Estimating and Interpreting Effects for Nonlinear and Nonparametric Models

Enrique Pinzón

October 24, 2018

Objective

- Build a unified framework to ask questions about model estimates
- Learn to apply this unified framework using Stata
- Unique to Stata
- Excuse to talk about estimation topics

Objective

- Build a unified framework to ask questions about model estimates
- Learn to apply this unified framework using Stata
- Unique to Stata
- Excuse to talk about estimation topics

Objective

- Build a unified framework to ask questions about model estimates
- Learn to apply this unified framework using Stata
- Unique to Stata
- Excuse to talk about estimation topics

Factor variables

- Distinguish between discrete and continuous variables
- Way to create "dummy-variables", interactions, and powers
- Works with most Stata commands

Using factor variables

. import excel apsa, firstrow

. tabulate dl			
d1	Freq.	Percent	Cum.
0	2,000	20.00	20.00
1	2,000	20.00	40.00
2	2,044	20.44	60.44
3	2,037	20.37	80.81
4	1,919	19.19	100.00
Total	10,000	100.00	

. Summarize $1 . \mathrm{dl}$					
Variable	Obs	Mean	Std. Dev.	Min	Max
$1 . d 1$	10,000	.2	.40002	0	1

. Summarize i.dl Variable	Obs	Mean	Std. Dev.	Min	Max
d1				0	1
1	10,000	.2	.40002	0	1
2	10,000	.2044	.4032827	0	1
3	10,000	.2037	.4027686	0	1

Using factor variables

. import excel apsa, firstrow

. tabulate d1			
d1	Freq.	Percent	Cum.
0	2,000	20.00	20.00
1	2,000	20.00	40.00
2	2,044	20.44	60.44
3	2,037	20.37	80.81
4	1,919	19.19	100.00
Total	10,000	100.00	

. Summarizesuriable Vari	Obs	Mean	Std. Dev.	Min	Max
$1 . d 1$	10,000	.2	.40002	I	

. Summarize i.d1					
Variable	Obs	Mean	Std. Dev.	Min	Max
d1				0	1
1	10,000	.2	.40002	0	1
2	10,000	.2044	.4032827	0	1
3	10,000	.2037	.4027686	0	1

Using factor variables

. import excel apsa, firstrow

. tabulate d1			
d1	Freq.	Percent	Cum.
0	2,000	20.00	20.00
1	2,000	20.00	40.00
2	2,044	20.44	60.44
3	2,037	20.37	80.81
4	1,919	19.19	100.00
Total	10,000	100.00	

| . summarize $1 . \mathrm{d1}$ | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | Obs | Mean | Std. Dev. | Min | Max |
| $1 . d 1$ | 10,000 | .2 | .40002 | 0 | 1 |

| Summarize i.dl
 Variable | Obs | Mean | Std. Dev | Min |
| :---: | :---: | :---: | :---: | :---: | Max

Using factor variables

. import excel apsa, firstrow

. tabulate d1			
d1	Freq.	Percent	Cum.
0	2,000	20.00	20.00
1	2,000	20.00	40.00
2	2,044	20.44	60.44
3	2,037	20.37	80.81
4	1,919	19.19	100.00
Total	10,000	100.00	

| . summarize | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | | | | | |
| $1 . d 1$ | Obs | Mean | Std. Dev. | Min | Max |
| 10,000 | .2 | .40002 | 0 | 1 | |

summarize i.d1 Variable		Obs	Mean	Std. Dev.	Min	Max
d1						
1	10,000	.2	.40002	0	1	
2	10,000	.2044	.4032827	0	1	
3	10,000	.2037	.4027686	0	1	
4	10,000	.1919	.3938145	0	1	

Using factor variables

| . summarize ibn.d1
 Variable | Obs | Mean | Std. Dev. | Min | Max |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| d1 | | | | | |
| 0 | 10,000 | .2 | .40002 | 0 | 1 |
| 1 | 10,000 | .2 | .40002 | 0 | 1 |
| 2 | 10,000 | .2044 | .4032827 | 0 | 1 |
| 3 | 10,000 | .2037 | .4027686 | 0 | 1 |
| 4 | 10,000 | .1919 | .3938145 | 0 | 1 |

[^0]Variable | Obs
Mean

10,000
10,000
10,000

Using factor variables

. summarize ibn.d1 Variable	Obs	Mean	Std. Dev.	Min	Max
d1					
0	10,000	.2	.40002	0	1
1	10,000	.2	.40002	0	1
2	10,000	.2044	.4032827	0	1
3	10,000	.2037	.4027686	0	1
4	10,000	.1919	.3938145	0	1

. summarize ib2.d1

Variable	Obs	Mean	Std. Dev.	Min	Max
d1					
0	10,000	.2	.40002	0	1
1	10,000	.2	.40002	0	1
3	10,000	.2037	.4027686	0	1
4	10,000	.1919	.3938145	0	1

Using factor variables

. summarize d1\#\#d2

Variable	Obs	Mean	Std. Dev.	Min	Max
d1					
1	10,000	.2	.40002	0	1
2	10,000	.2044	.4032827	0	1
3	10,000	.2037	.4027686	0	1
4	10,000	.1919	.3938145	0	1
$1 . d 2$	10,000	.4986	.500023	0	1
d1\#d2				0	1
11	10,000	.1009	.3012113	0	1
21	10,000	.1007	.3009461	0	1
31	10,000	.1035	.304626	0	1

Using factor variables

Variable	Obs	Mean	Std. Dev.	Min	Max
x1	10,000	. 0110258	. 9938621	-4.095795	3.714316
c.x1\#c.x1	10,000	. 9877847	1.416602	$4.18 \mathrm{e}-09$	16.77553
c.x1\#c.x2	10,000	. 000208	1.325283	-7.469295	6.45778
d1\#c.x1					
1	10,000	. 0044334	. 4516058	-3.021819	3.286315
2	10,000	. 0008424	. 4432188	-4.095795	3.178586
3	10,000	. 0025783	. 4533505	-3.374062	3.428311
4	10,000	-. 0014739	. 4379122	-3.161604	3.714316

Models and Quantities of Interest

- We usually model an outcome of interest, Y, conditional on covariates of interest X :
- $E(Y \mid X)=X \beta$ (regression)

- $E(Y \mid X)=g(X)$ (nonparametric regression)

Models and Quantities of Interest

- We usually model an outcome of interest, Y, conditional on covariates of interest X :
- $E(Y \mid X)=X \beta$ (regression)
- $E(Y \mid X)=\exp (X \beta)$ (poisson)

Models and Quantities of Interest

- We usually model an outcome of interest, Y, conditional on covariates of interest X :
- $E(Y \mid X)=X \beta$ (regression)
- $E(Y \mid X)=\exp (X \beta)$ (poisson)
- $E(Y \mid X)=P(Y \mid X)=\Phi(X \beta)$ (probit)
- $E(Y \mid X)=g(X)$ (nonparametric regression)

Models and Quantities of Interest

- We usually model an outcome of interest, Y, conditional on covariates of interest X :
- $E(Y \mid X)=X \beta$ (regression)
- $E(Y \mid X)=\exp (X \beta)$ (poisson)
- $E(Y \mid X)=P(Y \mid X)=\Phi(X \beta)$ (probit)
- $E(Y \mid X)=P(Y \mid X)=[\exp (X \beta)][1 \iota+\exp (X \beta)]^{-1}$ (logit)
- $E(Y \mid X)=g(X)$ (nonparametric regression)

Questions

- Population averaged
- Does a medicaid expansion improve health outcomes ?
- What is the effect of a minimum wage increase on employment?
- What is the effect on urban violence indicators, during the weekends of moving back the city curfew ?
- At a point
- What is the effect of loosing weight for a 36 year, overweight hispanic man?
- What is the effect on urban viotence indicators, during the weekends of moving back the city curfew, for a large city, in the southwest of the United States ?

Questions

- Population averaged
- Does a medicaid expansion improve health outcomes ?
- What is the effect of a minimum wage increase on employment ?
- What is the effect on urban violence indicators, during the weekends of moving back the city curfew ?
- At a point
- What is the effect of loosing weight for a 36 year, overweight hispanic man?
- What is the effect on urban violence indicators, during the
weekends of moving back the city curfew, for a large city, in the southwest of the United States ?

Questions

- Population averaged
- Does a medicaid expansion improve health outcomes ?
- What is the effect of a minimum wage increase on employment ?
- What is the effect on urban violence indicators, during the weekends of moving back the city curfew ?
- At a point
- What is the effect of loosing weight for a 36 year, overweight hispanic man?
- What is the effect on urban violence indicators, during the weekends of moving back the city curfew, for a large city, in the southwest of the United States ?

