Now what do I do with this function?

Enrique Pinzón

StataCorp LP

October 19, 2017 Madrid

э

< 回 > < 回 > < 回 >

- Nonparametric regression and about effects/questions
- npregress
- Mean relation between an outcome and covariates
 - Model birtweight : age, education level, smoked, number of prenatal visits, ...
 - Model wages: age, education level, profession, tenure, ...
 - E(y|X), conditional mean
- Parametric models have a known functional form

Linear regression: $E(y|X) = X\beta$ Binary: $E(y|X) = F(X\beta)$ Poisson: $E(y|X) = \exp(X\beta)$

Nonparametric E (y|X). The result of using predict

Nonparametric regression and about effects/questions

npregress

Mean relation between an outcome and covariates

- Model birtweight : age, education level, smoked, number of prenatal visits, ...
- Model wages: age, education level, profession, tenure, ...
- E(y|X), conditional mean

• Parametric models have a known functional form

Linear regression: $E(y|X) = X\beta$ Binary: $E(y|X) = F(X\beta)$ Poisson: $E(y|X) = \exp(X\beta)$

Nonparametric E (y|X). The result of using predict

- Nonparametric regression and about effects/questions
- npregress
- Mean relation between an outcome and covariates
 - Model birtweight : age, education level, smoked, number of prenatal visits, ...
 - Model wages: age, education level, profession, tenure, ...
 - E(y|X), conditional mean
- Parametric models have a known functional form

Linear regression:
$$E(y|X) = X\beta$$

Binary: $E(y|X) = F(X\beta)$

Poisson: $E(y|X) = \exp(X\beta)$

Nonparametric E (y|X). The result of using predict

- Nonparametric regression and about effects/questions
- npregress
- Mean relation between an outcome and covariates
 - Model birtweight : age, education level, smoked, number of prenatal visits, ...
 - Model wages: age, education level, profession, tenure, ...
 - E(y|X), conditional mean

• Parametric models have a known functional form

Linear regression:
$$E(y|X) = X\beta$$

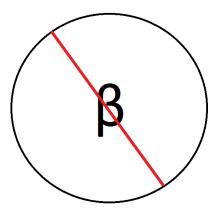
Binary: $E(y|X) = F(X\beta)$

Poisson: $E(y|X) = \exp(X\beta)$

Nonparametric E (y|X). The result of using predict

- Nonparametric regression and about effects/questions
- npregress
- Mean relation between an outcome and covariates
 - Model birtweight : age, education level, smoked, number of prenatal visits, ...
 - Model wages: age, education level, profession, tenure, ...
 - E(y|X), conditional mean
- Parametric models have a known functional form
 - Linear regression: $E(y|X) = X\beta$
 - Binary: $E(y|X) = F(X\beta)$
 - Poisson: $E(y|X) = \exp(X\beta)$

Nonparametric E (y|X). The result of using predict


- Nonparametric regression and about effects/questions
- npregress
- Mean relation between an outcome and covariates
 - Model birtweight : age, education level, smoked, number of prenatal visits, ...
 - Model wages: age, education level, profession, tenure, ...
 - E(y|X), conditional mean
- Parametric models have a known functional form

Linear regression: $E(y|X) = X\beta$

Binary: $E(y|X) = F(X\beta)$

Poisson: $E(y|X) = \exp(X\beta)$

• Nonparametric *E*(*y*|*X*). The result of using predict

500

◆□→ ◆□→ ◆注→ ◆注→ □注

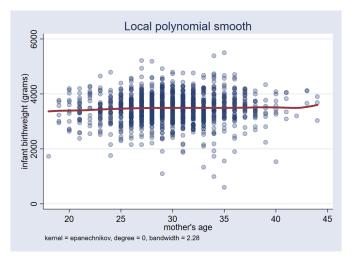
We had nonparametric regression tools

- lpoly
- lowess

2

イロト イヨト イヨト イヨト

We had nonparametric regression tools


- lpoly
- lowess

2

・ロト ・ 四ト ・ ヨト ・ ヨト

What happened in the past

lpoly bweight mage if (msmoke==0 & medu>12 & fedu>12), ///
mcolor(%30) lineopts(lwidth(thick))

