Estimating and Interpreting Effects for Nonlinear and Nonparametric Models

Enrique Pinzón

October 24, 2018

October 24, 2018 1/110

Objective

- Build a unified framework to ask questions about model estimates
- Learn to apply this unified framework using Stata
- Unique to Stata
- Excuse to talk about estimation topics

A

Objective

- Build a unified framework to ask questions about model estimates
- Learn to apply this unified framework using Stata
- Unique to Stata
- Excuse to talk about estimation topics

Objective

- Build a unified framework to ask questions about model estimates
- Learn to apply this unified framework using Stata
- Unique to Stata
- Excuse to talk about estimation topics

Factor variables

- Distinguish between discrete and continuous variables
- Way to create "dummy-variables", interactions, and powers
- Works with most Stata commands

- . import excel apsa, firstrow
- . tabulate d1

. summarize 1.dl

. summarize i.dl

<ロ> <四> <四> <四> <四> <四</p>

- . import excel apsa, firstrow
- . tabulate d1

d1	Freq.	Percent	Cum.
0 1 2 3 4	2,000 2,000 2,044 2,037 1,919	20.00 20.00 20.44 20.37 19.19	20.00 40.00 60.44 80.81 100.00
Total	10,000	100.00	

. summarize 1.dl

. summarize i.dl

<ロ> <四> <四> <四> <四> <四</p>

- . import excel apsa, firstrow
- . tabulate d1

d1	Freq.	Percent	Cum.
0 1 2 3 4	2,000 2,000 2,044 2,037 1,919	20.00 20.00 20.44 20.37 19.19	20.00 40.00 60.44 80.81 100.00
Total	10,000	100.00	

. summarize 1.dl

Variable	Obs	Mean	Std. Dev.	Min	Max
 1.d1	10,000	.2	.40002	0	1

. summarize i.dl

<ロ> <四> <四> <四> <四> <四</p>

- . import excel apsa, firstrow
- . tabulate d1

d1	Freq.	Percent	Cum.
0 1 2 3 4	2,000 2,000 2,044 2,037 1,919	20.00 20.00 20.44 20.37 19.19	20.00 40.00 60.44 80.81 100.00
Total	10,000	100.00	

. summarize 1.dl

Variable	Obs	Mean	Std. Dev.	Min	Max
1.d1	10,000	.2	.40002	0	1

. summarize i.dl

Variable	Obs	Mean	Std. Dev.	Min	Max
d1					
1	10,000	.2	.40002	0	1
2	10,000	.2044	.4032827	0	1
3	10,000	.2037	.4027686	0	1
4	10,000	.1919	.3938145	0	1

イロト 不得 トイヨト イヨト 二日

•	summa	rıze	ıbn.	dΙ

Variable	Obs	Mean	Std. Dev.	Min	Max
d1					
0	10,000	.2	.40002	0	1
1	10,000	.2	.40002	0	1
2	10,000	.2044	.4032827	0	1
3	10,000	.2037	.4027686	0	1
4	10,000	.1919	.3938145	0	1

. summarize ib2.d1

2

イロン イ理 とく ヨン イヨン

•	summa	rıze	ıbn.	dΙ

Variable	Obs	Mean	Std. Dev.	Min	Max
d1					
0	10,000	.2	.40002	0	1
1	10,000	.2	.40002	0	1
2	10,000	.2044	.4032827	0	1
3	10,000	.2037	.4027686	0	1
4	10,000	.1919	.3938145	0	1

. summarize ib2.d1

Variable	Obs	Mean	Std. Dev.	Min	Max
dl					
0	10,000	.2	.40002	0	1
1	10,000	.2	.40002	0	1
3	10,000	.2037	.4027686	0	1
4	10,000	.1919	.3938145	0	1

2

イロト イヨト イヨト イヨト

. summarize d1##d2

Variable	Obs	Mean	Std. Dev.	Min	Max
d1					
1	10,000	.2	.40002	0	1
2	10,000	.2044	.4032827	0	1
3	10,000	.2037	.4027686	0	1
4	10,000	.1919	.3938145	0	1
1.d2	10,000	.4986	.500023	0	1
d1#d2					
1 1	10,000	.1009	.3012113	0	1
2 1	10,000	.1007	.3009461	0	1
3 1	10,000	.1035	.304626	0	1
4 1	10,000	.0922	.2893225	0	1

2

イロト イヨト イヨト イヨト

. summarize c.x1##c.x1 c.x1#c.x2 c.x1#i.d1, separator(4)

Variable	Obs	Mean	Std. Dev.	Min	Max
x1	10,000	.0110258	.9938621	-4.095795	3.714316
c.x1#c.x1	10,000	.9877847	1.416602	4.18e-09	16.77553
c.x1#c.x2	10,000	.000208	1.325283	-7.469295	6.45778
dl#c.xl 1 2 3 4	10,000 10,000 10,000 10,000	.0044334 .0008424 .0025783 0014739	.4516058 .4432188 .4533505 .4379122	-3.021819 -4.095795 -3.374062 -3.161604	3.286315 3.178586 3.428311 3.714316

イロト イポト イヨト イヨト

- We usually model an outcome of interest, *Y*, conditional on covariates of interest *X*:
 - $E(Y|X) = X\beta$ (regression)
 - $E(Y|X) = \exp(X\beta)$ (poisson)
 - $E(Y|X) = P(Y|X) = \Phi(X\beta)$ (probit)
 - $E(Y|X) = P(Y|X) = [\exp(X\beta)][1\iota + \exp(X\beta)]^{-1}$ (logit)
 - E(Y|X) = g(X) (nonparametric regression)

4 **A** N A **B** N A **B** N

- We usually model an outcome of interest, *Y*, conditional on covariates of interest *X*:
 - $E(Y|X) = X\beta$ (regression)
 - $E(Y|X) = \exp(X\beta)$ (poisson)
 - $E(Y|X) = P(Y|X) = \Phi(X\beta)$ (probit)
 - $E(Y|X) = P(Y|X) = [\exp(X\beta)][1\iota + \exp(X\beta)]^{-1}$ (logit)
 - E(Y|X) = g(X) (nonparametric regression)

イベト イモト イモト

- We usually model an outcome of interest, *Y*, conditional on covariates of interest *X*:
 - $E(Y|X) = X\beta$ (regression)
 - $E(Y|X) = \exp(X\beta)$ (poisson)
 - $E(Y|X) = P(Y|X) = \Phi(X\beta)$ (probit)
 - $E(Y|X) = P(Y|X) = [\exp(X\beta)] [1\iota + \exp(X\beta)]^{-1} (\text{logit})$
 - E(Y|X) = g(X) (nonparametric regression)

4 **A** N A **B** N A **B** N

- We usually model an outcome of interest, *Y*, conditional on covariates of interest *X*:
 - $E(Y|X) = X\beta$ (regression)
 - $E(Y|X) = \exp(X\beta)$ (poisson)
 - $E(Y|X) = P(Y|X) = \Phi(X\beta)$ (probit)
 - $E(Y|X) = P(Y|X) = [\exp(X\beta)][1\iota + \exp(X\beta)]^{-1}$ (logit)
 - E(Y|X) = g(X) (nonparametric regression)

イベト イモト イモト

Questions

Population averaged

- Does a medicaid expansion improve health outcomes ?
- What is the effect of a minimum wage increase on employment ?
- What is the effect on urban violence indicators, during the weekends of moving back the city curfew ?

At a point

- What is the effect of loosing weight for a 36 year, overweight hispanic man?
- What is the effect on urban violence indicators, during the weekends of moving back the city curfew, for a large city, in the southwest of the United States ?

< 回 > < 三 > < 三 >

Questions

Population averaged

- Does a medicaid expansion improve health outcomes ?
- What is the effect of a minimum wage increase on employment ?
- What is the effect on urban violence indicators, during the weekends of moving back the city curfew ?

At a point

- What is the effect of loosing weight for a 36 year, overweight hispanic man?
- What is the effect on urban violence indicators, during the weekends of moving back the city curfew, for a large city, in the southwest of the United States ?

< 回 > < 回 > < 回 >

Questions

Population averaged

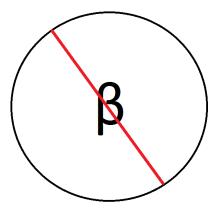
- Does a medicaid expansion improve health outcomes ?
- What is the effect of a minimum wage increase on employment ?
- What is the effect on urban violence indicators, during the weekends of moving back the city curfew ?

At a point

- What is the effect of loosing weight for a 36 year, overweight hispanic man?
- What is the effect on urban violence indicators, during the weekends of moving back the city curfew, for a large city, in the southwest of the United States ?

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

What are the answers?



æ

イロト イヨト イヨト イヨト

A linear model

$$y = \beta_0 + x_1\beta_1 + x_2\beta_2 + x_1^2\beta_3 + x_2^2\beta_4 + x_1x_2\beta_5 + d_1\beta_6 + d_2\beta_7 + d_1d_2\beta_8 + x_2d_1\beta_9 + \varepsilon$$

x₁ and x₂ are continuous, d₂ is binary, and d₁ has 5 categories.
There are interactions of continuous and categorical variables
This is simulated data

A linear model

$$y = \beta_0 + x_1\beta_1 + x_2\beta_2 + x_1^2\beta_3 + x_2^2\beta_4 + x_1x_2\beta_5 + d_1\beta_6 + d_2\beta_7 + d_1d_2\beta_8 + x_2d_1\beta_9 + \varepsilon$$

- x₁ and x₂ are continuous, d₂ is binary, and d₁ has 5 categories.
 There are interactions of continuous and categorical variables
- This is simulated data

Regression results

. regress vr c.x1##c.x2 c.x1#c.x1 c.x2#c.x2 i.d1##i.d2 c.x2#i.d1 Source SS df MS Number of obs = 10,000 F(18, 9981) 388.10 = Model 335278.744 18626.5969 Prob > F 0.0000 18 = Residual 479031.227 9,981 47.9943119 R-squared 0.4117 = Adi R-squared 0.4107 = Total 814309.971 9,999 81.439141 Root MSE = 6.9278 yr Coef. Std. Err. P>|t| [95% Conf. Interval] t x1 -1.04884.1525255 -6.88 0.000 -1.347821-.74985930.339 x2 .4749664 .4968878 0.96 -.4990339 1.448967 c.x1#c.x2 1.06966 .1143996 9.35 0.000 .8454139 1.293907 -1.157346 c.x1#c.x1 -1.061312.048992 -21.66 0.000 -.9652779 c.x2#c.x2 1.177785 7.04 0.000 .849748 .1673487 1.505822 d1 -1.504705.5254654 -2.86 0.004 -2.534723 -.4746865 -3.727184.5272623 -7.07 0.000 -4.760725-2.693644-6.522121 .5229072 -12.47 0.000 -7.547125 -5.497118 4 -8.80982.5319266 -16.56 0.000 -9.852503-7.767136 1.d2 1.615761 .3099418 5.21 0.000 1.008212 2,223309 d1#d2 1 1 -3.649372 .4383277 -8.33 0.000 -4.508582 -2.790161 2 1 -5.994454.435919 -13.750.000 -6.848943 -5.1399653 1 -8.457034.4364173 -19.38 0.000 -9.3125-7.6015684 1 -11.04842.4430598 -24.940.000 -11.9169-10.17993d1#c.x2 1.11805 .3626989 3.08 0.002 .4070865 1.829013 2 1.918298 5.34 0.000 1.214149 2.622448 3 3.484255 .3594559 9.69 0.000 2.779649 4.188861 4 4.260699 .362315 11.76 0.000 3.550488 4.970909