What are the answers?

A linear model

$$
\begin{aligned}
y=\beta_{0} & +x_{1} \beta_{1}+x_{2} \beta_{2}+x_{1}^{2} \beta_{3}+x_{2}^{2} \beta_{4}+x_{1} x_{2} \beta_{5} \\
& +d_{1} \beta_{6}+d_{2} \beta_{7}+d_{1} d_{2} \beta_{8}+x_{2} d_{1} \beta_{9}+\varepsilon
\end{aligned}
$$

- x_{1} and x_{2} are continuous, d_{2} is binary, and d_{1} has 5 categories.
- There are interactions of continuous and categorical variables
- This is simulated data

A linear model

$$
\begin{aligned}
y=\beta_{0} & +x_{1} \beta_{1}+x_{2} \beta_{2}+x_{1}^{2} \beta_{3}+x_{2}^{2} \beta_{4}+x_{1} x_{2} \beta_{5} \\
& +d_{1} \beta_{6}+d_{2} \beta_{7}+d_{1} d_{2} \beta_{8}+x_{2} d_{1} \beta_{9}+\varepsilon
\end{aligned}
$$

- x_{1} and x_{2} are continuous, d_{2} is binary, and d_{1} has 5 categories.
- There are interactions of continuous and categorical variables
- This is simulated data

Regression results

regress yr Source	SS	1\#c.x1 df .	2\#c.x2 ${ }_{\text {MS }}{ }^{\text {i.d }}$	1\#\#i.	c.x2\#i.d1 r of obs	10,000
Model	335278.744	18	18626.5969	Prob	> F	0.0000
Residual	479031.227	9,981	47.9943119	R-s	ared	0.4117
					-squared	0.4107
Total	814309.971	9,999	81.439141	Roo	MSE	6.9278
yr	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Con	Interval]
x 1	-1.04884	. 1525255	-6.88	0.000	-1.347821	-. 7498593
x2	. 4749664	. 4968878	0.96	0.339	-. 4990339	1.448967
c.x1\#c.x2	1.06966	. 1143996	9.35	0.000	. 8454139	1.293907
c.x1\#c.x1	-1.061312	. 048992	-21.66	0.000	-1.157346	-. 9652779
c.x2\#c.x2	1.177785	. 1673487	7.04	0.000	. 849748	1.505822
d1						
1	-1.504705	. 5254654	-2.86	0.004	-2.534723	-. 4746865
2	-3.727184	. 5272623	-7.07	0.000	-4.760725	-2.693644
3	-6.522121	. 5229072	-12.47	0.000	-7.547125	-5.497118
4	-8.80982	. 5319266	-16.56	0.000	-9.852503	-7.767136
1.d2	1.615761	. 3099418	5.21	0.000	1.008212	2.223309
d1\#d2						
11	-3.649372	. 4383277	-8.33	0.000	-4.508582	-2.790161
21	-5.994454	. 435919	-13.75	0.000	-6.848943	-5.139965
31	-8.457034	. 4364173	-19.38	0.000	-9.3125	-7.601568
41	-11.04842	. 4430598	-24.94	0.000	-11.9169	-10.17993
d1\#c.x2						
1	1.11805	. 3626989	3.08	0.002	. 4070865	1.829013
2	1.918298	. 3592232	5.34	0.000	1.214149	2.622448
3	3.484255	. 3594559	9.69	0.000	2.779649	4.188861
4	4.260699	. 362315	11.76	0.000	3,550488	4.970909

Effects: x_{2}

Suppose we want to study the marginal effect of x_{2}

$$
\frac{\partial E\left(y \mid x_{1}, x_{2}, d_{1}, d_{2}\right)}{\partial x_{2}}
$$

This is given by

- I can compute this effect for every individual in my sample and then average to get a population averaged effect
- I could evaluate this conditional on values of the different covariates, or even values of importance for x_{2}

Effects: x_{2}

Suppose we want to study the marginal effect of x_{2}

$$
\frac{\partial E\left(y \mid x_{1}, x_{2}, d_{1}, d_{2}\right)}{\partial x_{2}}
$$

This is given by

$$
\frac{\partial E\left(y \mid x_{1}, x_{2}, d_{1}, d_{2}\right)}{\partial x_{2}}=\beta_{2}+2 x_{2} \beta_{4}+x_{1} \beta_{5}+d_{1} \beta_{9}
$$

- I can compute this effect for every individual in my sample and then average to get a population averaged effect
- I could evaluate this conditional on values of the different covariates, or even values of importance for x_{2}

Population averaged effect manually

Source	SS	df	MS	Number of obs	$=$	10，000
Model	335278.744	18	18626.5969	Prob＞F	＝	0.0000
Residual	479031.227	9，981	47.9943119	R －squared	$=$	0.4117
Total	814309.971	9，999	81.439141	Root MSE	$=$	6.9278
yr	Coef．Legend					
x 1	$\begin{array}{ll} -1.04884 & \text { _b }[\mathrm{x} 1] \\ .4749664 & \text { _b }[\mathrm{x} 2] \end{array}$					
x 2						
c．x1\＃c．x2	1.06966	＿b［c．x1\＃c．x2］				
c．x1\＃c．x1	－1．061312	＿b［c．x1\＃c． x 1 ］				
c．x2\＃c．x2	1.177785	＿b［c．x2\＃c．x2］				
d1						
1	－1．504705	＿b［1．d1］				
2	－3．727184	＿b $[2 . \mathrm{d} 1]$				
3	－6．522121	＿b［3．d1］				
4	－8．80982	＿b［4．d1］				
1．d2	1.615761	＿b［1．d2］				
d1\＃d2						
11	－3．649372	＿b［1．d1\＃1．d2］				
21	－5．994454	＿b［2．d1\＃1．d2］				
31	－8．457034	＿b［3．d1\＃1．d2］				
41	－11．04842	＿b［4．d1\＃1．d2］				
d1\＃c．x2						
1	1.11805	＿b［1．d1\＃c．x2］				
2	1． 918298	＿b［2．d1\＃c．x2］				
3	3.484255	＿b［3．d1\＃c．x2］				
4	4.260699	＿b［4．d1\＃c．x2］		4ロ〉4馬		4 三

Population averaged effect manually

$$
\frac{\partial E\left(y \mid x_{1}, x_{2}, d_{1}, d_{2}\right)}{\partial x_{2}}=\beta_{2}+2 x_{2} \beta_{4}+x_{1} \beta_{5}+d_{1} \beta_{9}
$$

generate double dydx2 = _b[c.x2] + ///
_b[c.x1\#c.x2]*c.x1 + 2*_b[c.x2\#c.x2]*c.x2 + ///
_b[1.d1\#c.x2]*1.d1 + _b[2.d1\#c.x2]*2.d1 + ///
_b[3.d1\#c.x2]*3.d1 + _b[4.d1\#c.x2]*4.d1

Population averaged effect manually

. list $d y d x 2$ in $1 / 10$, $\operatorname{sep}(0)$

	dydx2
1.	4.6587219
2.	4.3782089
3.	7.8509027
4.	10.018247
5.	7.4219045
6.	7.2065007
7.	3.6052012
8.	5.4846114
9.	6.3144353
10.	5.9827419

Population averaged effect manually

```
. list dydx2 in 1/10, sep(0)
```

	dydx2
1.	4.6587219
2.	4.3782089
3.	7.8509027
4.	10.018247
5.	7.4219045
6.	7.2065007
7.	3.6052012
8.	5.4846114
9.	6.3144353
10.	5.9827419

. summarize dydx2

| Variable | Obs | Mean | Std. Dev. | Min | Max |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| dydx2 | 10,000 | 5.43906 | 2.347479 | -2.075498 | 12.90448 |

margins

- A way to compute effects of interest and their standard errors
- Fundamental to construct our unified framework
- Consumes factor variable notation
- Operates over Stata predict, $\widehat{E(Y \mid X)}=X \widehat{\beta}$

```
. margins, dydx(x2)
Average marginal effects
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : x2
```

Number of obs

| | dy/dxDelta-method
 Std. Err. | t | P>\|t| | [95\% Conf. Interval] | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x 2$ | 5.43906 | .1188069 | 45.78 | 0.000 | 5.206174 | 5.671945 |

- Expression, default prediction $E(Y \mid X)=X \beta$
- This means you could access other Stata predictions
- Or any function of the coefficients
- Delta method is the way the standard errors are computed

Expression

Delta Method and Standard Errors

We get our standard errors from the central limit theorem.

$$
\widehat{\beta}-\beta \xrightarrow{d} N(0, V)
$$

We can get standard errors for any smooth function $g()$ of $\widehat{\beta}$ with

$$
g(\widehat{\beta})-g(\beta) \xrightarrow{d} N\left(0, g^{\prime}(\beta)^{\prime} V g^{\prime}(\beta)\right)
$$