A (10) A (10) A (10)

I give you the true function

. list y x a gx in 1/10, noobs

< 回 > < 三 > < 三 >

I give you the true function

. list y x a gx in 1/10, noobs

У	Х	a	gx
13.46181	.7630615	2	12.73349
1.41086	.9241793	1	1.547555
22.88834	1.816095	2	21.43813
10.97789	.8206556	2	13.01466
11.37173	.0440157	2	10.13213
1938587	1.083093	1	.439635
55.87413	3.32037	2	56.56772
2.94979	.8900821	1	1.804343
-1.178733	-2.342678	0	-2.856946
48.79958	3.418333	0	49.94323

< 回 > < 三 > < 三 >

I give you the true function

- Do we know what are the marginal effects
- Do we know causal/treatment effects
- Do we know counterfactuals
- It seems cosmetic
- We cannot use margins

A

I give you the true function

- Do we know what are the marginal effects
- Do we know causal/treatment effects
- Do we know counterfactuals
- It seems cosmetic
- We cannot use margins

I give you the true function

- Do we know what are the marginal effects
- Do we know causal/treatment effects
- Do we know counterfactuals
- It seems cosmetic

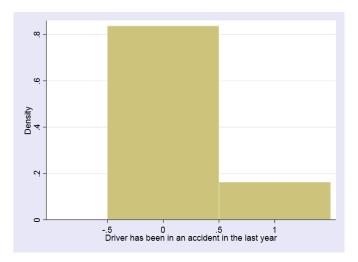
We cannot use margins

I give you the true function

- Do we know what are the marginal effects
- Do we know causal/treatment effects
- Do we know counterfactuals
- It seems cosmetic
- We cannot use margins

A detour

margins


(StataCorp LP)

October 19, 2017 Madrid 8 / 42

2

イロト イヨト イヨト イヨト

Effects: outcome of interest

(StataCorp LP)

2

・ロト ・ 四ト ・ ヨト ・ ヨト

- crash 1 if crash
- traffic Measure of vehicular traffic
- tickets Number of traffic tickets
- male 1 if male

э

3 > 4 3

Probit model and average marginal effects

probit crash tickets traffic i.male

Probit model and average marginal effects

probit crash tickets traffic i.male

. margins Predictive ma Model VCE Expression	: OIM	predict()		Number of	obs =	948
	Margin	Delta-method Std. Err.	Z	₽> z	[95% Conf.	Interval]
_cons	.1626529	.0044459	36.58	0.000	.153939	.1713668

< 回 > < 回 > < 回 >

Probit model and average marginal effects

probit crash tickets traffic i.male

	rgins : OIM : Pr(crash),	predict()		Number o	f obs	=	948
	Margin	Delta-method Std. Err.	Z	₽> z	[95%	Conf.	Interval]
_cons	.1626529	.0044459	36.58	0.000	.15	3939	.1713668
Average margin	: OIM : Pr(crash),	predict()		Number o	f obs	=	948
	dy/dx	Delta-method Std. Err.	z	₽> z	[95%	Conf.	Interval]
tickets traffic	.0857818	.0031049	27.63 2.71		.079	6963 5251	.0918672

3

< 回 > < 回 > < 回 >

Not calculus

> ,	contrast	(atcontrast (affic=gene:	rate(traffic))	///
Contrasts of p Model VCE	predictive man : OIM	rgins				
Expression :		predict()				
	traffic					
2at	traffic	= traffi	c			
		Delta-method Std. Err.	[95% Conf.	. Interval]		
(2 vs 1)	0028589	.0010882	0049917	0007262		

2

イロト イヨト イヨト イヨト

Probit model and counterfactuals

. margins ma Predictive ma Model VCE Expression	rgins : OIM	predict()		Number of	obs =	948
	Margin	Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]
male 0 1		.0051778	14.43 35.21		.0645481 .2681008	.0848446

Note: dy/dx for factor levels is the discrete change from the base level.

