.040538 -.7869054
4 -1.27621 .0718132 -17.77 0.000 -1.416961 -1.135459

1.d2 .2822199 .057478 4.91 0.000 .1695651 .3948747

d1#d2
1 1 .2547359 .0818174 3.11 0.002 .0943767 .4150951
2 1 .6621119 .0839328 7.89 0.000 .4976066 .8266171
3 1 .8471544 .0893541 9.48 0.000 .6720237 1.022285
4 1 1.26051 .0999602 12.61 0.000 1.064592 1.456429

d1#c.x1
1 -.2747025 .0422351 -6.50 0.000 -.3574819 -.1919232
2 -.5640486 .0452423 -12.47 0.000 -.6527219 -.4753753
3 -.9452172 .0512391 -18.45 0.000 -1.045644 -.8447905
4 -1.220619 .0608755 -20.05 0.000 -1.339933 -1.101306

_cons -.2823605 .0485982 -5.81 0.000 -.3776113 -.1871098October 24, 2018 51 / 110



Effects of x2

. margins, at(x2=generate(x2)) at(x2=generate(x2*1.2))

Predictive margins Number of obs = 10,000
Model VCE : OIM

Expression : Pr(ypr), predict()

1._at : x2 = x2

2._at : x2 = x2*1.2

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .4817093 .0043106 111.75 0.000 .4732607 .4901579
2 .5039467 .0046489 108.40 0.000 .4948349 .5130585
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Effects of x2 at values of d1 and d2

margins d1#d2,
at(x2=generate(x2))at(x2=generate(x2*1.2))
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Logit vs. Probit

. quietly logit ypr c.x1##c.x2 i.d1##i.d2 i.d1#c.x1

. quietly margins d1#d2, at(x2=generate(x2))at(x2=generate(x2*1.2)) post

. estimates store logit

. quietly probit ypr c.x1##c.x2 i.d1##i.d2 i.d1#c.x1

. quietly margins d1#d2, at(x2=generate(x2))at(x2=generate(x2*1.2)) post

. estimates store probit
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Logit vs. Probit

. estimates table probit logit

Variable probit logit

_at#d1#d2
1 0 0 .53151657 .53140462
1 0 1 .63756257 .63744731
1 1 0 .42306578 .42322182
1 1 1 .62291206 .62262466
1 2 0 .30922733 .30975991
1 2 1 .62783902 .62775349
1 3 0 .26973385 .26845746
1 3 1 .59004519 .58834989
1 4 0 .21809081 .21827411
1 4 1 .5914183 .59140961
2 0 0 .55723572 .55751404
2 0 1 .66005549 .65979041
2 1 0 .4502963 .45117594
2 1 1 .64854781 .64854287
2 2 0 .33082849 .33120501
2 2 1 .65472273 .65506022
2 3 0 .28400721 .28169093
2 3 1 .61605961 .61442653
2 4 0 .22609365 .22538232
2 4 1 .6154092 .61499622
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Logit vs. Probit
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Fractional models and quasilikelihood
(pseudolikelihood)

Likelihood models assume we know the unobservable and all it’s
moments
Quasilikelihood models are agnostic about anything but the first
moment
Fractional models use the likelihood of a probit or logit to model
outcomes in [0,1]. The unobservable of the probit and logit does
not generate values in (0,1)

Stata has an implementation for fractional probit and fractional
logit models
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The model

E (Y |X ) = F (Xβ)

F (.) is a known c.d.f
No assumptions are made about the distribution of the
unobservable
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Two fractional model examples

. clear

. set obs 10000
number of observations (_N) was 0, now 10,000

. set seed 111

. generate e = rnormal()

. generate x = rchi2(5)-3

. generate xb = .5*(1 - x)

. generate yp = xb + e > 0

. generate yf = normal(xb + e)

In both cases E (Y |X ) = Φ (Xθ)