Effect of x_{2} : revisited

$$
\frac{\partial E\left(y \mid x_{1}, x_{2}, d_{1}, d_{2}\right)}{\partial x_{2}}=\beta_{2}+2 x_{2} \beta_{4}+x_{1} \beta_{5}+d_{1} \beta_{9}
$$

- We averaged this function but could evaluate it at different values of the covariates for example:
- What is the average marginal effect of x_{2} for different values of d_{1}
- What is the average marginal effect of x_{2} for different values of d_{1} and x_{1}

Effect of x_{2} : revisited

$$
\frac{\partial E\left(y \mid x_{1}, x_{2}, d_{1}, d_{2}\right)}{\partial x_{2}}=\beta_{2}+2 x_{2} \beta_{4}+x_{1} \beta_{5}+d_{1} \beta_{9}
$$

- We averaged this function but could evaluate it at different values of the covariates for example:
- What is the average marginal effect of x_{2} for different values of d_{1}
- Counterfactual: What if everyone in the population had a level of $d_{1}=0$. What if $d_{1}=1, \ldots$

Effect of x_{2} : revisited

$$
\frac{\partial E\left(y \mid x_{1}, x_{2}, d_{1}, d_{2}\right)}{\partial x_{2}}=\beta_{2}+2 x_{2} \beta_{4}+x_{1} \beta_{5}+d_{1} \beta_{9}
$$

- We averaged this function but could evaluate it at different values of the covariates for example:
- What is the average marginal effect of x_{2} for different values of d_{1}
- Counterfactual: What if everyone in the population had a level of $d_{1}=0$. What if $d_{1}=1, \ldots$

Different values of d_{1} a counterfactual

generate double dydx2 = _b[c.x2] + ///
_b[c.x1\#c.x2]*c.x1 + 2*_b[c.x2\#c.x2]*c.x2 + ///
_b[1.d1\#c.x2]*1.d1 + _b[2.d1\#c.x2]*2.d1 + ///
_b[3.d1\#c.x2]*3.d1 + _b[4.d1\#c.x2]*4.d1

Different values of d_{1} a counterfactual

generate double dydx2 = _b[c.x2] + ///
_b[c.x1\#c.x2]*c.x1 + 2*_b[c.x2\#c.x2]*c.x2 + ///
_b[1.d1\#c.x2]*1.d1 + _b[2.d1\#c.x2]*2.d1 + ///
_b[3.d1\#c.x2]*3.d1 + _b[4.d1\#c.x2]*4.d1
generate double dydx2_d10 = _b[c.x2] + ///
_b[c.x1\#c.x2]*c.x1 + 2*_b[c.x2\#c.x2]*c.x2

Different values of d_{1} a counterfactual

generate double dydx2 = _b[c.x2] + ///
_b[c.x1\#c.x2]*c.x1 + 2*_b[c.x2\#c.x2]*c.x2 + ///
_b[1.d1\#c.x2]*1.d1 + _b[2.d1\#c.x2]*2.d1 + ///
_b[3.d1\#c.x2]*3.d1 + _b[4.d1\#c.x2]*4.d1
generate double dydx2_d10 = _b[c.x2] + ///
_b[c.x1\#c.x2]*c.x1 + 2*_b[c.x2\#c.x2]*c.x2
generate double dydx2_d11 = _b[c.x2] + ///
_b[c.x1\#c.x2]*c.x1 + 2*_b[c.x2\#c.x2]*c.x2 + ///
_b[1.d1\#c.x2]

Different values of d_{1} a counterfactual

generate double dydx2 = _b[c.x2] + ///
_b[c.x1\#c.x2]*c.x1 + 2*_b[c.x2\#c.x2]*c.x2 + ///
_b[1.d1\#c.x2]*1.d1 + _b[2.d1\#c.x2]*2.d1 + ///
_b[3.d1\#c.x2]*3.d1 + _b[4.d1\#c.x2]*4.d1
generate double dydx2_d10 = _b[c.x2] + ///
_b[c.x1\#c.x2]*c.x1 + 2*_b[c.x2\#c.x2]*c.x2
generate double dydx2_d11 = _b[c.x2] + ///
_b[c.x1\#c.x2]*c.x1 + 2*_b[c.x2\#c.x2]*c.x2 + ///
_b[1.d1\#c.x2]
generate double dydx2_d12 = _b[c.x2] + ///
_b[c.x1\#c.x2]*c.x1 + 2*_b[c.x2\#c.x2]*c.x2 + ///
_b [2.d1\#c.x2]

Average marginal effect of x_{2} at counterfactuals: manually

```
. summarize dydx2_*
```

Variable	Obs	Mean	Std. Dev.	Min	Max
dydx2_d10	10,000	3.295979	1.7597	-2.411066	9.288564
dydx2_d11	10,000	4.414028	1.7597	-1.293017	10.40661
dydx2_d12	10,000	5.214277	1.7597	-.4927681	11.20686
dydx2_d13	10,000	6.780233	1.7597	1.073188	12.77282
dydx2_d14	10,000	7.556677	1.7597	1.849632	13.54926

Average marginal effect of x_{2} at counterfactuals: margins

```
. margins d1, dydx(x2)
```

```
Average marginal effects
```

Average marginal effects
Model VCE : OLS
Model VCE : OLS
Expression : Linear prediction, predict()
Expression : Linear prediction, predict()
dy/dx w.r.t. : x2

```
dy/dx w.r.t. : x2
```


Graphically: marginsplot

Average Marginal Effects of x 2 with $95 \% \mathrm{Cls}$

Thou shalt not be fooled by overlapping confidence intervals

$$
\operatorname{Var}(a-b)=\operatorname{Var}(a)+\operatorname{Var}(b)-2 \operatorname{Cov}(a, b)
$$

- You have Var (a) and Var (b)
- You do not have $2 \operatorname{Cov}(a, b)$

Thou shalt not be fooled by overlapping confidence intervals

```
    . margins ar.d1, dydx(x2) contrast(nowald)
Contrasts of average marginal effects
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : x2
```

	Contrast dy/dx	Delta-method Std. Err.	[95\% Conf.	Interval]
x 2				
d1				
(1 vs 0)	1.11805	. 3626989	. 4070865	1.829013
(2 vs 1)	. 8002487	. 3638556	. 0870184	1.513479
(3 vs 2)	1.565956	. 3603585	. 859581	2.272332
(4 vs 3)	. 7764441	. 3634048	. 0640974	1.488791

Thou shalt not be fooled by overlapping confidence intervals

Effect of x_{2} : revisited

$$
\frac{\partial E\left(y \mid x_{1}, x_{2}, d_{1}, d_{2}\right)}{\partial x_{2}}=\beta_{2}+2 x_{2} \beta_{4}+x_{1} \beta_{5}+d_{1} \beta_{9}
$$

- We averaged this function but could evaluate it at different values of the covariates for example:
- What is the average marginal effect of x_{2} for different values of d_{1} and x_{1}

Effect of x_{2} : revisited

margins d1, dydx(x2) at(x1=(-3(.5)4))

Put on your calculus hat or ask a different question

$$
\frac{\partial E(y \mid \cdot)}{\partial x_{2}}
$$

- This is our object of interest
- By definition it is the change in $E(y \mid$.$) for an infinitesimal change$ in x_{2}
- Sometimes people talk about this as a unit change in x_{2}

Put on your calculus hat or ask a different question

$$
\frac{\partial E(y \mid \cdot)}{\partial x_{2}}
$$

- This is our object of interest
- By definition it is the change in $E(y \mid$.$) for an infinitesimal change$ in x_{2}
- Sometimes people talk about this as a unit change in x_{2}

Put on your calculus hat or ask a different question

```
    . margins, dydx(x2)
Average marginal effects
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : x2
\begin{tabular}{c|cccccc}
\hline & \multicolumn{5}{|c}{\begin{tabular}{c} 
Delta-method \\
Std. Err.
\end{tabular}} & t \\
& \(\mathrm{dy} / \mathrm{dx}\) & \(\mathrm{P}>|\mathrm{t}|\) & [95\% Conf. Interval] \\
\hline x 2 & 5.43906 & .1188069 & 45.78 & 0.000 & 5.206174 & 5.671945 \\
\hline
\end{tabular}
```

quietly predict double xbo

- quietly replace $\mathrm{x} 2=\mathrm{x} 2+1$
. generate double diff $=x b 1-x b 0$
- summarize diff

Variable	Obs	Mean	Std. Dev.	Min	Max
diff	10,000	6.616845	2.347479	-.8977125	14.08226