э

イロト イヨト イヨト イヨト

Probit model and counterfactuals

. margins mal Predictive man Model VCE Expression	rgins : OIM	predict()		Number of	obs	=	948
	Margin	Delta-method Std. Err.	Z	P> z	[95% C	Conf.	Interval]
male 0 1	.0746963 .2839021	.0051778	14.43 35.21		.06454		.0848446 .2997034
. margins, dy Average margir Model VCE Expression dy/dx w.r.t.	hal effects : OIM : Pr(crash),	predict()		Number of	obs	=	948
	dy/dx	Delta-method Std. Err.	Z	₽> z	[95% C	Conf.	Interval]
1.male	.2092058	.0105149	19.90	0.000	.1885	97	.2298145

Note: dy/dx for factor levels is the discrete change from the base level.

э

イロト イポト イヨト イヨト

More counterfactuals

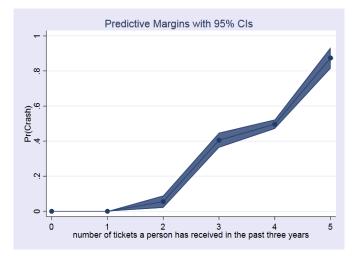
. margins, dy Average margin Model VCE Expression dy/dx w.r.t.	nal effects : OIM : Pr(crash),	predict()		Number c	of obs	=	948
	dy/dx	Delta-method Std. Err.	z	P> z	[95%	Conf.	Interval]
tickets	.0857818	.0031049	27.63	0.000	.0796	5963	.0918672

イロト イポト イヨト イヨト

More counterfactuals

. margins, dy Average margin Model VCE Expression dy/dx w.r.t.	hal effects : OIM : Pr(crash),	predict()		Number	of obs	=	948
	dy/dx	Delta-method Std. Err.	z	P> z	[95%	Conf.	Interval]
tickets	.0857818	.0031049	27.63	0.000	.079	6963	.0918672

. margins, at(tickets=(0(1)5)) contrast(atcontrast(ar) nowald)


Contrasts of	predictive margins					
Model VCE	: OIM	OIM				
Expression	: Pr(crash),	: Pr(crash), predict()				
1at	: tickets	=	0			
2at	: tickets	=	1			
3at	: tickets	=	2			
4at	: tickets	=	3			
5at	: tickets	=	4			
6at	: tickets	=	5			
	Contrast	Delta-method Std. Err.	[95% Conf.	Interval]		
	.0001208 .0547975 .3503763 .091227	.0177313 .0225727	0002067 .0200448 .3061346 .0327747	.0004484 .0895502 .3946179 .1496793		

э

・ロト ・ 四ト ・ ヨト ・ ヨト

marginsplot

margins, at(tickets=(0(1)5)) marginsplot, ciopts(recast(rarea))

(StataCorp LP)

October 19, 2017 Madrid 15 / 42

Back to nonparametric regression

npregress and nonparametric regression

(StataCorp LP)

Nonparametric regression: discrete covariates

Mean function for a discrete covariate

• Mean wage conditional on having a college degree

		4,795

- regress wage collgrad, noconstant
- *E*(*wage*|*collgrad* = 1), nonparametric estimate

< 回 > < 回 > < 回 >

Nonparametric regression: discrete covariates

Mean function for a discrete covariate

• Mean wage conditional on having a college degree

		4,795

- regress wage collgrad, noconstant
- *E*(*wage*|*collgrad* = 1), nonparametric estimate

< 回 > < 回 > < 回 >

Nonparametric regression: discrete covariates

Mean function for a discrete covariate

• Mean wage conditional on having a college degree

. mean wage if Mean estimation	collgrad==1		of obs =	4,795
	Mean	Std. Err.	[95% Conf.	Interval]
wage	8.648064	.0693118	8.512181	8.783947

- regress wage collgrad, noconstant
- *E*(*wage*|*collgrad* = 1), nonparametric estimate