October 24, 2018 12/110

Effects: x₂

Suppose we want to study the marginal effect of x_2

 $\frac{\partial E\left(y|x_1,x_2,d_1,d_2\right)}{\partial x_2}$

This is given by

$$\frac{\partial E(y|x_1, x_2, d_1, d_2)}{\partial x_2} = \beta_2 + 2x_2\beta_4 + x_1\beta_5 + d_1\beta_9$$

- I can compute this effect for every individual in my sample and then average to get a population averaged effect
- I could evaluate this conditional on values of the different covariates, or even values of importance for x₂

4 D K 4 B K 4 B K 4 B K

Effects: x₂

Suppose we want to study the marginal effect of x_2

 $\frac{\partial E\left(y|x_1,x_2,d_1,d_2\right)}{\partial x_2}$

This is given by

$$\frac{\partial E\left(y|x_1, x_2, d_1, d_2\right)}{\partial x_2} = \beta_2 + 2x_2\beta_4 + x_1\beta_5 + d_1\beta_9$$

- I can compute this effect for every individual in my sample and then average to get a population averaged effect
- I could evaluate this conditional on values of the different covariates, or even values of importance for x₂

4 **A** N A **B** N A **B** N

. regress, co Source	oeflegend SS	df	MS	Number of obs	=	10,000
Model Residual	335278.744 479031.227	18 9,981	18626.5969 47.9943119	F(18, 9981) Prob > F R-squared	= =	388.10 0.0000 0.4117
Total	814309.971	9,999	81.439141	Adj R-squared Root MSE	=	0.4107 6.9278
yr	Coef.	Legend				
x1 x2	-1.04884 .4749664	_b[x1] _b[x2]				
c.x1#c.x2	1.06966	_b[c.x1#c.	x2]			
c.x1#c.x1	-1.061312	_b[c.x1#c.	x1]			
c.x2#c.x2	1.177785	_b[c.x2#c.	x2]			
d1 1 2 3 4	-1.504705 -3.727184 -6.522121 -8.80982	_b[1.d1] _b[2.d1] _b[3.d1] _b[4.d1]				
1.d2	1.615761	_b[1.d2]				
d1#d2 1 1 2 1 3 1 4 1	-3.649372 -5.994454 -8.457034 -11.04842	_b[1.d1#1. _b[2.d1#1. _b[3.d1#1. _b[4.d1#1.	d2] d2]			
d1#c.x2 1 2 3 4	1.11805 1.918298 3.484255 4.260699	_b[1.d1#c. _b[2.d1#c. _b[3.d1#c. _b[4.d1#c.	x2] x2]	< • • • < 6	P ► <	문 (문)

$$\frac{\partial E\left(y|x_1, x_2, d_1, d_2\right)}{\partial x_2} = \beta_2 + 2x_2\beta_4 + x_1\beta_5 + d_1\beta_9$$

generate double dydx2 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]*1.d1 + _b[2.d1#c.x2]*2.d1 + ///
_b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1

. list dydx2 in 1/10, sep(0)

	dydx2
1.	4.6587219
2.	4.3782089
4.	10.018247
5. 6.	7.4219045 7.2065007
7.	3.6052012
8.	5.4846114
9. 10.	6.3144353 5.9827419

[.] summarize dydx2

æ

イロト イポト イヨト イヨト

. list dydx2 in 1/10, sep(0)

	dydx2
1.	4.6587219
2.	4.3782089
3.	7.8509027
4.	10.018247
5.	7.4219045
6.	7.2065007
7.	3.6052012
8.	5.4846114
9.	6.3144353
10.	5.9827419

[.] summarize dydx2

Variable	Obs	Mean	Std. Dev.	Min	Max
dydx2	10,000	5.43906	2.347479	-2.075498	12.90448

æ

イロト イポト イヨト イヨト

margins

- A way to compute effects of interest and their standard errors
- Fundamental to construct our unified framework
- Consumes factor variable notation
- Operates over Stata predict, $\widehat{E(Y|X)} = X\widehat{\beta}$

margins, dydx(*)

. margins,				
Average marg Model VCE		Number of obs	=	10,000
MODEL VCE	: 012			
Expression dy/dx w.r.t.	: Linear prediction, predict() : x2			
	Delta-method			

	dy/dx	Std. Err.	t	P> t	[95% Conf.	Interval]		
x2	5.43906	.1188069	45.78	0.000	5.206174	5.671945		

• Expression, default prediction $E(Y|X) = X\beta$

- This means you could access other Stata predictions
- Or any function of the coefficients
- Delta method is the way the standard errors are computed

- A TE N - A TE N

Expression

<pre>. margins, expression(_b[c.x2] + /// > _b[c.x1#c.x2]*c.x1 + 2* b[c.x2#c.x2]*c.x2 + /// > _b[1.d1#c.x2]*1.d1 + _b[2.d1#c.x2]*2.d1 + /// > _b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1) Warning: expression() does not contain predict() or xb().</pre>							
Predictive margins Model VCE : OLS				Number	of obs =	10,000	
Expression : _b[c.x2] + _b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + _b[1.d1#c.x2]*1.d1 + _b[2.d1#c.x2]*2.d1 + _b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1							
		Delta-method Std. Err.	Z	₽> z	[95% Conf.	[Interval]	
_cons	5.43906	.1188069	45.78	0.000	5.206202	5.671917	

2

<ロ> <問> <問> < 同> < 同> 、

Delta Method and Standard Errors

We get our standard errors from the central limit theorem.

$$\widehat{\beta} - \beta \xrightarrow{d} N(0, V)$$

We can get standard errors for any smooth function g() of $\hat{\beta}$ with

$$g\left(\widehat{eta}
ight)-g\left(eta
ight)\stackrel{d}{
ightarrow}N\left(0,g'\left(eta
ight)'Vg'\left(eta
ight)
ight)$$

Effect of x₂: revisited

$$\frac{\partial \mathcal{E}(\boldsymbol{y}|\boldsymbol{x}_1,\boldsymbol{x}_2,\boldsymbol{d}_1,\boldsymbol{d}_2)}{\partial \boldsymbol{x}_2} = \beta_2 + 2\boldsymbol{x}_2\beta_4 + \boldsymbol{x}_1\beta_5 + \boldsymbol{d}_1\beta_9$$

- We averaged this function but could evaluate it at different values of the covariates for example:
 - What is the average marginal effect of x₂ for different values of d₁
 - What is the average marginal effect of x₂ for different values of d₁ and x₁

4 3 5 4 3

Effect of x_2 : revisited

$$\frac{\partial E(y|x_1, x_2, d_1, d_2)}{\partial x_2} = \beta_2 + 2x_2\beta_4 + x_1\beta_5 + d_1\beta_9$$

- We averaged this function but could evaluate it at different values of the covariates for example:
 - ▶ What is the average marginal effect of x₂ for different values of d₁
- Counterfactual: What if everyone in the population had a level of $d_1 = 0$. What if $d_1 = 1, ...$

Effect of x₂: revisited

$$\frac{\partial E(y|x_1, x_2, d_1, d_2)}{\partial x_2} = \beta_2 + 2x_2\beta_4 + x_1\beta_5 + d_1\beta_9$$

- We averaged this function but could evaluate it at different values of the covariates for example:
 - ▶ What is the average marginal effect of x₂ for different values of d₁
- Counterfactual: What if everyone in the population had a level of d₁ = 0. What if d₁ = 1, ...

generate double dydx2 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]*1.d1 + _b[2.d1#c.x2]*2.d1 + ///
_b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1

generate double dydx2_d10 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2

generate double dydx2_d11 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]

generate double dydx2_d12 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[2.d1#c.x2]

generate double dydx2 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]*1.d1 + _b[2.d1#c.x2]*2.d1 + ///
_b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1

generate double dydx2_d10 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2

generate double dydx2_d11 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]

generate double dydx2_d12 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[2.d1#c.x2]

generate double dydx2 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]*1.d1 + _b[2.d1#c.x2]*2.d1 + ///
_b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1

generate double dydx2_d10 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2

generate double dydx2_d11 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]

generate double dydx2_d12 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[2.d1#c.x2]

generate double dydx2 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]*1.d1 + _b[2.d1#c.x2]*2.d1 + ///
_b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1

generate double dydx2_d10 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2

generate double dydx2_d11 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[1.d1#c.x2]

generate double dydx2_d12 = _b[c.x2] + ///
_b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
_b[2.d1#c.x2]

Average marginal effect of x_2 at counterfactuals: manually

summarize	

Variable	Obs	Mean	Std. Dev.	Min	Max
dydx2_d10 dydx2_d11 dydx2_d12 dydx2_d13 dydx2_d14	10,000 10,000 10,000 10,000 10,000	3.295979 4.414028 5.214277 6.780233 7.556677	1.7597 1.7597 1.7597 1.7597 1.7597 1.7597	-2.411066 -1.293017 4927681 1.073188 1.849632	9.288564 10.40661 11.20686 12.77282 13.54926

< 🗇 🕨

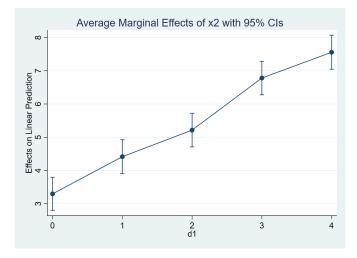
Average marginal effect of x₂ at counterfactuals: margins

. margins dl, dydx(x2)			
Average marginal effects	Number of obs	=	10,000
Model VCE : OLS			
Expression : Linear prediction, predict()			
dy/dx w.r.t. : x2			