Put on your calculus hat or ask a different question

```
    . margins, dydx(x2)
Average marginal effects
Number of obs
=
    10,000
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : x2
\begin{tabular}{c|rccccc}
\hline & dy/dx & \begin{tabular}{c} 
Delta-method \\
Std. Err.
\end{tabular} & \(t\) & \(\mathrm{P}>|\mathrm{t}|\) & [95\% Conf. Interval] \\
\hline x 2 & 5.43906 & .1188069 & 45.78 & 0.000 & 5.206174 & 5.671945 \\
\hline
\end{tabular}
```

. quietly predict double xb0
. quietly replace $x 2=x 2+1$

- quietly predict double xb1
. generate double diff $=x b 1-x b 0$
- summarize diff

| Variable | Obs | Mean | Std. Dev. | Min | Max |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| diff | 10,000 | 6.616845 | 2.347479 | -.8977125 | 14.08226 |

Put on your calculus hat or ask a different question

. margins, at $(x 2=$ generate $(x 2))$ at $(x 2=$ generate $(x 2+1))$ contrast (at((x) nowald $)$ Contrasts of predictive margins
\qquad
\qquad
\square

Put on your calculus hat or ask a different question


```
. margins, at(x2 = generate(x2)) at(x2=generate(x2+1)) contrast(at(r) nowald)
Contrasts of predictive margins
Model VCE : OLS
Expression : Linear prediction, predict()
1._at : x2 = x2
2._at : x2 = x2+1
< contrast }\begin{array}{c}{\mathrm{ Delta-method ( Std. Err. }}
```

. summarize diff
\qquad

Put on your calculus hat or ask a different question


```
. margins, at (x2 = generate(x2)) at (x2=generate(x2+1)) contrast(at(r) nowald)
Contrasts of predictive margins
Model VCE : OLS
Expression : Linear prediction, predict()
1._at : x2 = x2
2._at : x2 = x2+1
* Contrast % % Std. Err. 
```

| . summarize diff | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | Obs | Mean | Std. Dev. | Min | Max |
| diff | 10,000 | 6.616845 | 2.347479 | -.8977125 | 14.08226 |

Ask a different question

- Marginal effects have a meaning in some contexts but are misused
- It is difficult to interpret infinitesimal changes but we do not need to
- We can ask about meaningful questions by talking in units that mean something to the problem we care about

A 10 percent increase in x_{2}

What we learned

$$
\frac{\partial E\left(y \mid x_{1}, x_{2}, d_{1}, d_{2}\right)}{\partial x_{2}}=\beta_{2}+2 x_{2} \beta_{4}+x_{1} \beta_{5}+d_{1} \beta_{9}
$$

- Population averaged
- Counterfactual values of d_{1}
- Counterfactual values for d_{1} and x_{1}
- Exploring a fourth dimensional surface

What we learned

$$
\frac{\partial E\left(y \mid x_{1}, x_{2}, d_{1}, d_{2}\right)}{\partial x_{2}}=\beta_{2}+2 x_{2} \beta_{4}+x_{1} \beta_{5}+d_{1} \beta_{9}
$$

- Population averaged
- Counterfactual values of d_{1}
- Counterfactual values for d_{1} and x_{1}
- Exploring a fourth dimensional surface

Discrete covariates

$$
\begin{gathered}
E\left(Y \mid d=d_{1}, \ldots\right)-E\left(Y \mid d=d_{0}, \ldots\right) \\
\ldots \\
E\left(Y \mid d=d_{k}, \ldots\right)-E\left(Y \mid d=d_{0}, \ldots\right)
\end{gathered}
$$

- The effect is the difference of the object of interest evaluated at the different levels of the discrete covariate relative to a base level
- It can be interpreted as a treatment effect

Effect of d_{1}

. margins d1
Predictive margins Number of obs $=10,000$
Model VCE : OLS
Expression : Linear prediction, predict()

| | MarginDelta-method
 Std. Err. | t | P>\|t| | [95\% Conf. Interval] | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| d1 | | | | | | |
| 0 | 3.77553 | .1550097 | 24.36 | 0.000 | 3.47168 | 4.079381 |
| 1 | 1.784618 | .1550841 | 11.51 | 0.000 | 1.480622 | 2.088614 |
| 2 | -.6527544 | .1533701 | -4.26 | 0.000 | -.9533906 | -.3521181 |
| 3 | -2.807997 | .1535468 | -18.29 | 0.000 | -3.10898 | -2.507014 |
| 4 | -5.461784 | .1583201 | -34.50 | 0.000 | -5.772123 | -5.151445 |

. margins r.d1, contrast (nowald)
Contrasts of predictive margins
Model VCE : OLS
Expression : Linear prediction, predict()

Effect of d_{1}

. margins r.d1, contrast (nowald)
Contrasts of predictive margins
Model VCE : OLS
Expression : Linear prediction, predict()

	Contrast $\begin{gathered}\text { Delta-method } \\ \text { Std. Err. }\end{gathered}$			
d1				
(1 vs 0)	-1.990912	. 2193128	-2.420809	-1.561015
(2 vs 0)	-4.428285	. 2180388	-4.855685	-4.000884
(3 vs 0)	-6.583527	. 2182232	-7.011289	-6.155766
(4 vs 0)	-9.237314	. 2215769	-9.671649	-8.802979

Effect of d_{1}

. margins r.d1, contrast (nowald)
Contrasts of predictive margins

	$\begin{gathered} \\ \text { Delta-method } \\ \text { Contrast } \quad \text { Std. Err. } \end{gathered}$		[95\% Con	Interval]
d1				
(1 vs 0)	-1.990912	.2193128	-2.420809	-1.561015
(2 vs 0)	-4.428285	. 2180388	-4.855685	-4.000884
(3 vs 0)	-6.583527	. 2182232	-7.011289	-6.155766
(4 Vs 0)	-9.237314	. 2215769	-9.671649	-8.802979

. margins, dydx(d1)
Average marginal effects Number of obs $=10,000$
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : 1.d1 2.d1 3.d1 4.d1

| | dy/dx | Delta-method
 Std. Err. | t | $P>\|t\|$ | [95\% Conf. Interval] | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $d 1$ | | | | | | |
| 1 | -1.990912 | .2193128 | -9.08 | 0.000 | -2.420809 | -1.561015 |
| 2 | -4.428285 | .2180388 | -20.31 | 0.000 | -4.855685 | -4.000884 |
| 3 | -6.583527 | .2182232 | -30.17 | 0.000 | -7.011289 | -6.155766 |
| 4 | -9.237314 | .2215769 | -41.69 | 0.000 | -9.671649 | -8.802979 |

Note: $d y / d x$ for factor levels is the discrete change from the base level.

Effect of d_{1}

. margins r.d1, contrast (nowald)
Contrasts of predictive margins

	$\begin{gathered} \\ \text { Delta-method } \\ \text { Contrast } \quad \text { Std. Err. } \end{gathered}$		[95\% Con	Interval]
d1				
(1 vs 0)	-1.990912	.2193128	-2.420809	-1.561015
(2 vs 0)	-4.428285	. 2180388	-4.855685	-4.000884
(3 vs 0)	-6.583527	. 2182232	-7.011289	-6.155766
(4 Vs 0)	-9.237314	. 2215769	-9.671649	-8.802979

. margins, dydx(d1)
Average marginal effects Number of obs $=10,000$
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : 1.d1 2.d1 3.d1 4.d1

| | dy/dx | Delta-method
 Std. Err. | t | $P>\|t\|$ | [95\% Conf. Interval] | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $d 1$ | | | | | | |
| 1 | -1.990912 | .2193128 | -9.08 | 0.000 | -2.420809 | -1.561015 |
| 2 | -4.428285 | .2180388 | -20.31 | 0.000 | -4.855685 | -4.000884 |
| 3 | -6.583527 | .2182232 | -30.17 | 0.000 | -7.011289 | -6.155766 |
| 4 | -9.237314 | .2215769 | -41.69 | 0.000 | -9.671649 | -8.802979 |

Note: $d y / d x$ for factor levels is the discrete change from the base level.