- A TE N - A TE N

Nonparametric regression: continuous covariates

Conditional mean for a continuous covariate

- Mean wage conditional on tenure, measured in years
- *E*(*wage*|*tenure* = 5.583333)
- Take observations near the value of 5.583333 and then take an average
- $|tenure_i 5.583333| \le h$
- *h* is a small number referred to as the bandwidth

伺下 イヨト イヨ

Nonparametric regression: continuous covariates

Conditional mean for a continuous covariate

- Mean wage conditional on tenure, measured in years
- *E*(*wage*|*tenure* = 5.583333)
- Take observations near the value of 5.583333 and then take an average
- $|tenure_i 5.583333| \le h$
- *h* is a small number referred to as the bandwidth

周 ト イ ヨ ト イ ヨ

Nonparametric regression: continuous covariates

Conditional mean for a continuous covariate

- Mean wage conditional on tenure, measured in years
- *E*(*wage*|*tenure* = 5.583333)
- Take observations near the value of 5.583333 and then take an average
- $|tenure_i 5.583333| \le h$
- *h* is a small number referred to as the bandwidth

Nonparametric regression: continuous covariates

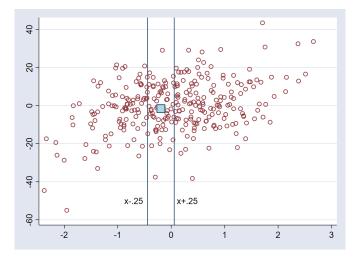
Conditional mean for a continuous covariate

- Mean wage conditional on tenure, measured in years
- *E*(*wage*|*tenure* = 5.583333)
- Take observations near the value of 5.583333 and then take an average
- $|tenure_i 5.583333| \le h$
- *h* is a small number referred to as the bandwidth

(4) (5) (4) (5)

Nonparametric regression: continuous covariates

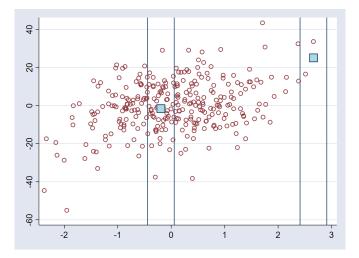
Conditional mean for a continuous covariate


- Mean wage conditional on tenure, measured in years
- *E*(*wage*|*tenure* = 5.583333)
- Take observations near the value of 5.583333 and then take an average
- $|tenure_i 5.583333| \le h$
- *h* is a small number referred to as the bandwidth

Nonparametric regression: continuous covariates

Conditional mean for a continuous covariate

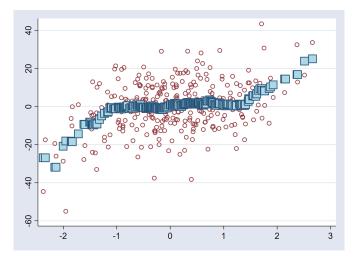
- Mean wage conditional on tenure, measured in years
- *E*(*wage*|*tenure* = 5.583333)
- Take observations near the value of 5.583333 and then take an average
- $|tenure_i 5.583333| \le h$
- *h* is a small number referred to as the bandwidth


Graphical example

2

<ロト <回ト < 回ト < 回

Graphical example



(StataCorp LP)

2

<ロト <回ト < 回ト < 回

Graphical example continued

э

Two concepts

🚺 h

2 Definition of distance between points, $\left|\frac{x_i - x}{h}\right| \le 1$

3

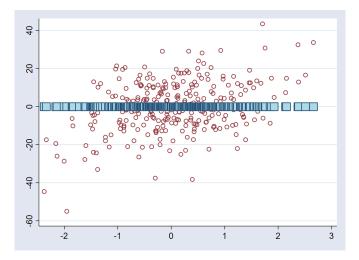
A (10) A (10)