		I dy/dx	Delta-method Std. Err.	t	P> t	[95% Conf.	Interval]
x2							
	d1						
	0	3.295979	.2548412	12.93	0.000	2.796439	3.795519
	1	4.414028	.2607174	16.93	0.000	3.90297	4.925087
	2	5.214277	.2575936	20.24	0.000	4.709342	5.719212
	3	6.780233	.2569613	26.39	0.000	6.276537	7.283929
	4	7.556677	.2609514	28.96	0.000	7.04516	8.068195

∃ ▶ ∢ ∃

Graphically: marginsplot



October 24, 2018 26/110

2

-

Thou shalt not be fooled by overlapping confidence intervals

$$Var(a-b) = Var(a) + Var(b) - 2Cov(a,b)$$

< 6 b

< ≧ ▶ < ≧ ▶ October 24, 2018

27/110

- You have Var (a) and Var (b)
- You do not have 2Cov(a, b)

Thou shalt not be fooled by overlapping confidence intervals

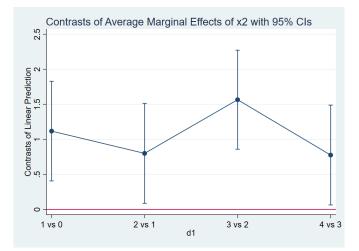
```
. margins ar.dl, dydx(x2) contrast(nowald)
Contrasts of average marginal effects
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : x2
```

	Contrast I dy/dx	Delta-method Std. Err.	[95% Conf.	Interval]
x2				
d1				
(1 vs 0)	1.11805	.3626989	.4070865	1.829013
(2 vs 1)	.8002487	.3638556	.0870184	1.513479
(3 vs 2)	1.565956	.3603585	.859581	2.272332
(4 vs 3)	.7764441	.3634048	.0640974	1.488791

э.

(日)

Thou shalt not be fooled by overlapping confidence intervals



October 24, 2018 29/110

< A

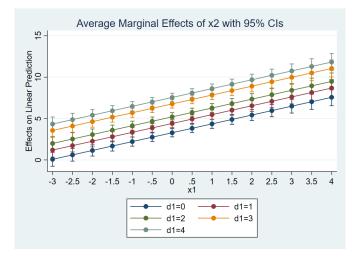
Effect of x₂: revisited

$$\frac{\partial E\left(y|x_1, x_2, d_1, d_2\right)}{\partial x_2} = \beta_2 + 2x_2\beta_4 + x_1\beta_5 + d_1\beta_9$$

- We averaged this function but could evaluate it at different values of the covariates for example:
 - What is the average marginal effect of x₂ for different values of d₁ and x₁

Effect of x₂: revisited

margins d1, dydx(x2) at (x1=(-3(.5)4))



3

A (10) A (10) A (10) A

$$\frac{\partial E(y|.)}{\partial x_2}$$

- This is our object of interest
- By definition it is the change in *E*(*y*|.) for an infinitesimal change in *x*₂
- Sometimes people talk about this as a unit change in x₂

$$\frac{\partial E(y|.)}{\partial x_2}$$

- This is our object of interest
- By definition it is the change in *E*(*y*|.) for an infinitesimal change in *x*₂
- Sometimes people talk about this as a unit change in x₂

. margins, dydx(x2)
Average marginal effects Number of obs = 10,000
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : x2

		Delta-method Std. Err.	t	P> t	[95% Conf.	Interval]
x2	5.43906	.1188069	45.78	0.000	5.206174	5.671945

- . quietly predict double xb0
- . quietly replace $x^2 = x^2 + 1$
- . quietly predict double xb1
- . generate double diff = xb1 xb0
- . summarize diff

э.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

. margins, dydx(x2)
Average marginal effects Number of obs = 10,000
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : x2

		Delta-method Std. Err.		P> t	[95% Conf.	Interval]
 x2	5.43906	.1188069	45.78	0.000	5.206174	5.671945

- . quietly predict double xb0
- . quietly replace $x^2 = x^2 + 1$
- . quietly predict double xb1
- . generate double diff = xb1 xb0
- . summarize diff

Variable	Obs	Mean	Std. Dev.	Min	Max
diff	10,000	6.616845	2.347479	8977125	14.08226

э.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Predictive man Model VCE Expression 1at	(x2 = generat rgins : OLS : Linear pred: : x2 : x2		-	te(x2+1)) Number		10,000
		Delta-method Std. Err.	t	P> t	[95% Conf.	Interval]
_at 1 2	599745 6.0171	.0692779	-8.66 31.52	0.000	7355437 5.642859	4639463 6.39134

. margins, at (x2 = generate(x2)) at (x2=generate(x2+1)) contrast(at(r) nowald) Contrasts of predictive margins

. summarize diff

Predictive man Model VCE Expression 1at	(x2 = genera rgins : OLS : Linear pred : x2 : x2		2	ce(x2+1)) Number		10,000
		Delta-method Std. Err.	t	P> t	[95% Conf.	Interval]
_at 1 2	599745 6.0171	.0692779	-8.66 31.52	0.000	7355437 5.642859	4639463 6.39134

. margins, at(x2 = generate(x2)) at(x2=generate(x2+1)) contrast(at(r) nowald) Contrasts of predictive margins Model VCE : OLS Expression : Linear prediction, predict() 1_at : x2 = x2 2._at : x2 = x2+1

		Delta-method Std. Err.	[95% Conf.	Interval]
(2 vs 1)	6.616845	.1779068	6.268111	6.965578

э

Predictive man Model VCE Expression 1at	(x2 = generat rgins : OLS : Linear pred: : x2 : x2		2	te(x2+1)) Number	of obs =	10,000
		Delta-method Std. Err.	t	P> t	[95% Conf.	Interval]
_at 1 2	599745 6.0171	.0692779	-8.66 31.52	0.000	7355437 5.642859	4639463 6.39134

. margins, at(x2 = generate(x2)) at(x2=generate(x2+1)) contrast(at(r) nowald) Contrasts of predictive margins Model VCE : OLS Expression : Linear prediction, predict() 1._at : x2 = x2 2._at : x2 = x2+1 Delta-method Contrast Std. Err. [95% Conf. Interval]

a.t				
_au				
(2 179 1)	6 616845	.1779068	6 269111	6 965578
(Z VS I)	0.010040	.1//5000	0.200111	0.903370

. summarize diff

Variable	Obs	Mean	Std. Dev.	Min	Max
diff	10,000	6.616845	2.347479	8977125	14.08226

Ask a different question

- Marginal effects have a meaning in some contexts but are misused
- It is difficult to interpret infinitesimal changes but we do not need to
- We can ask about meaningful questions by talking in units that mean something to the problem we care about

A 10 percent increase in x₂

```
. margins, at (x2 = generate(x2)) at (x2=generate(x2*1.1)) ///
                  contrast(at(r) nowald)
>
Contrasts of predictive margins
Model VCE
            : OLS
Expression : Linear prediction, predict()
1. at
            : x2
                              = x^{2}
2. at
             : x2
                              = x2 \times 1.1
                         Delta-method
                 Contrast Std. Err.
                                         [95% Conf. Interval]
        at
   (2 vs 1)
                 .7562394 .0178679
                                         .7212147
                                                      .791264
```

э.

ヘロト ヘロト ヘヨト ヘヨト

What we learned

$$\frac{\partial E(y|x_1, x_2, d_1, d_2)}{\partial x_2} = \beta_2 + 2x_2\beta_4 + x_1\beta_5 + d_1\beta_9$$

October 24, 2018

37/110

- Population averaged
- Counterfactual values of d₁
- Counterfactual values for d₁ and x₁
- Exploring a fourth dimensional surface

What we learned

$$\frac{\partial E\left(y|x_1, x_2, d_1, d_2\right)}{\partial x_2} = \beta_2 + 2x_2\beta_4 + x_1\beta_5 + d_1\beta_9$$

October 24, 2018

37/110

- Population averaged
- Counterfactual values of d₁
- Counterfactual values for d₁ and x₁
- Exploring a fourth dimensional surface

Discrete covariates

$$E(Y|d = d_1,...) - E(Y|d = d_0,...)$$

...
 $E(Y|d = d_k,...) - E(Y|d = d_0,...)$

- The effect is the difference of the object of interest evaluated at the different levels of the discrete covariate relative to a base level
- It can be interpreted as a treatment effect

A B F A B F

. margins d1

Predictive margins Model VCE : OLS Number of obs = 10,000

LIOUCT VCH	•	OHO		
Expression	:	Linear	prediction,	predict()

	Margin	Delta-method Std. Err.	t	P> t	[95% Conf.	Interval]
d1 0 1 2 3 4	3.77553 1.784618 6527544 -2.807997 -5.461784	.1550097 .1550841 .1533701 .1535468 .1583201	24.36 11.51 -4.26 -18.29 -34.50	0.000 0.000 0.000 0.000 0.000	3.47168 1.480622 9533906 -3.10898 -5.772123	4.079381 2.088614 3521181 -2.507014 -5.151445

. margins r.dl, contrast(nowald)

- Contrasts of predictive margins
- Model VCE : OLS

Expression : Linear prediction, predict()

. margins d1

Predictive margins

Number of obs = 10,000

Expression	:	Linear	prediction,	predict()
MODEL VCE	•	OT2		

	Margin	Delta-method Std. Err.	t	P> t	[95% Conf.	Interval]
d1 0 1 2 3 4	3.77553 1.784618 6527544 -2.807997 -5.461784	.1550097 .1550841 .1533701 .1535468 .1583201	24.36 11.51 -4.26 -18.29 -34.50	0.000 0.000 0.000 0.000 0.000	3.47168 1.480622 9533906 -3.10898 -5.772123	4.079381 2.088614 3521181 -2.507014 -5.151445

. margins r.dl, contrast(nowald)

- Contrasts of predictive margins
- Model VCE : OLS

Expression : Linear prediction, predict()

	I Contrast	Delta-method Std. Err.	[95% Conf.	Interval]
d1 (1 vs 0) (2 vs 0) (3 vs 0) (4 vs 0)	-1.990912 -4.428285 -6.583527 -9.237314	.2193128 .2180388 .2182232 .2215769	-2.420809 -4.855685 -7.011289 -9.671649	-1.561015 -4.000884 -6.155766 -8.802979

. margins r.dl, contrast(nowald) Contrasts of predictive margins Model VCE : OLS Expression : Linear prediction, predict()

	Contrast	Delta-method Std. Err.	[95% Conf.	Interval]
d1 (1 vs 0) (2 vs 0) (3 vs 0) (4 vs 0)	-1.990912 -4.428285 -6.583527 -9.237314	.2193128 .2180388 .2182232 .2215769	-2.420809 -4.855685 -7.011289 -9.671649	-1.561015 -4.000884 -6.155766 -8.802979

. margins, dydx(dl) Average marginal effects Number of obs = 10,000 Model VCE : OLS Expression : Linear prediction, predict() dy/dx w.r.t. : 1.dl 2.dl 3.dl 4.dl

	dy/dx	Delta-method Std. Err.	t	P> t	[95% Conf.	. Interval]
d1 1 2 3 4	-1.990912 -4.428285 -6.583527 -9.237314	.2193128 .2180388 .2182232 .2215769	-9.08 -20.31 -30.17 -41.69	0.000 0.000 0.000 0.000	-2.420809 -4.855685 -7.011289 -9.671649	-1.561015 -4.000884 -6.155766 -8.802979

Note: dy/dx for factor levels is the discrete change from the base level.