Effect of d_{1}

Effect of d_{1} for x_{2} counterfactuals

```
margins, dydx(d1) at(x2=(0(.5) 3))
marginsplot, recastci(rarea) ciopts(fcolor(%30))
```


Effect of d_{1} for x_{2} and d_{2} counterfactuals

```
margins 0.d2, dydx(d1) at(x2=(0(.5)3))
margins 1.d2, dydx(d1) at(x2=(0(.5)3))
marginsplot, recastci(rarea) ciopts(fcolor(%30))
```


Effect of x_{2} and d_{1} or x_{2} and x_{1}

- We can think about changes of two variables at a time
- This is a bit trickier to interpret and a bit trickier to compute
- margins allows us to solve this problem elegantly

A change in x_{2} and d_{1}

```
    . margins r.d1, dydx(x2) contrast(nowald)
Contrasts of average marginal effects
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : x2
```


A change in d_{1} and d_{2}

```
    . margins r.d1, dydx(d2) contrast(nowald)
Contrasts of average marginal effects
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : 1.d2
```

	Contrast Delta-method dy/dx Std. Err.		[95\% Con	Interval]
0.d2	(base outcome)			
1.d2				
d1				
(1 vs 0)	-3.649372	. 4383277	-4.508582	-2.790161
($2 \mathrm{vs} \mathrm{0)}$	-5.994454	. 435919	-6.848943	-5.139965
(3 vs 0)	-8.457034	. 4364173	-9.3125	-7.601568
(4 vs 0)	-11.04842	. 4430598	-11.9169	-10.17993

Note: dy/dx for factor levels is the discrete change from the base level.

A change in x_{2} and x_{1}

```
. margins, expression(_b[c.x2] + ///
> _b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
> _b[1.d1#c.x2]*1.d1 + _b[2.d1#c.x2]*2.d1 + ///
> _b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1) ///
> dydx(x1)
Warning: expression() does not contain predict() or xb().
Average marginal effects Number of obs = 10,000
Model VCE : OLS
Expression : _b[c.x2] + _b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + __b[1.d1#c.x2]*1.d1 +
    _b[2.d1#c.x2]*2.d1 + _b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1
dy/dx w.r.t. : x1
```

	Delta-method					
	$\mathrm{dy} / \mathrm{dx}$	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf. Interval]	
x 1	1.06966	.1143996	9.35	0.000	.8454411	1.293879

Framework

- An object of interest, $E(Y \mid X)$
- Questions
$-\frac{\partial E(Y \mid X)}{\partial X_{K}}$
\Rightarrow
$\Rightarrow\left(Y \mid d=d_{\text {level }}\right)-E\left(Y \mid d=d_{\text {base }}\right)$
- Both
- Second order terms, double derivatives
- Explore the surface
- Population averaged
- Effects at fixed values of covariates (counterfactuals)

Framework

- An object of interest, $E(Y \mid X)$
- Questions
- $\frac{\partial E(Y \mid X)}{\partial x_{k}}$
- $E\left(Y \mid d=d_{l \text { level }}\right)-E\left(Y \mid d=d_{\text {base }}\right)$
- Both
- Second order terms, double derivatives
- Explore the surface
- Population averaged
- Effects at fixed values of covariates (counterfactuals)

Framework

- An object of interest, $E(Y \mid X)$
- Questions
- $\frac{\partial E(Y \mid X)}{\partial x_{k}}$
- $E\left(Y \mid d=d_{\text {level }}\right)-E\left(Y \mid d=d_{\text {base }}\right)$
- Both
- Second order terms, double derivatives
- Explore the surface
- Population averaged
- Effects at fixed values of covariates (counterfactuals)

Binary outcome models

- The data generating process is given by:

$$
y= \begin{cases}1 & \text { if } y^{*}=x \beta+\varepsilon>0 \\ 0 & \text { otherwise }\end{cases}
$$

- We make an assumption on the distribution of $\varepsilon, f_{\varepsilon}$
- Probit: ε follows a standard normal distribution
- Logit: ε follows a standard logistic distribution
- By construction $P(y=1 \mid x)=F(x \beta)$
- This gives rise to two models:

Binary outcome models

- The data generating process is given by:

$$
y= \begin{cases}1 & \text { if } y^{*}=x \beta+\varepsilon>0 \\ 0 & \text { otherwise }\end{cases}
$$

- We make an assumption on the distribution of $\varepsilon, f_{\varepsilon}$
- Probit: ε follows a standard normal distribution
- Logit: ε follows a standard logistic distribution
- By construction $P(y=1 \mid x)=F(x \beta)$
- This gives rise to two models:
(1) If $F($.$) is the standard normal distribution we have a Probit$
(2) If $F($.$) is the logistic distribution we have a Logit model$

Binary outcome models

- The data generating process is given by:

$$
y= \begin{cases}1 & \text { if } y^{*}=x \beta+\varepsilon>0 \\ 0 & \text { otherwise }\end{cases}
$$

- We make an assumption on the distribution of $\varepsilon, f_{\varepsilon}$
- Probit: ε follows a standard normal distribution
- Logit: ε follows a standard logistic distribution
- By construction $P(y=1 \mid x)=F(x \beta)$
- This gives rise to two models:
(1) If $F($.$) is the standard normal distribution we have a Probit$
(2) If $F($.$) is the logistic distribution we have a Logit model$
- $P(y=1 \mid x)=E(y \mid x)$

Effects

- The change in the conditional probability due to a change in a covariate is given by

$$
\begin{aligned}
\frac{\partial P(y \mid x)}{\partial x_{k}} & =\frac{\partial F(x \beta)}{\partial x_{k}} \beta_{k} \\
& =f(x \beta) \beta_{k}
\end{aligned}
$$

- This implies that:
(1) The value of the object of interest depends on x
(2) The β coefficients only tell us the sign of the effect given that $f(x \beta)>0$ almost surely
- For a categorical variable (factor variables)

$$
F\left(x \beta \mid d=d_{l}\right)-F\left(x \beta \mid d=d_{0}\right)
$$

Coefficient table

. probit ypr c.x1\#\#c.x2 i.d1\#\#i.d2 i.d1\#c.x1, nolog

Probit regression	Number of obs	$=10,000$
	LR chi2(16)	$=2942.75$
	Prob >chi2	$=0.0000$
Log likelihood $=-5453.1739$	Pseudo R2	$=0.2125$

ypr	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf.	Interval]
x1	$-.3271742$. 0423777	-7.72	0.000	-. 4102329	$-.2441155$
x 2	.3105438	. 023413	13.26	0.000	.2646551	. 3564325
c. x 1 \# c. x 2	.3178514	. 0258437	12.30	0.000	.2671987	.3685041
d1						
1	-. 2927285	.057665	-5.08	0.000	$-.4057498$	-. 1797072
2	-. 6605838	. 0593125	-11.14	0.000	$-.7768342$	$-.5443333$
3	-. 9137215	. 0647033	-14.12	0.000	-1.040538	-. 7869054
4	-1.27621	. 0718132	-17.77	0.000	-1.416961	-1.135459
1.d2	. 2822199	. 057478	4.91	0.000	.1695651	.3948747
d1\#d2						
11	.2547359	. 0818174	3.11	0.002	. 0943767	. 4150951
21	. 6621119	. 0839328	7.89	0.000	.4976066	.8266171
31	. 8471544	. 0893541	9.48	0.000	. 6720237	1.022285
41	1.26051	. 0999602	12.61	0.000	1.064592	1.456429
d1\#c.x1						
1	-. 2747025	. 0422351	-6.50	0.000	-. 3574819	-. 1919232
2	-. 5640486	. 0452423	-12.47	0.000	-. 6527219	$-.4753753$
3	-. 9452172	. 0512391	-18.45	0.000	-1.045644	$-.8447905$
4	-1.220619	. 0608755	-20.05	0.000	-1.339933	-1. 101306

Effects of x_{2}

Predictive margins				Number of	obs =	10,000
Model VCE : OIM						
Expression : Pr(ypr), predict()						
1._at		$=\mathrm{x} 2$				
2._at		$=x 2 * 1$				
	Delta-method			$P>\|z\|$	[95\% Conf.	Interval]
_at						
1	. 4817093	. 0043106	111.75	0.000	. 4732607	.4901579
2	.5039467	. 0046489	108.40	0.000	. 4948349	. 5130585

Effects of x_{2} at values of d_{1} and d_{2}

margins d1\#d2,
at $(x 2=g e n e r a t e(x 2))$ at ($x 2=$ generate $(x 2 * 1.2)$)

Logit vs. Probit

. quietly logit ypr c.x1\#\#c.x2 i.d1\#\#i.d2 i.d1\#c.x1
. quietly margins d1\#d2, at(x2=generate(x2)) at(x2=generate(x2*1.2)) post

- estimates store logit
. quietly probit ypr c.x1\#\#c.x2 i.d1\#\#i.d2 i.d1\#c.x1
. quietly margins d1\#d2, at(x2=generate(x2)) at(x2=generate(x2*1.2)) post
. estimates store probit