Kernel weights

$$u \equiv \frac{x_i - x}{h}$$

ヨト・モヨト

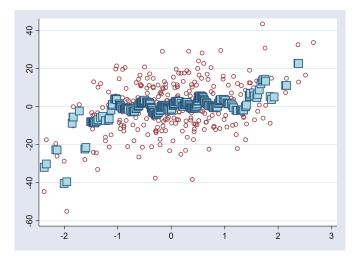
Kernel weights


 $u \equiv \frac{x_i - x_i}{h}$ Kernel K(u) $-\frac{u^{\bar{2}}}{2}$) Gaussian $\frac{1}{\sqrt{2\pi}} \exp \left(\frac{1}{\sqrt{2\pi}} \right)$ $\frac{3}{4\sqrt{5}}\left(1-\frac{u^2}{5}\right)\mathbb{I}\left(|u|\leq\sqrt{5}\right)$ Epanechnikov $\frac{3}{4}(1-u^2)\mathbb{I}(|u|<1)$ Epanechnikov2 $\frac{1}{2}\mathbb{I}(|u| \leq 1)$ Rectangular(Uniform) Triangular $(1-|u|)\mathbb{I}(|u|\leq 1)$ $\frac{15}{16} (1-u^2)^2 \mathbb{I} (|u| \le 1)$ Biweight $\frac{35}{32}(1-u^2)^3 \mathbb{I}(|u| \le 1)$ Triweight Cosine $(1 + \cos(2\pi u)) \mathbb{I}(|u| \le \frac{1}{2})$ $\left(\frac{4}{3} - 8u^2 + 8|u|^3\right) \mathbb{I}\left(|u| \le \frac{1}{2}\right)$ Parzen $+\frac{8}{2}(1-|u|)^{3}\mathbb{I}(\frac{1}{2}<|u|<1)$

Discrete bandwidths

• Default • Cell mean $k(.) = \begin{cases} 1 & \text{if } x_i = x \\ h & \text{otherwise} \end{cases}$ • Cell mean $k(.) = \begin{cases} 1 & \text{if } x_i = x \\ 0 & \text{otherwise} \end{cases}$

3


Bandwidth (bias)

æ

イロト イヨト イヨト イヨト

Bandwidth (variance)

э

イロト イヨト イヨト イヨト

Estimation

- Choose bandwidth optimally. Minimize bias-variance trade-off
 - Cross-validation (default)
 - Improved AIC (IMAIC)
- Compute a regression for every point in data (local linear)
 - Computes derivatives and derivative bandwidths
- Compute a mean for every point in data (local-constant)

< 回 > < 三 > < 三 >

Example

• citations monthly drunk driving citations

- taxes 1 if alcoholic beverages are taxed
- fines drunk driving fines in thousands
- csize city size (small, medium, large)
- college 1 if college town

< 🗇 > < 🖻 > < 🖻

Example

- citations monthly drunk driving citations
- taxes 1 if alcoholic beverages are taxed
- fines drunk driving fines in thousands
- csize city size (small, medium, large)
- college 1 if college town

npregress bandwidth

. npregress kernel citations fines

Computing mean function

Minimizing cross-validation function:

Iteration	0:	Cross-validation	criterion	=	35.478784
Iteration	1:	Cross-validation	criterion	=	4.0147129
Iteration	2:	Cross-validation	criterion	=	4.0104176
Iteration	3:	Cross-validation	criterion	=	4.0104176
Iteration	4:	Cross-validation	criterion	=	4.0104176
Iteration	5:	Cross-validation	criterion	=	4.0104176
Iteration	6:	Cross-validation	criterion	=	4.0104006

Computing optimal derivative bandwidth

Iteration	0:	Cross-validation	criterion	=	6.1648059
Iteration	1:	Cross-validation	criterion	=	4.3597488
Iteration	2:	Cross-validation	criterion	=	4.3597488
Iteration	3:	Cross-validation	criterion	=	4.3597488
Iteration	4:	Cross-validation	criterion	=	4.3597488
Iteration	5:	Cross-validation	criterion	=	4.3597488
Iteration	6:	Cross-validation	criterion	=	4.3595842
Iteration	7:	Cross-validation	criterion	=	4.3594713
Iteration	8:	Cross-validation	criterion	=	4.3594713

э.