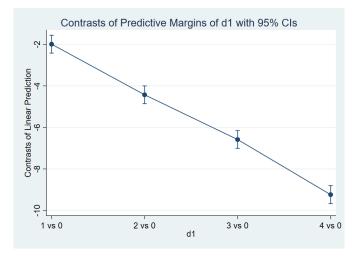
. margins r.dl, contrast(nowald) Contrasts of predictive margins Model VCE : OLS Expression : Linear prediction, predict()

	Contrast	Delta-method Std. Err.	[95% Conf.	Interval]
d1 (1 vs 0) (2 vs 0) (3 vs 0) (4 vs 0)	-1.990912 -4.428285 -6.583527 -9.237314	.2193128 .2180388 .2182232 .2215769	-2.420809 -4.855685 -7.011289 -9.671649	-1.561015 -4.000884 -6.155766 -8.802979

. margins, dydx(dl) Average marginal effects Number of obs = 10,000 Model VCE : OLS Expression : Linear prediction, predict() dy/dx w.r.t. : 1.dl 2.dl 3.dl 4.dl

	dy/dx	Delta-method Std. Err.	t	P> t	[95% Conf.	. Interval]
d1 1 2 3 4	-1.990912 -4.428285 -6.583527 -9.237314	.2193128 .2180388 .2182232 .2215769	-9.08 -20.31 -30.17 -41.69	0.000 0.000 0.000 0.000	-2.420809 -4.855685 -7.011289 -9.671649	-1.561015 -4.000884 -6.155766 -8.802979

Note: dy/dx for factor levels is the discrete change from the base level.

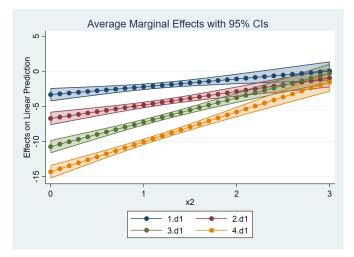


æ October 24, 2018 41/110

イロト イヨト イヨト イヨト

Effect of d_1 for x_2 counterfactuals

margins, dydx(d1) at(x2=(0(.5)3))
marginsplot, recastci(rarea) ciopts(fcolor(%30))



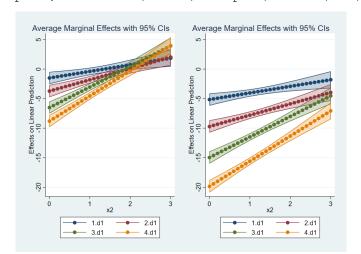
< E

H N

< 🗐 🕨

Effect of d_1 for x_2 and d_2 counterfactuals

margins 0.d2, dydx(d1) at(x2=(0(.5)3))
margins 1.d2, dydx(d1) at(x2=(0(.5)3))
marginsplot, recastci(rarea) ciopts(fcolor(%30))



< □ → < □ → < 三 → < 三 → < 三 → ○ へ () October 24, 2018 43/110

Effect of x_2 and d_1 or x_2 and x_1

- We can think about changes of two variables at a time
- This is a bit trickier to interpret and a bit trickier to compute
- margins allows us to solve this problem elegantly

A change in x_2 and d_1

. margins r.dl, dydx(x2) contrast(nowald) Contrasts of average marginal effects Model VCE : OLS Expression : Linear prediction, predict() dy/dx w.r.t. : x2

	Contrast I dy/dx	Delta-method Std. Err.	[95% Conf.	Interval]
x2 d1				
(1 vs 0) (2 vs 0) (3 vs 0) (4 vs 0)	1.11805 1.918298 3.484255 4.260699	.3626989 .3592232 .3594559 .362315	.4070865 1.214149 2.779649 3.550488	1.829013 2.622448 4.188861 4.970909

3

イロン イ理 とく ヨン イヨン

A change in d_1 and d_2

. margins r.dl, dydx(d2) contrast(nowald) Contrasts of average marginal effects Model VCE : OLS Expression : Linear prediction, predict() dy/dx w.r.t. : 1.d2

	Contrast Del dy/dx S		[95% Conf.	Interval]
0.d2	(base outcome	:)		
1.d2 d1 (1 vs 0) (2 vs 0)	-3.649372 .	4383277	-4.508582	-2.790161
(2 vs 0) (3 vs 0) (4 vs 0)	-8.457034 .	4364173 4430598	-9.3125 -11.9169	-7.601568

Note: dy/dx for factor levels is the discrete change from the base level.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

A change in x_2 and x_1

. margins, expression(_b[c.x2] + ///
> _b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + ///
> _b[1.d1#c.x2]*1.d1 + _b[2.d1#c.x2]*2.d1 + ///
> _b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*4.d1) ///
> dydx(x1)
Warning: expression() does not contain predict() or xb().
Average marginal effects Number of obs = 10,000
Model VCE : OLS
Expression : _b[c.x2] + _b[c.x1#c.x2]*c.x1 + 2*_b[c.x2#c.x2]*c.x2 + _b[1.d1#c.x2]*1.d1 +
_b[2.d1#c.x2]*2.d1 + _b[3.d1#c.x2]*3.d1 + _b[4.d1#c.x2]*1.d1 +

		Delta-method Std. Err.		₽> z	[95% Conf.	Interval]
x1	1.06966	.1143996	9.35	0.000	.8454411	1.293879

Framework

• An object of interest, E(Y|X)

- Questions
 - $\blacktriangleright \quad \frac{\partial E(Y|X)}{\partial x_i}$
 - $= E(Y|d = d_{level}) E(Y|d = d_{base})$
 - Both
 - Second order terms, double derivatives
- Explore the surface
 - Population averaged
 - Effects at fixed values of covariates (counterfactuals)

A (10) A (10) A (10)

Framework

- An object of interest, E(Y|X)
- Questions
 - $\blacktriangleright \frac{\partial E(Y|X)}{\partial x_{k}}$
 - $= E(Y|d = d_{level}) E(Y|d = d_{base})$
 - Both
 - Second order terms, double derivatives
- Explore the surface
 - Population averaged
 - Effects at fixed values of covariates (counterfactuals)

A (1) > A (2) > A (2)

Framework

- An object of interest, E(Y|X)
- Questions
 - $\blacktriangleright \frac{\partial E(Y|X)}{\partial x_{i}}$
 - $= E(Y|d = d_{level}) E(Y|d = d_{base})$
 - Both
 - Second order terms, double derivatives
- Explore the surface
 - Population averaged
 - Effects at fixed values of covariates (counterfactuals)

Binary outcome models

• The data generating process is given by:

$$y = \begin{cases} 1 & \text{if } y^* = x\beta + \varepsilon > 0 \\ 0 & \text{otherwise} \end{cases}$$

- We make an assumption on the distribution of ε, f_ε
 - Probit: ɛ follows a standard normal distribution
 - Logit: ε follows a standard logistic distribution
 - By construction $P(y = 1|x) = F(x\beta)$

This gives rise to two models:

If F (.) is the standard normal distribution we have a Probit
 If F (.) is the logistic distribution we have a Logit model

•
$$P(y = 1|x) = E(y|x)$$

4 **A** N A **B** N A **B** N

Binary outcome models

The data generating process is given by:

$$y = \begin{cases} 1 & \text{if } y^* = x\beta + \varepsilon > 0 \\ 0 & \text{otherwise} \end{cases}$$

- We make an assumption on the distribution of ε, f_ε
 - Probit: ɛ follows a standard normal distribution
 - Logit: ε follows a standard logistic distribution
 - By construction $P(y = 1|x) = F(x\beta)$
- This gives rise to two models:

If F(.) is the standard normal distribution we have a Probit
 If F(.) is the logistic distribution we have a Logit model

• P(y = 1|x) = E(y|x)

3

(4) 周 ト イ ヨ ト イ ヨ ト 一

Binary outcome models

The data generating process is given by:

$$y = \begin{cases} 1 & \text{if } y^* = x\beta + \varepsilon > 0 \\ 0 & \text{otherwise} \end{cases}$$

- We make an assumption on the distribution of ε , f_{ε}
 - Probit: ɛ follows a standard normal distribution
 - Logit: ε follows a standard logistic distribution
 - By construction $P(y = 1|x) = F(x\beta)$
- This gives rise to two models:

If F(.) is the standard normal distribution we have a Probit
 If F(.) is the logistic distribution we have a Logit model

•
$$P(y = 1|x) = E(y|x)$$

イベト イモト イモト

Effects

• The change in the conditional probability due to a change in a covariate is given by

$$\frac{\partial P(y|x)}{\partial x_k} = \frac{\partial F(x\beta)}{\partial x_k} \beta_k$$
$$= f(x\beta) \beta_k$$

- This implies that:
 - The value of the object of interest depends on x
 - The β coefficients only tell us the sign of the effect given that f(xβ) > 0 almost surely
- For a categorical variable (factor variables)

$$F(x\beta|d=d_l)-F(x\beta|d=d_0)$$

< ロ > < 同 > < 回 > < 回 >

Coefficient table

. probit ypr c.x1##c.x2 i.d1##i.d2 i.d1#c.x1, nolog

Probit regression Log likelihood = -5453.1739					of obs = (16) = chi2 = R2 =	10,000 2942.75 0.0000 0.2125
ypr	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
x1 x2	3271742 .3105438	.0423777 .023413	-7.72 13.26	0.000	4102329 .2646551	2441155 .3564325
c.x1#c.x2	.3178514	.0258437	12.30	0.000	.2671987	.3685041
d1 1 2 3 4 1.d2 d1#d2 1 1 2 1 3 1 4 1	2927285 6605838 9137215 -1.27621 .2822199 .2547359 .6621119 .8471544 1.26051	.057665 .0593125 .0647033 .0718132 .057478 .0818174 .0839328 .0893541 .0999602	-5.08 -11.14 -14.12 -17.77 4.91 3.11 7.89 9.48 12.61	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	4057498 7768342 -1.040538 -1.416961 .1695651 .0943767 .4976066 .6720237 1.064592	1797072 544333 7869054 -1.135459 .3948747 .4150951 .8266171 1.022285 1.456429
d1#c.x1 1 2 3 4	2747025 5640486 9452172 -1.220619	.0422351 .0452423 .0512391 .0608755	-6.50 -12.47 -18.45 -20.05	0.000 0.000 0.000 0.000	3574819 6527219 -1.045644 -1.339933	1919232 4753753 8447905 -1.101306