Logit vs. Probit

. estimates table probit logit

Variable	probit	logit		
_at\#d1\#d2				
1	0	0	.53151657	.53140462
1	0	1	.63756257	.63744731
1	1	0	.42306578	.42322182
1	1	1	.62291206	.62262466
1	2	0	.30922733	.30975991
1	2	1	.62783902	.62775349
1	3	0	.26973385	.26845746
1	3	1	.59004519	.58834989
1	4	0	.21809081	.21827411
1	4	1	.5914183	.59140961
2	0	0	.55723572	.55751404
2	0	1	.66005549	.65979041
2	1	0	.4502963	.45117594
2	1	1	.64854781	.64854287
2	2	0	.33082849	.33120501
2	2	1	.65472273	.65506022
2	3	0	.28400721	.28169093
2	3	1	.61605961	.61442653
2	4	0	.22609365	.22538232
2	4	1	.6154092	.61499622

Logit vs. Probit

Fractional models and quasilikelihood (pseudolikelihood)

- Likelihood models assume we know the unobservable and all it's moments
- Quasilikelihood models are agnostic about anything but the first moment
- Fractional models use the likelihood of a probit or logit to model outcomes in $[0,1]$. The unobservable of the probit and logit does not generate values in $(0,1)$
- Stata has an implementation for fractional probit and fractional logit models

The model

$$
E(Y \mid X)=F(X \beta)
$$

- $F($.$) is a known c.d.f$
- No assumptions are made about the distribution of the unobservable

Two fractional model examples

```
    . clear
. set obs 10000
number of observations (_N) was 0, now 10,000
```

. set seed 111
. generate e = rnormal()
. generate $\mathrm{x}=\operatorname{rchi2}(5)-3$
. generate $\mathrm{xb}=.5 *(1-\mathrm{x})$
. generate $y p=x b+e>0$
. generate yf $=$ normal $(x b+e)$

- In both cases $E(Y \mid X)=\Phi(X \theta)$
- For yp, the probit, $\theta=\beta$
- For $y \mathrm{f}, \theta=$

Two fractional model examples

```
    . clear
. set obs 10000
number of observations (_N) was 0, now 10,000
- set seed 111
- generate e = rnormal()
. generate \(\mathrm{x}=\operatorname{rchi2}(5)-3\)
. generate \(\mathrm{xb}=.5 *(1-\mathrm{x})\)
. generate \(y p=x b+e>0\)
. generate \(y f=\) normal \((x b+e)\)
```

- In both cases $E(Y \mid X)=\Phi(X \theta)$
- For yp, the probit, $\theta=\beta$
- For $y \mathrm{f}, \theta=\frac{\beta}{\sqrt{1+\sigma^{2}}}$

Two fractional model estimates

. quietly fracreg probit yp x
. estimates store probit
. quietly fracreg probit yf x

- estimates store frac
. estimates table probit frac, eq(1)

Variable	probit	frac
x	-.50037834	-.35759981
_cons	.48964237	.34998136

. display .5/sqrt(2)
.35355339

Fractional regression output

Robust standard errors

- In general, this means we are agnostic about the $E\left(\varepsilon \varepsilon^{\prime} \mid X\right)$, about the conditional variance
- The intuition from linear regression (heteroskedasticity) does not extend
- In nonlinear likelihood-based models like probit and logit this is not the case

Robust standard errors

- In general, this means we are agnostic about the $E\left(\varepsilon \varepsilon^{\prime} \mid X\right)$, about the conditional variance
- The intuition from linear regression (heteroskedasticity) does not extend
- In nonlinear likelihood-based models like probit and logit this is not the case

Nonlinear likelihood models and heteroskedasticity

. clear

- set seed 111
. set obs 10000
number of observations (_N) was 0, now 10,000
- generate $x=\operatorname{rbeta}(2,3)$
- generate e1 = rnormal $(0, x)$
. generate e2 $=\operatorname{rnormal}(0,1)$
. generate $\mathrm{y} 1=.5-.5 * x+e 1>0$
. generate $\mathrm{y}^{2}=.5-.5 \star \mathrm{x}+\mathrm{e} 2>0$

Nonlinear likelihood models and heteroskedasticity

. probit yl x, nolog

- probit y 2 x , nolog

Probit regression

Log likelihood = -6638.0701

Number of obs	$=$	10,000
LR chi2 (1)	$=$	62.36
Prob $>$ chi2	$=$	0.0000
Pseudo R2	$=$	0.0047

y2	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf. Interval]	
x	-.5019177	.0636248	-7.89	0.000	-.6266199	-.3772154
_cons	.4952327	.0290706	17.04	0.000	.4382554	.55221

Nonparametric regression

- Nonparametric regression is agnostic
- Unlike parametric estimation, nonparametric regression assumes no functional form for the relationship between outcomes and covariates.
- You do not need to know the functional form to answer important research questions
- You are not subject to problems that arise from misspecification

Nonparametric regression

- Nonparametric regression is agnostic
- Unlike parametric estimation, nonparametric regression assumes no functional form for the relationship between outcomes and covariates.
- You do not need to know the functional form to answer important research questions
- You are not subject to problems that arise from misspecification

Nonparametric regression

- Nonparametric regression is agnostic
- Unlike parametric estimation, nonparametric regression assumes no functional form for the relationship between outcomes and covariates.
- You do not need to know the functional form to answer important research questions
- You are not subject to problems that arise from misspecification

Mean Function

- Some parametric functional form assumptions.
- regression: $E(Y \mid X)=X \beta$

- Poisson: $E(Y \mid X)=\exp (X \beta)$
- The relationship of interest is also a conditional mean:

$$
E(y \mid X)=g(X)
$$

- Where the mean function $g(\cdot)$ is unknown

Mean Function

- Some parametric functional form assumptions.
- regression: $E(Y \mid X)=X \beta$
- probit: $E(Y \mid X)=\Phi(X \beta)$
- Poisson: $E(Y \mid X)=\exp (X \beta)$
- The relationship of interest is also a conditional mean:

$$
E(y \mid X)=g(X)
$$

- Where the mean function $g(\cdot)$ is unknown

Mean Function

- Some parametric functional form assumptions.
- regression: $E(Y \mid X)=X \beta$
- probit: $E(Y \mid X)=\Phi(X \beta)$
- Poisson: $E(Y \mid X)=\exp (X \beta)$
- The relationship of interest is also a conditional mean:

- Where the mean function $g(\cdot)$ is unknown

Mean Function

- Some parametric functional form assumptions.
- regression: $E(Y \mid X)=X \beta$
- probit: $E(Y \mid X)=\Phi(X \beta)$
- Poisson: $E(Y \mid X)=\exp (X \beta)$
- The relationship of interest is also a conditional mean:

$$
E(y \mid X)=g(X)
$$

- Where the mean function $g(\cdot)$ is unknown

Traditional Approach to Nonparametric Estimation

- A cross section of counties
- citations: Number of monthly drunk driving citations
- fines: The value of fines imposed in a county in thousands of dollars if caught drinking and driving.

Traditional Approach to Nonparametric Estimation

- A cross section of counties
- citations: Number of monthly drunk driving citations
- fines: The value of fines imposed in a county in thousands of dollars if caught drinking and driving.

Implicit Relation

Simple linear regression

Regression with nonlinearities

Poisson regression

Nonparametric Estimation of Mean Function

. lpoly citations fines

Now That We have the Mean Function

- What is the effect on the mean of citations of increasing fines by 10\%?

Traditional Approach Gives Us

Additional Variables

- I would like to add controls
- Whether county has a college town college
- Number of highway patrol patrols units per capita in the county
- With those controls I can ask some new questions
- What is the mean of citations if I increase patrols and fines?

- How does the mean of citations differ for counties where there is a college town, averaging out the effect of patrols and fines?

- What policy has a bigger effect on the mean of citations, an increase in fines, an increase in patrols, or a combination of both?