イロト 不得 トイヨト イヨト

npregress output

. npregress kernel citations fines, nolog Bandwidth

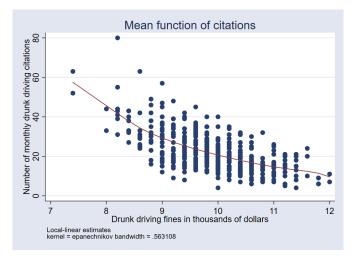
	Mean	Effect			
Mean fines	.5631079	.924924			
Local-linear Kernel : ep Bandwidth: cr	anechnikov	n	Number of obs E(Kernel obs) R-squared	= = =	51 22 0.43
citations	Estimate				
Mean citations	22.33999				
Effect fines	-7.692388				

Note: Effect estimates are averages of derivatives. Note: You may compute standard errors using vce(bootstrap) or reps().

3

イロト 不得 トイヨト イヨト

npregress predicted values


. describe _*			
	display format	value label	variable label
Mean_citations double _d_Mean_citat_s double			mean function derivative of mean function w.r.t fines

2

・ 同 ト ・ ヨ ト ・ ヨ ト

npgraph

. npgraph

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

npregress standard errors |

- . quietly npregress kernel citations fines, reps(3) seed(111)
- . estimates store A
- . quietly npregress kernel citations fines, vce(bootstrap, reps(3) seed(111))
- . estimates store B
- . estimates table A B, se

Varia	able	A	В	
Mean citat:	Lons	22.339995 .65062763	22.339995 .65062763	
Effect f:	Lnes	-7.6923878 .23195785	-7.6923878 .23195785	

legend: b/se

-

イロト 不得 トイヨト イヨト

npregress standard errors II (percentile C.I.)

. npregress

Bandwidth

	Mean	Effect				
Mean fines	.5631079	.924924				
Local-linear m Kernel : epa Bandwidth: cro	anéchnikov	1	E (Ke	ber of obs ernel obs) quared	= = =	500 282 0.4380
citations	Observed Estimate	Bootstrap Std. Err.	Z	₽> z	Perce [95% Conf.	
Mean citations	22.33999	.6506276	34.34	0.000	21.54051	22.74807
Effect fines	-7.692388	.2319578	-33.16	0.000	-7.701931	-7.267385

Note: Effect estimates are averages of derivatives.

3

A more interesting model

. npregress kernel citations fines i.taxes i.csize i.college,

reps(200) seed(10)

Bandwidth

	Mean	Effect				
Mean fines taxes csize college	.4471373 .4375656 .3938759 .554583	.6537197 .4375656 .3938759 .554583				
Local-linear : Continuous ke: Discrete kerne Bandwidth	rnél : epanecl el : liracio		E (K	ber of obs ernel obs) quared	= = =	500 224 0.8010
citations	Observed Estimate	Bootstrap Std. Err.	z	₽> z	Perce [95% Conf.	
Mean citations	22.26306	.4616724	48.22	0.000	21.39581	23.30278
Effect fines	-7.332833	.3341222	-21.95	0.000	-7.970275	-6.665263
taxes (tax vs no tax) csize	-4.502718	.4946306	-9.10	0.000	-5.360078	-3.465397
(medium vs small) (large vs	5.300524	.2731374	19.41	0.000	4.723821	5.879301
small)	11.05053	.5236424	21.10	0.000	9.942253	12.1252
college (college vs	5 050100	500154			4 007100	6 0 6 0 0 0 7 7
not coll)	5.953188	.500154	11.90	0.000	4.937102	6.96983

Note: Effect estimates are averages of derivatives for continuous covariates and averages of contrasts for factor covariates.

margins

> con (running marg: Bootstrap rep: 1	lications (200	rast(r) nowal	d) reps(200) 4		.15)) ///	r
		5 -	Numk	per of obs	-	500
			Repl	lications	=	200
Expression 1at 2at		on, predict() = fines = fines*	1.15			
	Observed Contrast	Bootstrap Std. Err.	Perce [95% Conf.			
(2 vs 1)	-8.254875	.8058215	-10.44121	-7.381583		

