Introduction to Markov-switching regression models using the mswitch command

Gustavo Sánchez

StataCorp

October 22, 2015
Madrid, Spain stere

Introduction to Markov-switching regression models using the mswitch command

Gustavo Sánchez

StataCorp

October 22, 2015
Madrid, Spain stere

Outline

(1) When we use Markov-Switching Regression Models
(2) Introductory concepts
(0) Markov-Switching Dynamic Regression

- Predictions
- State probabilities predictions
- Level predictions
- State expected durations
- Transition probabilities
© Markov-Switching AR Models

When we use Markov-Switching Regression Models

- The parameters of the data generating process (DGP) vary over a set of different unobserved states.
- We do not know the current state of the DGP, but we can estimate the probability of each possible state.

When we use Markov-Switching Regression Models

- Some examples:
- In economics
- Asymmetrical behavior over GDP expansions and recessions (Hamilton 1989).
- Exchange rates (Engel and Hamilton 1990).
- Interest rates (García and Perron 1996).
- Stock returns (Kim et al. 1998).
- In epidemiology: Incidence rates of infectious disease in epidemic and nonepidemic states (Lu et al. 2010).
- In psychology: manic depressive states (Hamaker et al. 2010).

When we use Markov-Switching Regression Models

- The time series in all those examples are characterized by DGPs with dynamics that are state dependent.
- States may be recessions and expansions, high/low volatility, depressive/non-depressive, epidemic/non-epidemic states, etc.
- Any of the parameters (beta estimates, sigma, AR components) may be different for each state.

Different volatilities - IPC for Spain

Consumer price index (CPI) - Spain 1960-2015

Different volatilities - IPC for Spain

CPI - First difference

Different State Levels? - Fertility rate Spain 1960-2014

Fertility rate, total (births per woman)

Different State Levels? - Fertility rate Spain 1960-2014

Fertility rate, total (births per woman) First Difference

Different AR structure Levels? - Interbank interest rate UEM

Tipo interes interbancario (3 meses) - First Difference

Source: Banco de España

Introductory Concepts

Markov-Switching Regression Models

- Models for time series that transition over a set of finite states.
- States are unobserved and the process can switch among states throughout the sample.
- The time of transition between states and the duration in a particular state are both random.
- The transitions follow a Markov process.
- We can estimate state-dependent and state-independent parameters.

Markov-Switching Regression Models

- Let's then define a Markov Chain:
- Assume the states are defined by a random variable S_{t} that takes the integer values $1,2, \ldots, \mathrm{~N}$.
- Then, the probability of the current state, j, only depends on the previous state:

$$
P\left(S_{t}=j \mid S_{t-1}=i, S_{t-2}=k, S_{t-3}=w \ldots\right)=P\left(S_{t}=j \mid S_{t-1}=i\right)=p_{i j}
$$

Markov-Switching Regression Models

- Let's define a simple constant only model with three states:

$$
y_{t}=\mu_{s}+\varepsilon_{t}
$$

Where:

$$
\begin{array}{lll}
\mu_{s}=\mu_{1} & \text { if } & s=1 \\
\mu_{s}=\mu_{2} & \text { if } & s=2 \\
\mu_{s}=\mu_{3} & \text { if } & s=3
\end{array}
$$

- We do not know with certainty the current state, but we can estimate the probability.
- We can also estimate the transition probabilities:
- $p_{i j}$: probability of being in state j in the current period given that the process was in state in the previous period.

Transition probabilities, expected duration, tests

- We will then be interested in obtaining the matrix with the transition probabilities:

$$
\left(\begin{array}{lll}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & p_{33}
\end{array}\right)
$$

Where:

$$
\begin{aligned}
& p_{11}+p_{12}+p_{13}=1 \\
& p_{21}+p_{22}+p_{23}=1 \\
& p_{31}+p_{32}+p_{33}=1
\end{aligned}
$$

- We will also be interested in the expected duration for each state.
- We can perform tests for comparing parameters across states

Markov-switching dynamic regression

Markov-switching dynamic regression

- Allow states to switch according to a Markov process
- Allow for quick adjustments after a change of state.
- Often applied to high frequency data (monthly,weekly,etc.)

Markov-switching dynamic regression

- The model can be written as:

$$
y_{t}=\mu_{s}+x_{t} \alpha+z_{t} \beta_{s}+\epsilon_{s, t}
$$

Where:
y_{t} : Dependent variable
μ_{s} : State-dependent intercept
x_{t} : Vector of exog. variables with state invariant coefficients α
z_{t} : Vector of exog. variables with state-dependent coefficients β_{s}
$\epsilon_{s, t} \sim \operatorname{iid} N\left(0, \sigma_{s}^{2}\right)$

Markov-switching dynamic regression

```
mswitch dr depvar [nonswitch_varlist] [if] [in] [, options]
```


Markov switching dynamic regression

- Example 1:
- Consumer price index for Spain 2011=100
- Period: 1961m1-2015m8
- Source: Banco de España

Consumer price index (CPI) - Spain 1960-2015

Markov switching dynamic regression with three states

- Code (D. indicates first difference)
- Fit the model
- mswitch dr D.ipc, states(3) varswitch nolog
- Predict probabilities of being at each state
- predict pr_state1 pr_state2 pr_state3, pr