What We Have Is

What We Have

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, $g(X)$

What We Have

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, $g(X)$

What We Have

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, $g(X)$

What We Have

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, $g(X)$

What We Have

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, $g(X)$

Nonparametric regression: discrete covariates

Mean function for a discrete covariate

- Mean (probability) of low birthweight (1bweight) conditional on smoking 1 to 5 cigarettes (msmoke=1) during pregnancy
- regress lbweight 1.msmoke, noconstant
- $E($ Ibweigth $\mid m s m o k e=1)$, nonparametric estimate

Nonparametric regression: discrete covariates

Mean function for a discrete covariate

- Mean (probability) of low birthweight (lbweight) conditional on smoking 1 to 5 cigarettes (msmoke=1) during pregnancy
- regress lbweight 1.msmoke, noconstant
- $E($ Ibweigth $\mid m s m o k e=1)$, nonparametric estimate

Nonparametric regression: discrete covariates

Mean function for a discrete covariate

- Mean (probability) of low birthweight (libweight) conditional on smoking 1 to 5 cigarettes (msmoke=1) during pregnancy
. mean lbweight if msmoke==1

Mean estimation	Number of obs			
	Mean	Std. Err.	[95\% Conf. Interval]	
lbweight	.1125	.0144375	.0841313	.1408687

- regress lbweight 1.msmoke, noconstant
- $E($ lbweigth $\mid m s m o k e=1)$, nonparametric estimate

Nonparametric regression: continuous covariates

Conditional mean for a continuous covariate

- low birthweight conditional on log of family income fincome
- $E($ Ibweiaht|fincome $=10.819)$
- Take observations near the value of 10.819 and then take an average
- |fincome ${ }_{i}-10.819 \mid \leq h$
- h is a small number referred to as the bandwidth

Nonparametric regression: continuous covariates

Conditional mean for a continuous covariate

- low birthweight conditional on log of family income fincome
- $E($ lbweight|fincome $=10.819)$
- Take observations near the value of 10.819 and then take an average
- |fincome ${ }_{i}$ - 10.819| $\leq h$
- h is a small number referred to as the bandwidth

Nonparametric regression: continuous covariates

Conditional mean for a continuous covariate

- low birthweight conditional on log of family income fincome
- $E($ Ibweight|fincome $=10.819)$
- Take observations near the value of 10.819 and then take an average
- \mid fincome $_{i}-10.819 \mid \leq h$
- h is a small number referred to as the bandwidth

Nonparametric regression: continuous covariates

Conditional mean for a continuous covariate

- low birthweight conditional on log of family income fincome
- $E($ Ibweight|fincome $=10.819)$
- Take observations near the value of 10.819 and then take an average
- |fincome i - 10.819| $\leq h$
- h is a small number referred to as the bandwidth

Nonparametric regression: continuous covariates

Conditional mean for a continuous covariate

- low birthweight conditional on log of family income fincome
- $E($ Ibweight|fincome $=10.819)$
- Take observations near the value of 10.819 and then take an average
- \mid fincome $_{i}-10.819 \mid \leq h$
- h is a small number referred to as the bandwidth

Nonparametric regression: continuous covariates

Conditional mean for a continuous covariate

- low birthweight conditional on log of family income fincome
- $E($ Ibweight|fincome $=10.819)$
- Take observations near the value of 10.819 and then take an average
- \mid fincome $_{i}-10.819 \mid \leq h$
- h is a small number referred to as the bandwidth

Graphical representation

Graphical example

Graphical example continued

Two concepts

(1) h !!!!
(2) Definition of distance between points, $\left|x_{i}-x\right| \leq h$

Kernel weights

- Epanechnikov
- Gaussian
- Epanechnikov2
- Rectangular(Uniform)
- Trianqular
- Biweight
- Triweight
- Cosine
- Parzen

Kernel weights

- Epanechnikov
- Gaussian
- Epanechnikov2
- Rectangular(Uniform)
- Triangular
- Biweight
- Triweight
- Cosine
- Parzen

Discrete bandwidths

- Li-Racine Kernel

$$
k(\cdot)= \begin{cases}1 & \text { if } \quad x_{i}=x \\ h & \text { otherwise }\end{cases}
$$

- Cell mean

$$
k(\cdot)= \begin{cases}1 & \text { if } \quad x_{i}=x \\ 0 & \text { otherwise }\end{cases}
$$

- Cell mean was used in the example of discrete covariate estimate E(lbweigth \mid msmoke $=1$)

Discrete bandwidths

- Li-Racine Kernel

$$
k(\cdot)= \begin{cases}1 & \text { if } \quad x_{i}=x \\ h & \text { otherwise }\end{cases}
$$

- Cell mean

$$
k(\cdot)= \begin{cases}1 & \text { if } \quad x_{i}=x \\ 0 & \text { otherwise }\end{cases}
$$

- Cell mean was used in the example of discrete covariate estimate $E($ Ibweigth \mid msmoke $=1)$

Selecting The Bandwidth

- A very large bandwidth will give you a biased estimate of the mean function with a small variance
- A very small bandwidth will give you an estimate with small bias and large variance

Selecting The Bandwidth

- A very large bandwidth will give you a biased estimate of the mean function with a small variance
- A very small bandwidth will give you an estimate with small bias and large variance

A Large Bandwidth At One Point

A Large Bandwidth At Two Points

No Variance but Huge Bias

A Very Small Bandwidth at a Point

A Very Small Bandwidth at 4 Points

Small Bias Large Variance

Estimation

- Choose bandwidth optimally. Minimize bias-variance trade-off
- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
- Computes constant (mean) and slope (effects)
- Mean function and derivatives and effects of mean function
- There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

Estimation

- Choose bandwidth optimally. Minimize bias-variance trade-off
- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
- Computes constant (mean) and slope (effects)
- Mean function and derivatives and effects of mean function
- There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

Estimation

- Choose bandwidth optimally. Minimize bias-variance trade-off
- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
- Computes constant (mean) and slope (effects)
- Mean function and derivatives and effects of mean function
* There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

Estimation

- Choose bandwidth optimally. Minimize bias-variance trade-off
- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
- Computes constant (mean) and slope (effects)
- Mean function and derivatives and effects of mean function
- There is a bandwidth for the mean computation and another for the
- Local-linear regression is the default

Estimation

- Choose bandwidth optimally. Minimize bias-variance trade-off
- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
- Computes constant (mean) and slope (effects)
- Mean function and derivatives and effects of mean function
- There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

Estimation

- Choose bandwidth optimally. Minimize bias-variance trade-off
- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
- Computes constant (mean) and slope (effects)
- Mean function and derivatives and effects of mean function
- There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

Simulated data example for continuous covariate

```
    . clear
. set obs 1000
number of observations (_N) was 0, now 1,000
. set seed 111
. generate x = (rchi2(5)-5)/10
. generate a = int(runiform()*3)
. generate e = rnormal(0, .5)
. generate y = 1 - x -a + 4*x^2*a +e
```


True model unknown to researchers

```
quietly regress y (c.x##c.x)##i.a
margins a, at(x=generate(x)) at(x=generate(x*1.5))
marginsplot, recastci(rarea) ciopts(fcolor(%30))
```


npregress Syntax

. npregress kernel y x i.a

- kernel refers to the kind of nonparametric estimation
- By default Stata assumes variables in my model are continuous
- i. a States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

npregress Syntax

. npregress kernel y x i.a

- kernel refers to the kind of nonparametric estimation
- By default Stata assumes variables in my model are continuous
- i. a States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

npregress Syntax

. npregress kernel y x i.a

- kernel refers to the kind of nonparametric estimation
- By default Stata assumes variables in my model are continuous
- i. a States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

npregress Syntax

. npregress kernel y x i.a

- kernel refers to the kind of nonparametric estimation
- By default Stata assumes variables in my model are continuous
- i. a States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

npregress Syntax

- npregress kernel y x i.a
- kernel refers to the kind of nonparametric estimation
- By default Stata assumes variables in my model are continuous
- i. a States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

Fitting the model with npregress

. npregress kernel y x i.a, nolog Bandwidth

	Mean	Effect
x	.0616294	.0891705
a	.490625	.490625

Local-linear regression
Continuous kernel : epanechnikov

Number of obs	$=$	1,000
E (Kernel obs)	$=$	62
R-squared	$=$	0.8409

Bandwidth : cross validation

Y	Estimate
Mean	
y	. 4071379
Effect	
x	-. 8212713
a	
(1 vs 0)	-. 5820049
(2 vs 0)	-1.179375

Note: Effect estimates are averages of derivatives for continuous covariates and averages o contrasts for factor covariates.
Note: You may compute standard errors using vce(bootstrap) or reps().

The same effect

quietly regress y (c.x\#\#c.x) \#\#i.a
margins a, at $(x=g e n e r a t e(x))$ at ($x=$ generate ($x * 1.5$)) marginsplot, recastci(rarea) ciopts(fcolor(\%30))

Longitudinal/Panel Data

- Under large N and fixed asymptotics behaves like cross-sectional models
- The difficulties arise because of time-invariant unobservables, i.e. α_{i} in

$$
y_{i t}=G\left(X_{i t} \beta+\alpha_{i}+\varepsilon_{i t}\right)
$$

- Our framework still works but we need to be careful with what it means to average over the sample.

Averaging

- Our model gives us:

$$
E\left(y_{i t} \mid X_{i t}, \alpha_{i}\right)=g\left(X_{i t} \beta+\alpha_{i}\right)
$$

- We cannot consistently estimate α_{i} so we integrate it out

$$
\begin{aligned}
& E_{\alpha} E\left(y_{i t} \mid X_{i t}, \alpha_{i}\right)=E_{\alpha} g\left(X_{i t} \beta+\alpha_{i}\right) \\
& E_{\alpha} E\left(y_{i t} \mid X_{i t}, \alpha_{i}\right)=h\left(X_{i t} \theta\right)
\end{aligned}
$$

- Sometimes we know the functional form $h($.$) . Sometimes we do$ not.