イロン イ理 とく ヨン イヨン

æ

Another example with margins

$$y = \begin{cases} 10 + x^3 + \varepsilon & \text{if } a = 0\\ 10 + x^3 - 10x + \varepsilon & \text{if } a = 1\\ 10 + x^3 + 3x + \varepsilon & \text{if } a = 2 \end{cases}$$

æ

A (10) > (10)

Mean and marginal effects

. quietly regress y (c.x#c.x#c.x)#i.a c.x#i.a . margins Predictive margins Number of obs = 1,000 Model VCE : CLS Expression : Linear prediction, predict()

	I	Delta-method	l			
	Margin	Std. Err.	t	P> t	[95% Conf.	Interval]
_cons	12.02269	.0313857	383.06	0.000	11.9611	12.08428

. margins, dydx(*)
Average marginal effects Number of obs = 1,000
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : 1.a 2.a x

Note: dy/dx for factor levels is the discrete change from the base level.

Mean and marginal effects

. quietly regress y (c.x#c.x#c.x)#i.a c.x#i.a . margins Predictive margins Number of obs = 1,000 Model VCE : CLS Expression : Linear prediction, predict()

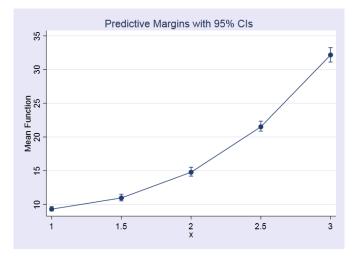
		Delta-method Std. Err.		P> t	[95% Conf.	Interval]
_cons	12.02269	.0313857	383.06	0.000	11.9611	12.08428

. margins, dydx(*)
Average marginal effects Number of obs = 1,000
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : 1.a 2.a x

	dy/dx	Delta-metho Std. Err.		P> t	[95% Conf.	Interval]
a 1 2	-9.781302 3.028531		-170.32 55.65	0.000	-9.894 2.921742	-9.668604 3.13532
x	3.97815	.0303517	131.07	0.000	3.91859	4.037711

Note: dy/dx for factor levels is the discrete change from the base level.

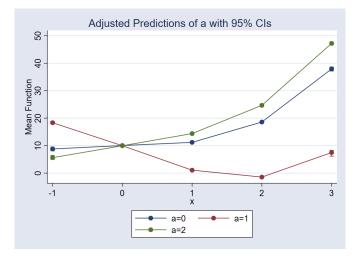
npregress estimates


. npregress kernel y x i.a, vce(bootstrap, reps(100) seed(111)) (running npregress on estimation sample) Bootstrap replications (100) 1 1 2 4 5 						
Bandwidth						
	Mean	Effect				
Mean x	.3630656 3.05e-06	.5455175 3.05e-06				
Local-linear regression Continuous kernel : epanechnikov Discrete kernel : liracine Bandwidth : cross validation		ine	Number of obs E(Kernel obs) R-squared		= = =	1,000 363 0.9888
У	Observed Estimate	Bootstrap Std. Err.	Z	P> z		entile Interval]
Mean Y	12.34335	.3195918	38.62	0.000	11.57571	12.98202
Effect x	3.619627	.2937529	12.32	0.000	3.063269	4.143166
a (1 vs 0) (2 vs 0)	-9.881542 3.168084	.3491042	-28.31 14.88	0.000	-10.5277 2.73885	-9.110781 3.570004

Note: Effect estimates are averages of derivatives for continuous covariates and averages of contrasts for factor covariates.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Function for different values of x


. margins, at(x=(1(.5)3)) reps(100) seed(111)

< 回 > < 三 > < 三 >

Funtion at different values of x for all a

. margins a, at(x=(-1(1)3)) reps(100) seed(111)

< 回 > < 回 > < 回 >

Conclusion

- Intuition about nonparametric regression
- Details about how npregress
- Importance of being able to ask questions to your model

4 A N