October 24, 2018 51/110

Effects of x₂

. margins, a	at(x2=generate(x2))) at(x2=g	generate (x2*1.2))			
Predictive ma	argins			Number of	obs	=	10,000
Model VCE	: OIM						
Expression	: Pr(ypr), predi	ct()					
1at	: x2	= x2					
2at	: x2	= x2*1.2	2				
		ta-method td. Err.	Z	₽> z	[95%	Conf.	Interval]
_at 1 2			111.75 108.40	0.000	.4732 .4948		.4901579 .5130585

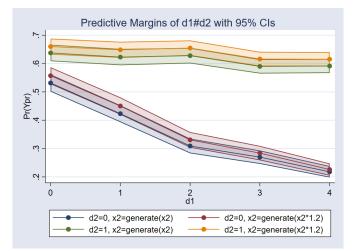
2

◆□▶ ◆圖▶ ◆理≯ ◆理≯

Effects of x_2 at values of d_1 and d_2

margins d1#d2,

at(x2=generate(x2))at(x2=generate(x2*1.2))



(4) (5) (4) (5)

< 17 ▶

Logit vs. Probit

- . quietly logit ypr c.x1##c.x2 i.d1##i.d2 i.d1#c.x1
- . quietly margins d1#d2, at (x2=generate(x2)) at (x2=generate(x2*1.2)) post
- . estimates store logit
- . quietly probit ypr c.x1##c.x2 i.d1##i.d2 i.d1#c.x1
- . quietly margins dl#d2, at $(x^2=generate(x^2))$ at $(x^2=generate(x^2*1.2))$ post
- . estimates store probit

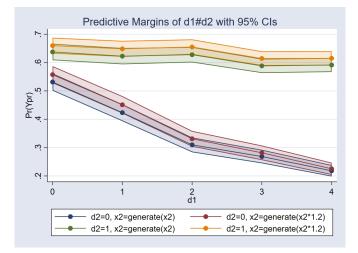
Logit vs. Probit

. estimates table probit logit

Variable probit logit _at#dl#d2 .53151657 .53140462 1 0 0 .53151657 .63744731 1 1 0 .42306578 .42322182 1 1 1 .62291206 .62262466 1 2 0 .30922733 .30975991 1 3 0 .26973385 .26845746 1 3 1 .59004519 .58834989 1 4 0 .21809081 .21827411 1 4 1 .5914183 .59140961 2 0 0 .55723572 .55751404 2 0 1 .66005549 .65979041 2 1 0 .4502963 .45117594 2 1 1 .64854781 .64854287 2 2 0 .3082849 .33120501 2 2 1 .65472273 .65506022 2 3 0 .28400721 .28169093 2 3 1 .61605961 .61442653 2 4 0 .22603365 .2258232			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Variable	probit	logit
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	at#d1#d2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 0 0	.53151657	.53140462
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 0 1	.63756257	.63744731
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 0	.42306578	.42322182
1 2 1 .62783902 .62775349 1 3 0 .26973385 .26845746 1 3 1 .59004519 .58834989 1 4 0 .21809081 .21827411 1 4 1 .5914183 .59140961 2 0 0 .55723572 .55751404 2 0 1 .66005549 .65979041 2 1 0 .4502963 .45117594 2 1 1 .64854781 .64854287 2 2 0 .33082849 .33120501 2 2 1 .65472273 .65506022 2 3 0 .28400721 .28169093 2 3 1 .61605961 .61442653	1 1 1	.62291206	.62262466
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 0	.30922733	.30975991
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 1	.62783902	.62775349
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 3 0	.26973385	.26845746
1 4 1 .5914183 .59140961 2 0 0 .55723572 .55751404 2 0 1 .66005549 .65979041 2 1 0 .4502963 .45117594 2 1 1 .64854781 .64854287 2 2 0 .33082849 .33120501 2 2 1 .65472273 .65506022 2 3 0 .28400721 .28169093 2 3 1 .61605961 .61442653	1 3 1	.59004519	.58834989
2 0 0 .55723572 .55751404 2 0 1 .66005549 .65979041 2 1 0 .4502963 .45117594 2 1 1 .64854781 .64854287 2 2 0 .33082849 .33120501 2 2 1 .65472273 .65506022 2 3 0 .28400721 .28169093 2 3 1 .61605961 .61442653	1 4 0	.21809081	.21827411
2 0 1 .66005549 .65979041 2 1 0 .4502963 .45117594 2 1 1 .64854781 .64854287 2 0 .33082849 .33120501 2 2 1 .65472273 .65506022 2 3 0 .28400721 .28169093 2 3 1 .61605961 .61442653	1 4 1	.5914183	.59140961
2 1 0 .4502963 .45117594 2 1 1 .64854781 .64854287 2 2 0 .33082849 .33120501 2 2 1 .65472273 .65506022 2 3 0 .28400721 .28169093 2 3 1 .61605961 .61442653	2 0 0	.55723572	.55751404
2 1 .64854781 .64854287 2 2 .33082849 .33120501 2 2 .65472273 .65506022 2 3 0 .28400721 .28169093 2 3 1 .61605961 .61442653	2 0 1	.66005549	.65979041
2 2 0 .33082849 .33120501 2 2 1 .65472273 .65506022 2 3 0 .28400721 .28169093 2 3 1 .61605961 .61442653	2 1 0	.4502963	.45117594
2 2 1 .65472273 .65506022 2 3 0 .28400721 .28169093 2 3 1 .61605961 .61442653	2 1 1	.64854781	.64854287
2 3 0 .28400721 .28169093 2 3 1 .61605961 .61442653	2 2 0	.33082849	.33120501
2 3 1 .61605961 .61442653	2 2 1	.65472273	.65506022
	2 3 0	.28400721	.28169093
2 4 0 .22609365 .22538232		.61605961	.61442653
	2 4 0	.22609365	.22538232
2 4 1 .6154092 .61499622	2 4 1	.6154092	.61499622

<ロト < 回 > < 回 > < 回 > < 回 > - 三 -

Logit vs. Probit



October 24, 2018 56/110

크

Fractional models and quasilikelihood (pseudolikelihood)

- Likelihood models assume we know the unobservable and all it's moments
- Quasilikelihood models are agnostic about anything but the first moment
- Fractional models use the likelihood of a probit or logit to model outcomes in [0, 1]. The unobservable of the probit and logit does not generate values in (0, 1)
- Stata has an implementation for fractional probit and fractional logit models

A D K A B K A B K A B K B B

The model

$E(Y|X) = F(X\beta)$

- F(.) is a known c.d.f
- No assumptions are made about the distribution of the unobservable

Two fractional model examples

. clear

```
. set obs 10000
```

```
number of observations (_N) was 0, now 10,000
```

- . set seed 111
- . generate e = rnormal()
- . generate x = rchi2(5)-3
- . generate xb = .5 * (1 x)
- . generate yp = xb + e > 0
- . generate yf = normal(xb + e)

• In both cases $E(Y|X) = \Phi(X\theta)$

```
• For yp, the probit, \theta = \beta
• For yf, \theta = \frac{\beta}{\sqrt{1+\sigma^2}}
```

Two fractional model examples

. clear

```
. set obs 10000
```

number of observations (_N) was 0, now 10,000

- . set seed 111
- . generate e = rnormal()
- . generate x = rchi2(5)-3
- . generate xb = .5 * (1 x)
- . generate yp = xb + e > 0
- . generate yf = normal(xb + e)
- In both cases $E(Y|X) = \Phi(X\theta)$
- For yp, the probit, $\theta = \beta$

• For yf,
$$\theta = \frac{\beta}{\sqrt{1+\sigma^2}}$$

= nar

Two fractional model estimates

- . quietly fracreg probit yp x
- . estimates store probit
- . quietly fracreg probit yf x
- . estimates store frac
- . estimates table probit frac, eq(1)

Variable	probit	frac
x	50037834	35759981
_cons	.48964237	.34998136

. display .5/sqrt(2)

.35355339

3

Fractional regression output

. fracreg probit ypr c.x1##c.x2 i.d1##i.d2 i.d1#c.x1 Iteration 0: log pseudolikelihood = -7021.8384 Iteration 1: log pseudolikelihood = -5453.7326 Iteration 3: log pseudolikelihood = -5453.1743 Iteration 4: log pseudolikelihood = -5453.1799 Fractional probit regression Wald chi2(16) = 1969.26 Prob > chi2 = 0.0000 Prob > chi2 = 0.2125 Predo R2 = 0.2125								
ypr	Coef.	Robust Std. Err.	Z	P> z	[95%	Conf.	Interval]	
x1 x2	3271742 .3105438	.0421567 .0232016	-7.76 13.38	0.000 0.000	4097		2445486	
c.x1#c.x2	.3178514	.0254263	12.50	0.000	.2680	0168	.3676859	
d1 1 2 3 4	2927285 6605838 9137215 -1.276209	.0577951 .0593091 .0655808 .0720675	-5.06 -11.14 -13.93 -17.71	0.000 0.000 0.000 0.000	4060 7768 -1.042 -1.417	3275 2258	1794521 54434 7851855 -1.134959	
1.d2	.2822199	.057684	4.89	0.000	.1691	L613	.3952784	
d1#d2 1 1 2 1 3 1 4 1	.2547359 .6621119 .8471544 1.260509	.0817911 .0839477 .0896528 .0999594	3.11 7.89 9.45 12.61	0.002 0.000 0.000 0.000	.0944 .4975 .6714 1.064	5774 1382	.4150435 .8266464 1.022871 1.456425	
d1#c.x1 1 2 3 4	2747025 5640486 9452172 -1.220618	.041962 .0447828 .0514524 .0615741	-6.55 -12.60 -18.37 -19.82	0.000 0.000 0.000 0.000	3569 6518 -1.040 -1.341	3212 5062	1924585 4762759 8443723 -1.099935	

æ

Robust standard errors

- In general, this means we are agnostic about the *E* (εε'|X), about the conditional variance
- The intuition from linear regression (heteroskedasticity) does not extend
- In nonlinear likelihood-based models like probit and logit this is not the case

Robust standard errors

- In general, this means we are agnostic about the *E* (εε'|X), about the conditional variance
- The intuition from linear regression (heteroskedasticity) does not extend
- In nonlinear likelihood-based models like probit and logit this is not the case