For yp, the probit, θ = β

For yf, θ = β√
1+σ2
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Two fractional model estimates

. quietly fracreg probit yp x

. estimates store probit

. quietly fracreg probit yf x

. estimates store frac

. estimates table probit frac, eq(1)

Variable probit frac

x -.50037834 -.35759981
_cons .48964237 .34998136

. display .5/sqrt(2)

.35355339
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Fractional regression output
. fracreg probit ypr c.x1##c.x2 i.d1##i.d2 i.d1#c.x1

Iteration 0: log pseudolikelihood = -7021.8384
Iteration 1: log pseudolikelihood = -5515.9431
Iteration 2: log pseudolikelihood = -5453.7326
Iteration 3: log pseudolikelihood = -5453.1743
Iteration 4: log pseudolikelihood = -5453.1739
Fractional probit regression Number of obs = 10,000

Wald chi2(16) = 1969.26
Prob > chi2 = 0.0000

Log pseudolikelihood = -5453.1739 Pseudo R2 = 0.2125

Robust
ypr Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 -.3271742 .0421567 -7.76 0.000 -.4097998 -.2445486
x2 .3105438 .0232016 13.38 0.000 .2650696 .356018

c.x1#c.x2 .3178514 .0254263 12.50 0.000 .2680168 .3676859

d1
1 -.2927285 .0577951 -5.06 0.000 -.4060049 -.1794521
2 -.6605838 .0593091 -11.14 0.000 -.7768275 -.54434
3 -.9137215 .0655808 -13.93 0.000 -1.042258 -.7851855
4 -1.276209 .0720675 -17.71 0.000 -1.417459 -1.134959

1.d2 .2822199 .057684 4.89 0.000 .1691613 .3952784

d1#d2
1 1 .2547359 .0817911 3.11 0.002 .0944284 .4150435
2 1 .6621119 .0839477 7.89 0.000 .4975774 .8266464
3 1 .8471544 .0896528 9.45 0.000 .6714382 1.022871
4 1 1.260509 .0999594 12.61 0.000 1.064592 1.456425

d1#c.x1
1 -.2747025 .041962 -6.55 0.000 -.3569466 -.1924585
2 -.5640486 .0447828 -12.60 0.000 -.6518212 -.4762759
3 -.9452172 .0514524 -18.37 0.000 -1.046062 -.8443723
4 -1.220618 .0615741 -19.82 0.000 -1.341301 -1.099935

_cons -.2823605 .0486743 -5.80 0.000 -.3777603 -.1869607October 24, 2018 61 / 110



Robust standard errors

In general, this means we are agnostic about the E (εε′|X ), about
the conditional variance
The intuition from linear regression (heteroskedasticity) does not
extend
In nonlinear likelihood-based models like probit and logit this is not
the case
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Nonlinear likelihood models and heteroskedasticity

. clear

. set seed 111

. set obs 10000
number of observations (_N) was 0, now 10,000

. generate x = rbeta(2,3)

. generate e1 = rnormal(0, x)

. generate e2 = rnormal(0, 1)

. generate y1 = .5 - .5*x + e1 >0

. generate y2 = .5 - .5*x + e2 >0
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Nonlinear likelihood models and heteroskedasticity

. probit y1 x, nolog

Probit regression Number of obs = 10,000
LR chi2(1) = 1409.02
Prob > chi2 = 0.0000

Log likelihood = -4465.3713 Pseudo R2 = 0.1363

y1 Coef. Std. Err. z P>|z| [95% Conf. Interval]

x -2.86167 .0812023 -35.24 0.000 -3.020824 -2.702517
_cons 2.090816 .0415858 50.28 0.000 2.009309 2.172322

. probit y2 x, nolog

Probit regression Number of obs = 10,000
LR chi2(1) = 62.36
Prob > chi2 = 0.0000

Log likelihood = -6638.0701 Pseudo R2 = 0.0047

y2 Coef. Std. Err. z P>|z| [95% Conf. Interval]

x -.5019177 .0636248 -7.89 0.000 -.6266199 -.3772154
_cons .4952327 .0290706 17.04 0.000 .4382554 .55221
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Nonparametric regression