Averaging

- Our model gives us:

$$
E\left(y_{i t} \mid X_{i t}, \alpha_{i}\right)=g\left(X_{i t} \beta+\alpha_{i}\right)
$$

- We cannot consistently estimate α_{i} so we integrate it out

$$
E_{\alpha} E\left(y_{i t} \mid X_{i t}, \alpha_{i}\right)=E_{\alpha} g\left(X_{i t} \beta+\alpha_{i}\right)
$$

$$
E_{\alpha} E\left(y_{i t} \mid X_{i t}, \alpha_{i}\right)=h\left(X_{i t} \theta\right)
$$

- Sometimes we know the functional form $h($.$) . Sometimes we do$ not.

Averaging

- Our model gives us:

$$
E\left(y_{i t} \mid X_{i t}, \alpha_{i}\right)=g\left(X_{i t} \beta+\alpha_{i}\right)
$$

- We cannot consistently estimate α_{i} so we integrate it out

$$
\begin{aligned}
E_{\alpha} E\left(y_{i t} \mid X_{i t}, \alpha_{i}\right) & =E_{\alpha} g\left(X_{i t} \beta+\alpha_{i}\right) \\
E_{\alpha} E\left(y_{i t} \mid X_{i t}, \alpha_{i}\right) & =h\left(X_{i t} \theta\right)
\end{aligned}
$$

- Sometimes we know the functional form $h($.$) . Sometimes we do$ not.

Averaging

- Our model gives us:

$$
E\left(y_{i t} \mid X_{i t}, \alpha_{i}\right)=g\left(X_{i t} \beta+\alpha_{i}\right)
$$

- We cannot consistently estimate α_{i} so we integrate it out

$$
\begin{aligned}
& E_{\alpha} E\left(y_{i t} \mid X_{i t}, \alpha_{i}\right)=E_{\alpha} g\left(X_{i t} \beta+\alpha_{i}\right) \\
& E_{\alpha} E\left(y_{i t} \mid X_{i t}, \alpha_{i}\right)=h\left(X_{i t}\right)
\end{aligned}
$$

- Sometimes we know the functional form $h($.$) . Sometimes we do$ not.

A probit example

```
. clear
. set seed 111
. set obs 5000
number of observations (_N) was 0, now 5,000
. generate id = _n
. generate a = rnormal()
- expand 10
(45,000 observations created)
. bysort id: generate year = _n
. generate x = (rchi2(5)-5)/10
- generate b = int(runiform()*3)
. generate e = rnormal()
. generate xb = .5*(-1-x + b - x*b) + a
. generate dydx = normalden(.5* (-1-x + b - x*b)/(sqrt (2)))*((-.5-.5*b)/sqrt (2))
. generate y = xb + e > 0
```


Panel data estimation

. xtset id year
panel variable: id (strongly balanced) time variable: year, 1 to 10
delta: 1 unit
. xtprobit y c.x\#\#i.b, nolog
Random-effects probit regression Number of obs $=\quad 50,000$
Group variable: id
Number of groups $=5,000$
Random effects u_i ~ Gaussian

Integration method: mvaghermite
Log likelihood $=-27522.587$
$\min =\quad 10$
$\operatorname{avg}=\quad 10.0$
$\max =10$
Integration pts. = 12
Wald chi2(5) $=5035.63$
Prob > chi2 $=0.0000$

Effect estimation

. margins, dydx(x) over(year)
Average marginal effects
50,000
Model VCE
: OIM
Expression : Pr $(\mathrm{y}=1)$, predict (pr)
dy/dx w.r.t. : x
over
: year

	Delta-method			$P>\|z\|$	[95\% Conf.	Interval]
X						
year						
1	-. 2769118	. 0058397	-47.42	0.000	-. 2883573	-. 2654662
2	-. 2752501	. 0058296	-47.22	0.000	-. 2866759	-. 2638242
3	-. 2745409	. 005857	-46.87	0.000	-. 2860204	-. 2630613
4	-. 2769241	. 0058773	-47.12	0.000	-. 2884433	-. 2654049
5	-. 2764666	. 0058452	-47.30	0.000	-. 287923	-. 2650102
6	-. 2731819	. 005833	-46.83	0.000	-. 2846145	-. 2617493
7	-. 2725905	.0058577	-46.54	0.000	-. 2840714	-. 2611096
8	-. 271447	. 0058275	-46.58	0.000	-. 2828686	-. 2600253
9	-. 2745909	.0058566	-46.89	0.000	-. 2860697	-. 2631122
10	-. 2734455	. 0058435	-46.79	0.000	-. 2848985	-. 2619924

. summarize dydx

Variable	Obs	Mean	Std. Dev.	Min	Max
dydx	50,000	-.2609633	.1032875	-.4231422	-.0394023

Effect estimation

Effect estimation

Beware of pu0 or any $\alpha_{i}=0$

- The coefficients of population averaged models are useful to compute ATE:

$$
\begin{aligned}
\text { ATE } & =E\left[F\left(X_{i t} \delta+\delta_{\text {treat }}+\alpha_{i}\right)-F\left(X_{i t} \delta+\alpha_{i}\right)\right] \\
& =E_{X}\left[E_{\alpha}\left[F\left(X_{i t} \delta+\delta_{\text {treat }}+\alpha_{i}\right)\right]\right]-E_{X}\left[E_{\alpha}\left[F\left(X_{i t} \delta+\alpha_{i}\right)\right]\right]
\end{aligned}
$$

- When we use $\alpha_{i}=0$ we get it wrong
- The reason is that $E(g(x)) \neq g(E(x))$ when g is not a linear function:

Beware of pu0 or any $\alpha_{i}=0$

- The coefficients of population averaged models are useful to compute ATE:

$$
\begin{aligned}
\text { ATE } & =E\left[F\left(X_{i t} \delta+\delta_{\text {treat }}+\alpha_{i}\right)-F\left(X_{i t} \delta+\alpha_{i}\right)\right] \\
& =E_{x}\left[E_{\alpha}\left[F\left(X_{i t} \delta+\delta_{\text {treat }}+\alpha_{i}\right)\right]\right]-E_{X}\left[E_{\alpha}\left[F\left(X_{i t} \delta+\alpha_{i}\right)\right]\right]
\end{aligned}
$$

- When we use $\alpha_{i}=0$ we get it wrong
- The reason is that $E(g(x)) \neq g(E(x))$ when g is not a linear function:

Beware of pu0 or any $\alpha_{i}=0$

- The coefficients of population averaged models are useful to compute ATE:

$$
\begin{aligned}
\text { ATE } & =E\left[F\left(X_{i t} \delta+\delta_{\text {treat }}+\alpha_{i}\right)-F\left(X_{i t} \delta+\alpha_{i}\right)\right] \\
& =E_{x}\left[E_{\alpha}\left[F\left(X_{i t} \delta+\delta_{\text {treat }}+\alpha_{i}\right)\right]\right]-E_{x}\left[E_{\alpha}\left[F\left(X_{i t} \delta+\alpha_{i}\right)\right]\right]
\end{aligned}
$$

- When we use $\alpha_{i}=0$ we get it wrong
- The reason is that $E(g(x)) \neq g(E(x))$ when g is not a linear function:

$$
\begin{aligned}
E_{X}\left[F\left(X_{i t} \delta+\delta_{\text {treat }}+0\right)\right]-E_{X}\left[F\left(X_{i t} \delta+0\right)\right] & = \\
E_{X}\left[F\left(X_{i t} \delta+\delta_{\text {treat }}+E\left(\alpha_{i}\right)\right)\right]-E_{X}\left[F\left(X_{i t} \delta+E\left(\alpha_{i}\right)\right)\right] & \neq \\
E_{X}\left[E_{\alpha}\left[F\left(X_{i t} \delta+\delta_{\text {treat }}+\alpha_{i}\right)\right)\right]-E_{X}\left[E_{\alpha}\left[F\left(X_{i t} \delta+\alpha_{i}\right)\right]\right] & =\text { ATE }
\end{aligned}
$$

Concluding Remarks

- Our work is not done after we get the parameters of our model
- After we get the parameters is when our work starts. We can ask interesting questions
- The questions we ask can be placed in a general framework:
- Define an object of interest $E(y \mid X)$ or $E(y \mid X, \alpha)$
- Explore the multidemensional function
- Use margins and marginsplot

[^0]: . summarize ib2.d1