Nonlinear likelihood models and heteroskedasticity

```
. clear
. set seed 111
. set obs 10000
number of observations (_N) was 0, now 10,000
. generate x = rbeta(2,3)
. generate e1 = rnormal(0, x)
. generate e2 = rnormal(0, 1)
. generate y1 = .5 - .5*x + e1 >0
. generate y2 = .5 - .5*x + e2 >0
```

э.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Nonlinear likelihood models and heteroskedasticity

. probit y1 x, nolog							
Probit regress	Number of LR chi2(1 Prob > ch Pseudo R2	.) = ni2 =	10,000 1409.02 0.0000 0.1363				
Log likelihood	1 = -4405.5713	·		PSeudo KZ		0.1303	
у1	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]	
x _cons	-2.86167 2.090816	.0812023	-35.24 50.28		-3.020824 2.009309		
. probit y2 x,	, nolog						
Probit regression				Number of LR chi2(1	.) =	10,000 62.36	
Log likelihood = -6638.0701				Prob > ch Pseudo R2		0.0000 0.0047	
у2	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]	
x _cons	5019177 .4952327	.0636248 .0290706	-7.89 17.04	0.000	6266199 .4382554	3772154 .55221	

October 24, 2018 64/110

H N

Nonparametric regression

- Nonparametric regression is agnostic
- Unlike parametric estimation, nonparametric regression assumes no functional form for the relationship between outcomes and covariates.
- You do not need to know the functional form to answer important research questions
- You are not subject to problems that arise from misspecification

Nonparametric regression

- Nonparametric regression is agnostic
- Unlike parametric estimation, nonparametric regression assumes no functional form for the relationship between outcomes and covariates.
- You do not need to know the functional form to answer important research questions
- You are not subject to problems that arise from misspecification

Nonparametric regression

- Nonparametric regression is agnostic
- Unlike parametric estimation, nonparametric regression assumes no functional form for the relationship between outcomes and covariates.
- You do not need to know the functional form to answer important research questions
- You are not subject to problems that arise from misspecification

• Some parametric functional form assumptions.

- regression: $E(Y|X) = X\beta$
- probit: $E(Y|X) = \Phi(X\beta)$
- Poisson: $E(Y|X) = \exp(X\beta)$

• The relationship of interest is also a conditional mean:

$$E\left(y|X\right) = g\left(X\right)$$

• Where the mean function $g(\cdot)$ is unknown

< 回 > < 三 > < 三 >

• Some parametric functional form assumptions.

- regression: $E(Y|X) = X\beta$
- probit: $E(Y|X) = \Phi(X\beta)$
- Poisson: $E(Y|X) = \exp(X\beta)$

• The relationship of interest is also a conditional mean:

$$E\left(y|X\right) = g\left(X\right)$$

• Where the mean function $g(\cdot)$ is unknown

- Some parametric functional form assumptions.
 - regression: $E(Y|X) = X\beta$
 - probit: $E(Y|X) = \Phi(X\beta)$
 - Poisson: $E(Y|X) = \exp(X\beta)$
- The relationship of interest is also a conditional mean:

 $E\left(y|X\right) =g\left(X\right)$

• Where the mean function $g(\cdot)$ is unknown

4 **A** N A **B** N A **B** N

- Some parametric functional form assumptions.
 - regression: $E(Y|X) = X\beta$
 - probit: $E(Y|X) = \Phi(X\beta)$
 - Poisson: $E(Y|X) = \exp(X\beta)$
- The relationship of interest is also a conditional mean:

$$E\left(y|X\right)=g\left(X\right)$$

• Where the mean function $g(\cdot)$ is unknown

Traditional Approach to Nonparametric Estimation

• A cross section of counties

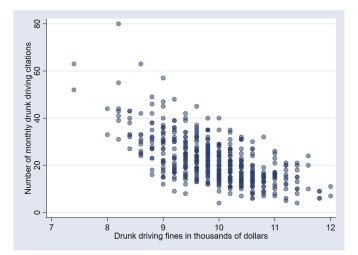
- citations: Number of monthly drunk driving citations
- fines: The value of fines imposed in a county in thousands of dollars if caught drinking and driving.

The Sec. 74

Traditional Approach to Nonparametric Estimation

- A cross section of counties
- citations: Number of monthly drunk driving citations
- fines: The value of fines imposed in a county in thousands of dollars if caught drinking and driving.

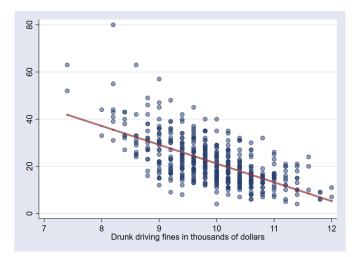
Implicit Relation



2

* 臣

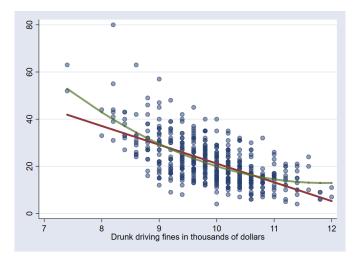
Simple linear regression



October 24, 2018 69/110

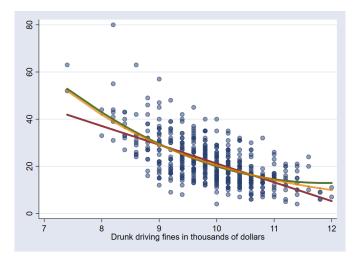
크

Regression with nonlinearities



October 24, 2018 70/110

Poisson regression



October 24, 2018 71/110

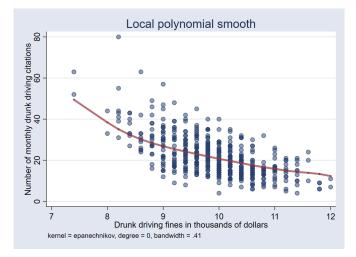
크

イロト イヨト イヨト イヨト

Nonparametric Estimation of Mean Function

lpoly citations fines

.

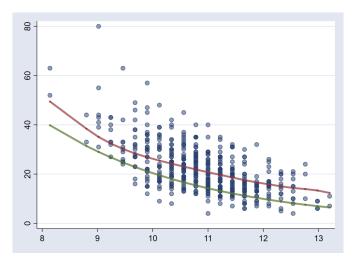


< 17 ▶

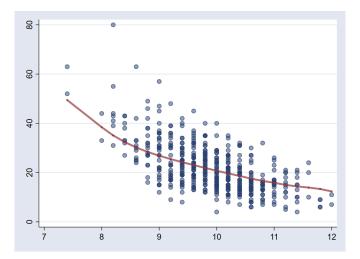
(4) (5) (4) (5)

Now That We have the Mean Function

• What is the effect on the mean of citations of increasing fines by 10% ?



Traditional Approach Gives Us

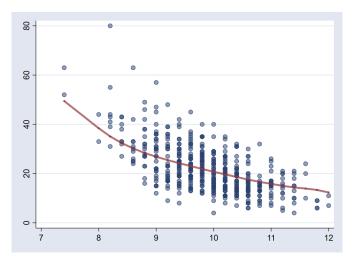


-

Additional Variables

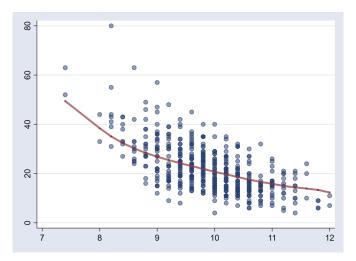
- I would like to add controls
 - Whether county has a college town college
 - Number of highway patrol patrols units per capita in the county
- With those controls I can ask some new questions

• What is the mean of citations if I increase patrols and fines ?

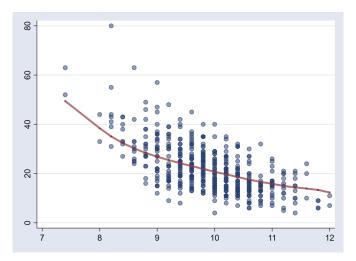


H N

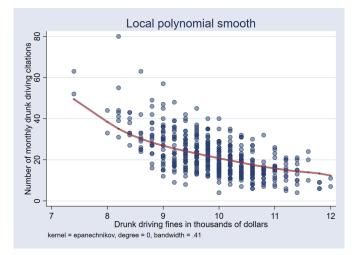
• How does the mean of citations differ for counties where there is a college town, averaging out the effect of patrols and fines?



• What policy has a bigger effect on the mean of citations, an increase in fines, an increase in patrols, or a combination of both?



What We Have Is



October 24, 2018 79/110

2

イロト イヨト イヨト イヨト

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, g(X)

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, g(X)

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, g(X)

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, g(X)

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, g(X)

Nonparametric regression: discrete covariates

Mean function for a discrete covariate

• Mean (probability) of low birthweight (lbweight) conditional on smoking 1 to 5 cigarettes (msmoke=1) during pregnancy

- regress lbweight 1.msmoke, noconstant
- *E*(*lbweigth*|*msmoke* = 1), nonparametric estimate

Nonparametric regression: discrete covariates

Mean function for a discrete covariate

• Mean (probability) of low birthweight (lbweight) conditional on smoking 1 to 5 cigarettes (msmoke=1) during pregnancy

• regress lbweight 1.msmoke, noconstant

• *E*(*lbweigth*|*msmoke* = 1), nonparametric estimate

4 **A** N A **B** N A **B** N

Nonparametric regression: discrete covariates

Mean function for a discrete covariate

• Mean (probability) of low birthweight (lbweight) conditional on smoking 1 to 5 cigarettes (msmoke=1) during pregnancy

. mean lbweig Mean estimatio	ght if msmoke= on		er of obs =	480
	Mean	Std. Err.	[95% Conf.	Interval]
lbweight	.1125	.0144375	.0841313	.1408687

- regress lbweight 1.msmoke, noconstant
- *E*(*lbweigth*|*msmoke* = 1), nonparametric estimate

Conditional mean for a continuous covariate

- Iow birthweight conditional on log of family income fincome
- E(lbweight|fincome = 10.819)
- Take observations near the value of 10.819 and then take an average

October 24, 2018

- $|fincome_i 10.819| \le h$
- *h* is a small number referred to as the bandwidth

Conditional mean for a continuous covariate

- low birthweight conditional on log of family income fincome
- E(lbweight|fincome = 10.819)
- Take observations near the value of 10.819 and then take an average
- $|fincome_i 10.819| \le h$
- *h* is a small number referred to as the bandwidth

Conditional mean for a continuous covariate

- low birthweight conditional on log of family income fincome
- *E*(*lbweight*|*fincome* = 10.819)
- Take observations near the value of 10.819 and then take an average
- $|fincome_i 10.819| \le h$
- *h* is a small number referred to as the bandwidth