Nonparametric regression is agnostic
Unlike parametric estimation, nonparametric regression assumes
no functional form for the relationship between outcomes and
covariates.
You do not need to know the functional form to answer important
research questions
You are not subject to problems that arise from misspecification
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Mean Function

Some parametric functional form assumptions.
I regression: E (Y |X ) = Xβ
I probit: E (Y |X ) = Φ (Xβ)
I Poisson: E (Y |X ) = exp (Xβ)

The relationship of interest is also a conditional mean:

E (y |X ) = g (X )

Where the mean function g(·) is unknown
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Traditional Approach to Nonparametric Estimation

A cross section of counties
citations: Number of monthly drunk driving citations
fines: The value of fines imposed in a county in thousands of
dollars if caught drinking and driving.
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Implicit Relation
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Simple linear regression
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Regression with nonlinearities
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Poisson regression
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Nonparametric Estimation of Mean Function

. lpoly citations fines
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Now That We have the Mean Function
What is the effect on the mean of citations of increasing
fines by 10% ?
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Traditional Approach Gives Us
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Additional Variables

I would like to add controls
I Whether county has a college town college
I Number of highway patrol patrols units per capita in the county

With those controls I can ask some new questions
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What is the mean of citations if I increase patrols and
fines ?
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How does the mean of citations differ for counties where there
is a college town, averaging out the effect of patrols and
fines?
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What policy has a bigger effect on the mean of citations, an
increase in fines, an increase in patrols, or a combination of
both?
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What We Have Is
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What We Have

I have a mean function. That makes no functional form
assumptions.
I cannot answer the previous questions.
My analysis was graphical not statistical
My analysis is limited to one covariate
This is true even if I give you the true mean function, g(X )

October 24, 2018 80 / 110



What We Have

I have a mean function. That makes no functional form
assumptions.
I cannot answer the previous questions.
My analysis was graphical not statistical
My analysis is limited to one covariate
This is true even if I give you the true mean function, g(X )

October 24, 2018 80 / 110



What We Have

I have a mean function. That makes no functional form
assumptions.
I cannot answer the previous questions.
My analysis was graphical not statistical
My analysis is limited to one covariate
This is true even if I give you the true mean function, g(X )

October 24, 2018 80 / 110



What We Have

I have a mean function. That makes no functional form
assumptions.
I cannot answer the previous questions.
My analysis was graphical not statistical
My analysis is limited to one covariate
This is true even if I give you the true mean function, g(X )

October 24, 2018 80 / 110



What We Have

I have a mean function. That makes no functional form
assumptions.
I cannot answer the previous questions.
My analysis was graphical not statistical
My analysis is limited to one covariate
This is true even if I give you the true mean function, g(X )

October 24, 2018 80 / 110



Nonparametric regression: discrete covariates

Mean function for a discrete covariate

Mean (probability) of low birthweight (lbweight) conditional on
smoking 1 to 5 cigarettes (msmoke=1) during pregnancy

. mean lbweight if msmoke==1
Mean estimation Number of obs = 480

Mean Std. Err. [95% Conf. Interval]

lbweight .1125 .0144375 .0841313 .1408687

regress lbweight 1.msmoke, noconstant

E(lbweigth|msmoke = 1), nonparametric estimate
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Nonparametric regression: continuous covariates

Conditional mean for a continuous covariate

low birthweight conditional on log of family income fincome

E(lbweight |fincome = 10.819)

Take observations near the value of 10.819 and then take an
average
|fincomei − 10.819| ≤ h
h is a small number referred to as the bandwidth
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Graphical representation
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Graphical example
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Graphical example continued
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Two concepts

1 h !!!!
2 Definition of distance between points, |xi − x | ≤ h
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Kernel weights

Epanechnikov
Gaussian
Epanechnikov2
Rectangular(Uniform)
Triangular
Biweight
Triweight
Cosine
Parzen
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Discrete bandwidths

Li–Racine Kernel

k (·) =

{
1 if xi = x
h otherwise

Cell mean

k (·) =

{
1 if xi = x
0 otherwise

Cell mean was used in the example of discrete covariate estimate
E(lbweigth|msmoke = 1)
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Selecting The Bandwidth

A very large bandwidth will give you a biased estimate of the
mean function with a small variance
A very small bandwidth will give you an estimate with small bias
and large variance
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A Large Bandwidth At One Point
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A Large Bandwidth At Two Points
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No Variance but Huge Bias
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A Very Small Bandwidth at a Point
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A Very Small Bandwidth at 4 Points
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Small Bias Large Variance
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Estimation

Choose bandwidth optimally. Minimize bias–variance trade–off
I Cross-validation (default)
I Improved AIC (IMAIC)

Compute a mean for every point in data (local-constant)
Compute a regression for every point in data (local linear)

I Computes constant (mean) and slope (effects)
I Mean function and derivatives and effects of mean function
I There is a bandwidth for the mean computation and another for the

effects.

Local-linear regression is the default
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Simulated data example for continuous covariate

. clear
. set obs 1000
number of observations (_N) was 0, now 1,000
. set seed 111
. generate x = (rchi2(5)-5)/10
. generate a = int(runiform()*3)
. generate e = rnormal(0, .5)
. generate y = 1 - x -a + 4*x^2*a + e
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True model unknown to researchers
quietly regress y (c.x##c.x)##i.a
margins a, at(x=generate(x)) at(x=generate(x*1.5))
marginsplot, recastci(rarea) ciopts(fcolor(%30))
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npregress Syntax

. npregress kernel y x i.a

kernel refers to the kind of nonparametric estimation

By default Stata assumes variables in my model are continuous

i.a States the variable is categorical

Interactions between continuous variables and between continuous and
discrete variables are implicit
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Fitting the model with npregress

. npregress kernel y x i.a, nolog
Bandwidth

Mean Effect

x .0616294 .0891705
a .490625 .490625

Local-linear regression Number of obs = 1,000
Continuous kernel : epanechnikov E(Kernel obs) = 62
Discrete kernel : liracine R-squared = 0.8409
Bandwidth : cross validation

y Estimate

Mean
y .4071379

Effect
x -.8212713

a
(1 vs 0) -.5820049
(2 vs 0) -1.179375

Note: Effect estimates are averages of derivatives for continuous covariates and averages of
contrasts for factor covariates.

Note: You may compute standard errors using vce(bootstrap) or reps().
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The same effect
quietly regress y (c.x##c.x)##i.a
margins a,at(x=generate(x)) at(x=generate(x*1.5))
marginsplot, recastci(rarea) ciopts(fcolor(%30))
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Longitudinal/Panel Data

Under large N and fixed asymptotics behaves like cross-sectional
models
The difficulties arise because of time-invariant unobservables, i.e.
αi in

yit = G (Xitβ + αi + εit )

Our framework still works but we need to be careful with what it
means to average over the sample.
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Averaging

Our model gives us:

E (yit |Xit , αi) = g (Xitβ + αi)

We cannot consistently estimate αi so we integrate it out

EαE (yit |Xit , αi) = Eαg (Xitβ + αi)

EαE (yit |Xit , αi) = h (Xitθ)

Sometimes we know the functional form h(.). Sometimes we do
not.
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A probit example