Conditional mean for a continuous covariate

- low birthweight conditional on log of family income fincome
- E(lbweight|fincome = 10.819)
- Take observations near the value of 10.819 and then take an average

October 24, 2018

- $|fincome_i 10.819| \le h$
- *h* is a small number referred to as the bandwidth

Conditional mean for a continuous covariate

- low birthweight conditional on log of family income fincome
- *E*(*lbweight*|*fincome* = 10.819)
- Take observations near the value of 10.819 and then take an average

October 24, 2018

- $|fincome_i 10.819| \le h$
- *h* is a small number referred to as the bandwidth

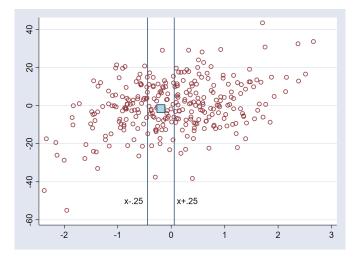
Conditional mean for a continuous covariate

- low birthweight conditional on log of family income fincome
- *E*(*lbweight*|*fincome* = 10.819)
- Take observations near the value of 10.819 and then take an average

October 24, 2018

- |*fincome_i* 10.819| ≤ *h*
- *h* is a small number referred to as the bandwidth

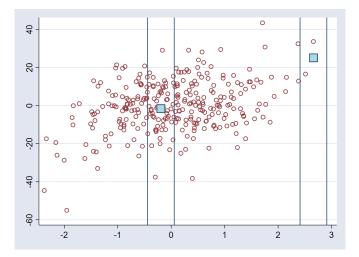
Graphical representation



October 24, 2018 83/110

A B > 4
 B > 4
 B

Graphical example

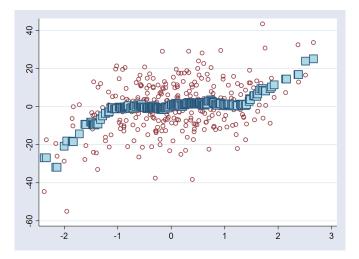


2 October 24, 2018 84/110

ъ

・ロト ・ 日 ・ ・ ヨ ・

Graphical example continued



October 24, 2018 85/110

・ロト ・回ト ・ヨト

Two concepts

🛈 h !!!!

2 Definition of distance between points, $|x_i - x| \le h$

æ

Kernel weights

• Epanechnikov

Gaussian

- Epanechnikov2
- Rectangular(Uniform)

< 17 ▶

3 > 4 3

October 24, 2018

æ

- Triangular
- Biweight
- Triweight
- Cosine
- Parzen

Kernel weights

- Epanechnikov
- Gaussian
- Epanechnikov2
- Rectangular(Uniform)
- Triangular
- Biweight
- Triweight
- Cosine
- Parzen

크

Discrete bandwidths

• Li-Racine Kernel

$$k\left(\cdot\right) = \begin{cases} 1 & \text{if } x_i = x \\ h & \text{otherwise} \end{cases}$$

Cell mean

$$k(\cdot) = \begin{cases} 1 & \text{if } x_i = x \\ 0 & \text{otherwise} \end{cases}$$

 Cell mean was used in the example of discrete covariate estimate E(lbweigth|msmoke = 1)

< 6 b

Discrete bandwidths

• Li-Racine Kernel

$$k\left(\cdot
ight)=\left\{egin{array}{cc} 1 & ext{if} & x_{i}=x\ h & ext{otherwise} \end{array}
ight.$$

- Cell mean $k(\cdot) = \begin{cases} 1 & \text{if } x_i = x \\ 0 & \text{otherwise} \end{cases}$
- Cell mean was used in the example of discrete covariate estimate *E*(*lbweigth*|*msmoke* = 1)

Selecting The Bandwidth

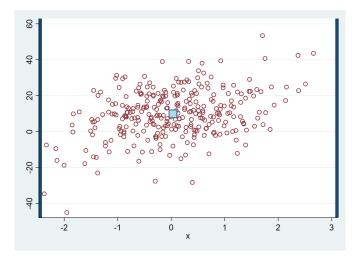
- A very large bandwidth will give you a biased estimate of the mean function with a small variance
- A very small bandwidth will give you an estimate with small bias and large variance

- A TE N - A TE N

Selecting The Bandwidth

- A very large bandwidth will give you a biased estimate of the mean function with a small variance
- A very small bandwidth will give you an estimate with small bias and large variance

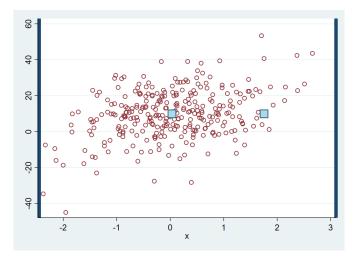
A Large Bandwidth At One Point



October 24, 2018 90/110

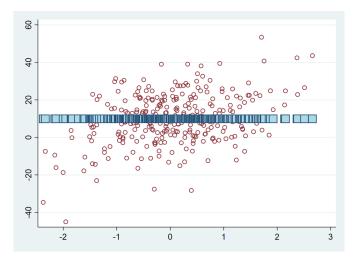
A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A Large Bandwidth At Two Points



October 24, 2018 91/110

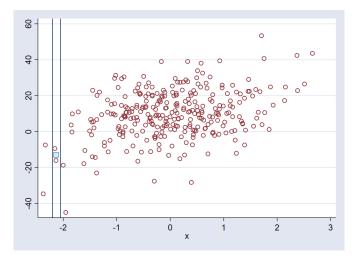
No Variance but Huge Bias



October 24, 2018 92/110

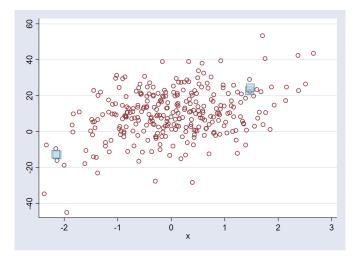
A B + A
 B + A
 B
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A Very Small Bandwidth at a Point



October 24, 2018 93/110

A Very Small Bandwidth at 4 Points



October 24, 2018 94/110

Small Bias Large Variance

October 24, 2018 95/110

・ロト ・ 日 ト ・ 日 ト

Choose bandwidth optimally. Minimize bias-variance trade-off

- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
 - Computes constant (mean) and slope (effects)
 - Mean function and derivatives and effects of mean function
 - There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

Choose bandwidth optimally. Minimize bias-variance trade-off

- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
 - Computes constant (mean) and slope (effects)
 - Mean function and derivatives and effects of mean function
 - There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

Choose bandwidth optimally. Minimize bias-variance trade-off

- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
 - Computes constant (mean) and slope (effects)
 - Mean function and derivatives and effects of mean function
 - There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

Choose bandwidth optimally. Minimize bias-variance trade-off

- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
 - Computes constant (mean) and slope (effects)
 - Mean function and derivatives and effects of mean function
 - There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

Choose bandwidth optimally. Minimize bias-variance trade-off

- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
 - Computes constant (mean) and slope (effects)
 - Mean function and derivatives and effects of mean function
 - There is a bandwidth for the mean computation and another for the effects.

• Local-linear regression is the default

Choose bandwidth optimally. Minimize bias-variance trade-off

- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
 - Computes constant (mean) and slope (effects)
 - Mean function and derivatives and effects of mean function
 - There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

< 回 > < 回 > < 回 >

Simulated data example for continuous covariate

```
. clear
. set obs 1000
number of observations (_N) was 0, now 1,000
. set seed 111
. generate x = (rchi2(5)-5)/10
. generate a = int(runiform()*3)
. generate e = rnormal(0, .5)
```

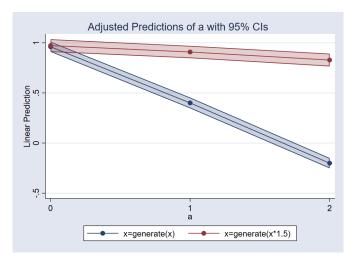
. generate $y = 1 - x - a + 4 \cdot x^2 \cdot a + e$

-

< 日 > < 同 > < 回 > < 回 > < 回 > <

True model unknown to researchers

quietly regress y (c.x##c.x)##i.a
margins a, at(x=generate(x)) at(x=generate(x*1.5))
marginsplot, recastci(rarea) ciopts(fcolor(%30))



< 6 k

npregress kernel y x i.a

- kernel refers to the kind of nonparametric estimation
- By default Stata assumes variables in my model are continuous
- i.a States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

不同 トイモトイモ

- npregress kernel y x i.a
- kernel refers to the kind of nonparametric estimation
- By default Stata assumes variables in my model are continuous
- i.a States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

不同 トイモトイモ

- npregress kernel y x i.a
- kernel refers to the kind of nonparametric estimation
- By default Stata assumes variables in my model are continuous
- i.a States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

The second se

- npregress kernel y x i.a
- kernel refers to the kind of nonparametric estimation
- By default Stata assumes variables in my model are continuous
- i.a States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

The Sec. 74

- npregress kernel y x i.a
- kernel refers to the kind of nonparametric estimation
- By default Stata assumes variables in my model are continuous
- i.a States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

Fitting the model with npregress

. npregress kernel y x i.a, nolog Bandwidth

		Mean	Effect			
	x a	.0616294 .490625				
Local-linear regression Continuous kernel : epanechnikov Discrete kernel : liracine Bandwidth : cross validation			Number of obs E(Kernel obs) R-squared	= = =	1,000 62 0.8409	
	У	Estimate				
Mean	У	.4071379				
Effect	x	8212713				
(1 vs (2 vs	a 0) 0)	5820049 -1.179375				

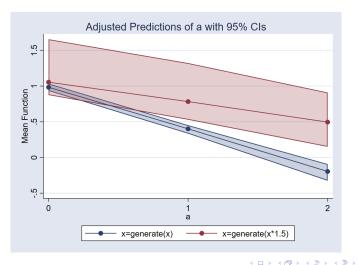
Note: Effect estimates are averages of derivatives for continuous covariates and averages of contrasts for factor covariates.

Note: You may compute standard errors using vce(bootstrap) or reps().

э.

The same effect

quietly regress y (c.x##c.x)##i.a
margins a,at(x=generate(x)) at(x=generate(x*1.5))
marginsplot, recastci(rarea) ciopts(fcolor(%30))



э

Longitudinal/Panel Data

- Under large N and fixed asymptotics behaves like cross-sectional models
- The difficulties arise because of time-invariant unobservables, i.e. *α_i* in

$$\mathbf{y}_{it} = \mathbf{G} (\mathbf{X}_{it}\beta + \alpha_i + \varepsilon_{it})$$

• Our framework still works but we need to be careful with what it means to average over the sample.

• Our model gives us:

$$E(\mathbf{y}_{it}|\mathbf{X}_{it},\alpha_i) = g(\mathbf{X}_{it}\beta + \alpha_i)$$

• We cannot consistently estimate α_i so we integrate it out

$$E_{\alpha}E(y_{it}|X_{it},\alpha_i) = E_{\alpha}g(X_{it}\beta + \alpha_i)$$

$$E_{\alpha}E(y_{it}|X_{it},\alpha_i) = h(X_{it}\theta)$$

• Our model gives us:

$$E(\mathbf{y}_{it}|\mathbf{X}_{it},\alpha_i) = g(\mathbf{X}_{it}\beta + \alpha_i)$$

• We cannot consistently estimate α_i so we integrate it out

$$E_{\alpha}E(y_{it}|X_{it},\alpha_i) = E_{\alpha}g(X_{it}\beta + \alpha_i)$$

$$E_{\alpha}E(y_{it}|X_{it},\alpha_i) = h(X_{it}\theta)$$

• Our model gives us:

$$E(\mathbf{y}_{it}|\mathbf{X}_{it},\alpha_i) = g(\mathbf{X}_{it}\beta + \alpha_i)$$

• We cannot consistently estimate α_i so we integrate it out

$$E_{\alpha} E(y_{it} | X_{it}, \alpha_i) = E_{\alpha} g(X_{it} \beta + \alpha_i)$$

$$E_{\alpha} E(y_{it} | X_{it}, \alpha_i) = h(X_{it} \theta)$$

• Our model gives us:

$$E(\mathbf{y}_{it}|\mathbf{X}_{it},\alpha_i) = g(\mathbf{X}_{it}\beta + \alpha_i)$$

• We cannot consistently estimate α_i so we integrate it out

$$E_{\alpha} E(y_{it} | X_{it}, \alpha_i) = E_{\alpha} g(X_{it} \beta + \alpha_i)$$

$$E_{\alpha} E(y_{it} | X_{it}, \alpha_i) = h(X_{it} \theta)$$

A probit example

```
. clear
. set seed 111
. set obs 5000
number of observations (_N) was 0, now 5,000
. generate id = _n
. generate a = rnormal()
. expand 10
(45,000 observations created)
. bysort id: generate year = _n
. generate x = (rchi2(5)-5)/10
. generate b = int(runiform()*3)
. generate b = int(runiform()*3)
. generate xb = .5*(-1-x + b - x*b) + a
. generate dydx = normalden(.5*(-1-x + b - x*b)/(sqrt(2)))*((-.5-.5*b)/sqrt(2))
. generate y = xb + e > 0
```

∋ na

Panel data estimation

<pre>. xtset id year panel variable: id (strongly balanced) time variable: year, 1 to 10</pre>						
Random-effects probit regression Group variable: id Random effects u i _ Gaussian				Number	of obs = of groups = group:	50,000 5,000
					min = avg = max =	10 10.0 10
Integration method: mvaghermite				Integra Wald ch	tion pts. =	12 5035.63
Log likelihood = -27522.587			Prob >		0.0000	
У	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
х	5212161	.0393606	-13.24	0.000	5983614	4440708
b 1 2	.4859038 1.00774	.0170101 .0179167	28.57 56.25	0.000	.4525647 .9726241	.519243 1.042856
b#c.x 1 2	5454211 -1.059613	.0557341 .0568466	-9.79 -18.64		6546579 -1.17103	4361843 9481958
_cons	506777	.0187516	-27.03	0.000	5435294	4700246
/lnsig2u	.0004287	.0298177			058013	.0588704
sigma_u rho	1.000214 .5001072	.0149121			.9714102 .4855008	1.029873 .5147133
LR test of rho=0: chibar2(01) = 9819.64 Prob >= chibar2 = 0.000						

October 24, 2018

イロト イヨト イヨト イヨト

105/110

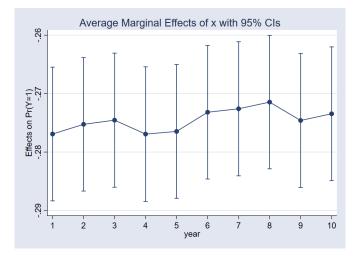
æ

Effect estimation

Average margin Model VCE Expression dy/dx w.r.t.	: OIM : Pr(y=1), pre			Number	of obs =	50,000
		Delta-method		Dill	1050 G 5	T
	dy/dx	Std. Err.	Z	P> z	[95% Conf.	Interval]
x						
year						
1	2769118	.0058397	-47.42	0.000	2883573	2654662
2 3	2752501	.0058296	-47.22 -46.87	0.000	2866759 2860204	2638242
4	2769241	.0058773	-40.87	0.000	2884433	2654049
5	2764666	.0058452	-47.30	0.000	287923	2650102
6	2731819	.005833	-46.83	0.000	2846145	2617493
7	2725905	.0058577	-46.54	0.000	2840714	2611096
8	271447	.0058275	-46.58	0.000	2828686	2600253
9	2745909	.0058566	-46.89	0.000	2860697	2631122
10	2734455	.0058435	-46.79	0.000	2848985	2619924
. summarize dydx						
Variable	Obs	Mean	Std. I	Dev.	Min	Max
dydx	50,000	2609633	.10328	37542	2314220394	023

(日)

Effect estimation

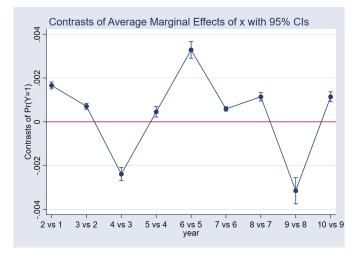


October 24, 2018 107/110

æ

イロト イヨト イヨト イヨト

Effect estimation



October 24, 2018 108/110

æ

イロト イヨト イヨト イヨト

Beware of pu0 or any $\alpha_i = 0$

• The coefficients of population averaged models are useful to compute ATE:

$$ATE = E [F (X_{it}\delta + \delta_{treat} + \alpha_i) - F (X_{it}\delta + \alpha_i)]$$

= $E_X [E_\alpha [F (X_{it}\delta + \delta_{treat} + \alpha_i)]] - E_X [E_\alpha [F (X_{it}\delta + \alpha_i)]]$

- When we use $\alpha_i = 0$ we get it wrong
- The reason is that $E(g(x)) \neq g(E(x))$ when g is not a linear function:

 $E_{x} [F (X_{it}\delta + \delta_{treat} + 0)] - E_{x} [F (X_{it}\delta + 0)] =$ $E_{x} [F (X_{it}\delta + \delta_{treat} + E (\alpha_{i}))] - E_{x} [F (X_{it}\delta + E (\alpha_{i}))] \neq$ $E_{x} [E_{\alpha} [F (X_{it}\delta + \delta_{treat} + \alpha_{i})]] - E_{x} [E_{\alpha} [F (X_{it}\delta + \alpha_{i})]] = ATE$

э.

イロト 不得 トイヨト イヨト

Beware of pu0 or any $\alpha_i = 0$

 The coefficients of population averaged models are useful to compute ATE:

$$\begin{aligned} \mathsf{ATE} &= \mathsf{E}\left[\mathsf{F}\left(\mathsf{X}_{it}\delta + \delta_{treat} + \alpha_{i}\right) - \mathsf{F}\left(\mathsf{X}_{it}\delta + \alpha_{i}\right)\right] \\ &= \mathsf{E}_{\mathsf{X}}\left[\mathsf{E}_{\alpha}\left[\mathsf{F}\left(\mathsf{X}_{it}\delta + \delta_{treat} + \alpha_{i}\right)\right]\right] - \mathsf{E}_{\mathsf{X}}\left[\mathsf{E}_{\alpha}\left[\mathsf{F}\left(\mathsf{X}_{it}\delta + \alpha_{i}\right)\right]\right] \end{aligned}$$

- When we use $\alpha_i = 0$ we get it wrong
- The reason is that E(g(x)) ≠ g(E(x)) when g is not a linear function:

 $E_{x} \left[F \left(X_{it}\delta + \delta_{treat} + 0 \right) \right] - E_{x} \left[F \left(X_{it}\delta + 0 \right) \right] =$ $E_{x} \left[F \left(X_{it}\delta + \delta_{treat} + E \left(\alpha_{i} \right) \right) \right] - E_{x} \left[F \left(X_{it}\delta + E \left(\alpha_{i} \right) \right) \right] \neq$ $E_{x} \left[E_{\alpha} \left[F \left(X_{it}\delta + \delta_{treat} + \alpha_{i} \right) \right] \right] - E_{x} \left[E_{\alpha} \left[F \left(X_{it}\delta + \alpha_{i} \right) \right] \right] = ATE$

э.

イロト 不得 トイヨト イヨト

Beware of pu0 or any $\alpha_i = 0$

 The coefficients of population averaged models are useful to compute ATE:

$$\begin{aligned} \mathsf{ATE} &= \mathsf{E}\left[\mathsf{F}\left(\mathsf{X}_{it}\delta + \delta_{treat} + \alpha_{i}\right) - \mathsf{F}\left(\mathsf{X}_{it}\delta + \alpha_{i}\right)\right] \\ &= \mathsf{E}_{\mathsf{X}}\left[\mathsf{E}_{\alpha}\left[\mathsf{F}\left(\mathsf{X}_{it}\delta + \delta_{treat} + \alpha_{i}\right)\right]\right] - \mathsf{E}_{\mathsf{X}}\left[\mathsf{E}_{\alpha}\left[\mathsf{F}\left(\mathsf{X}_{it}\delta + \alpha_{i}\right)\right]\right] \end{aligned}$$

- When we use $\alpha_i = 0$ we get it wrong
- The reason is that E(g(x)) ≠ g(E(x)) when g is not a linear function:

$$E_{X} [F (X_{it}\delta + \delta_{treat} + 0)] - E_{X} [F (X_{it}\delta + 0)] =$$

$$E_{X} [F (X_{it}\delta + \delta_{treat} + E (\alpha_{i}))] - E_{X} [F (X_{it}\delta + E (\alpha_{i}))] \neq$$

$$E_{X} [E_{\alpha} [F (X_{it}\delta + \delta_{treat} + \alpha_{i})]] - E_{X} [E_{\alpha} [F (X_{it}\delta + \alpha_{i})]] = ATE$$

Concluding Remarks

- Our work is not done after we get the parameters of our model
- After we get the parameters is when our work starts. We can ask interesting questions
- The questions we ask can be placed in a general framework:
 - Define an object of interest E(y|X) or $E(y|X, \alpha)$
 - Explore the multidemensional function
- Use margins and marginsplot

- A TE N - A TE N