. clear
. set seed 111
. set obs 5000
number of observations (_N) was 0, now 5,000
. generate id = _n
. generate a = rnormal()
. expand 10
(45,000 observations created)
. bysort id: generate year = _n
. generate x = (rchi2(5)-5)/10
. generate b = int(runiform()*3)
. generate e = rnormal()
. generate xb = .5*(-1-x + b - x*b) + a
. generate dydx = normalden(.5*(-1-x + b - x*b)/(sqrt(2)))*((-.5-.5*b)/sqrt(2))
. generate y = xb + e > 0
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Panel data estimation
. xtset id year

panel variable: id (strongly balanced)
time variable: year, 1 to 10

delta: 1 unit
. xtprobit y c.x##i.b, nolog
Random-effects probit regression Number of obs = 50,000
Group variable: id Number of groups = 5,000
Random effects u_i ~ Gaussian Obs per group:

min = 10
avg = 10.0
max = 10

Integration method: mvaghermite Integration pts. = 12
Wald chi2(5) = 5035.63

Log likelihood = -27522.587 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x -.5212161 .0393606 -13.24 0.000 -.5983614 -.4440708

b
1 .4859038 .0170101 28.57 0.000 .4525647 .519243
2 1.00774 .0179167 56.25 0.000 .9726241 1.042856

b#c.x
1 -.5454211 .0557341 -9.79 0.000 -.6546579 -.4361843
2 -1.059613 .0568466 -18.64 0.000 -1.17103 -.9481958

_cons -.506777 .0187516 -27.03 0.000 -.5435294 -.4700246

/lnsig2u .0004287 .0298177 -.058013 .0588704

sigma_u 1.000214 .0149121 .9714102 1.029873
rho .5001072 .0074544 .4855008 .5147133

LR test of rho=0: chibar2(01) = 9819.64 Prob >= chibar2 = 0.000
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Effect estimation

. margins, dydx(x) over(year)
Average marginal effects Number of obs = 50,000
Model VCE : OIM
Expression : Pr(y=1), predict(pr)
dy/dx w.r.t. : x
over : year

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

x
year
1 -.2769118 .0058397 -47.42 0.000 -.2883573 -.2654662
2 -.2752501 .0058296 -47.22 0.000 -.2866759 -.2638242
3 -.2745409 .005857 -46.87 0.000 -.2860204 -.2630613
4 -.2769241 .0058773 -47.12 0.000 -.2884433 -.2654049
5 -.2764666 .0058452 -47.30 0.000 -.287923 -.2650102
6 -.2731819 .005833 -46.83 0.000 -.2846145 -.2617493
7 -.2725905 .0058577 -46.54 0.000 -.2840714 -.2611096
8 -.271447 .0058275 -46.58 0.000 -.2828686 -.2600253
9 -.2745909 .0058566 -46.89 0.000 -.2860697 -.2631122
10 -.2734455 .0058435 -46.79 0.000 -.2848985 -.2619924

. summarize dydx
Variable Obs Mean Std. Dev. Min Max

dydx 50,000 -.2609633 .1032875 -.4231422 -.0394023
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Effect estimation
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Effect estimation
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Beware of pu0 or any αi = 0

The coefficients of population averaged models are useful to
compute ATE:

ATE = E [F (Xitδ + δtreat + αi)− F (Xitδ + αi)]

= Ex [Eα [F (Xitδ + δtreat + αi)]]− Ex [Eα [F (Xitδ + αi)]]

When we use αi = 0 we get it wrong
The reason is that E(g(x)) 6= g(E(x)) when g is not a linear
function:

Ex [F (Xitδ + δtreat + 0)]− Ex [F (Xitδ + 0)] =

Ex [F (Xitδ + δtreat + E (αi))]− Ex [F (Xitδ + E (αi))] 6=
Ex [Eα [F (Xitδ + δtreat + αi)]]− Ex [Eα [F (Xitδ + αi)]] = ATE
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Concluding Remarks

Our work is not done after we get the parameters of our model
After we get the parameters is when our work starts. We can ask
interesting questions
The questions we ask can be placed in a general framework:

I Define an object of interest E(y |X ) or E(y |X , α)
I Explore the multidemensional function

Use margins and marginsplot
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