Markov switching dynamic regression with three states

MSDR - Example 1: Probability of being in State 1

Probability of being in State 1

CPI - First difference

Markov switching dynamic regression with three states

Markov-switching dynamic regression						
Sample: 1961m2 - 2015m8				No. of	=	655
Number of states $=3$				AIC	=	-0.8669
Unconditional probabilities: transition				HQIC	=	-0.8350
				SBIC	=	-0.7847
Log likelihood $=295.91091$						
D.ipc	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf.	Interval]
State1						
_cons	. 2060383	. 0089781	22.95	0.000	. 1884416	. 223635
State2						
_cons	. 0262835	. 0027906	9.42	0.000	. 020814	. 0317529
State3						
_cons	. 1668645	. 0430856	3.87	0.000	. 0824182	. 2513108
sigma1	. 1594772	. 0065446			. 1471524	. 1728342
sigma2	. 0321699	. 0020182			. 0284478	. 0363791
sigma3	. 5534114	. 0306889			. 4964158	. 6169509

MSDR - Example 1: Probability of being in State 2

Probability of being in State 2

CPI - First difference

Markov switching dynamic regression with three states

MSDR - Example 1: Probability of being in State 3

Probability of being in State 3

CPI - First difference

Markov switching dynamic regression

- Example 2:
- Fertility rate (total births per woman) for Spain
- Period: 1960-2013
- Source: World Bank

Fertility rate, total (births per woman)

Fertility rate, total (births per woman) First Difference

Source: World Benk
Source: World Bank

Markov switching dynamic regression

- Example 2: Fertility rate in Spain (1960-2013)

Variables:

fertility: Fertility rate (total births per woman) for Spain
ch_mortality: Mortality rate, under 5 (per 1,000 live births) gni_pcapita: GNI per capita (thousands - 2005 US\$)
school_access: Primary and secondary school enrollment, (gross), gender parity index_(GPI)

Markov switching dynamic regression

- Fit the model
mswitch dr D.fertility D.ch_mortality, states(2) varswitch /// switch(D.gni_pcapita D.school_access) vsquish
- Test on equality of coefficients across states test _b[State1:D.school_access]=_b[State2:D.school_access],notest test _b[State1:D.gni_pcapita]=_b[State2:D.gni_pcapita],accumulate
- Transition probabilities and expected duration
estat transition
estat duration

Markov switching dynamic regression for fertility rate

. mswitch dr D.fertility D.ch_mortality, states(2) varswitch ///
> switch(D.gni_pcapita D.school_access) vsquish
Markov-switching dynamic regression

D.fertility	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf.	Interval]
D.fertility ch_mortality D1.	. 0632344	. 0107531	5.88	0.000	. 0421587	. 08431
$\begin{aligned} & \text { State1 } \\ & \quad \text { gni_pcapita } \end{aligned}$						
school_access	. 0434944	. 0115159	3.78	0.000	. 0209236	. 0660652
D1.	-1.042254	. 1833868	-5.68	0.000	-1.401686	-. 6828228
_cons	-. 058854	. 0117087	-5.03	0.000	-. 0818027	-. 0359054
State2 gni_pcapita						
D1.	. 0647241	. 0149331	4.33	0.000	. 0354557	. 0939925
school_access						
D1.	-1. 15316	. 557033	-2.07	0.038	-2.244925	-. 0613957
_cons	-. 0078558	. 0089525	-0.88	0.380	-. 0254023	. 0096907
sigma1	. 0087495	. 0020577			. 0055183	. 0138728
sigma2	. 0372011	. 0046423			. 0291296	. 0475091

Markov switching dynamic regression for fertility rate

- Test on the equality of coefficients across states

```
. test _b[State1:D.gni_pcapita]=_b[State2:D.gni_pcapita], notest
```

(1) [State1]D.gni_pcapita - [State2]D.gni_pcapita $=0$
. test _b[State1:D.school_access]=_b[State2:D.school_access], accumulate
(1) [State1]D.gni_pcapita - [State2]D.gni_pcapita $=0$
(2) [State1]D.school_access - [State2]D.school_access $=0$
chi2 (2) = 1.23
Prob > chi2 $=0.5411$

- Test on the equality of sigma across states

```
. test _b[lnsigma1:_cons]=_b[lnsigma2:_cons]
( 1) [lnsigma1]_cons - [lnsigma2]_cons = 0
    chi2(1) = 29.23
    Prob > chi2 = 0.0000
```


Markov switching dynamic regression for fertility rate

```
. mswitch dr D.fertility D.(ch_mortality gni_pcapita school_access), ///
> states(2) varswitch vsquish
```

Markov-switching dynamic regression

D.fertility	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf.	Interval]
D.fertility ch_mortality						
D1.	. 048953	. 0072042	6.80	0.000	. 034833	. 0630729
gni_pcapita D1.	. 0505516	. 0091887	5.50	0.000	. 0325422	. 068561
school_access D1.	-. 6381832	. 2571355	-2.48	0.013	-1.142159	-. 134207
State1						
_cons	-. 0704097	. 0082148	-8.57	0.000	-. 0865104	-. 054309
State2						
_cons	. 0013952	. 0071861	0.19	0.846	-. 0126893	. 0154798
sigma1	. 019568	. 0037427			. 0134505	. 0284678
sigma2	. 0278482	. 0041421			. 0208062	. 0372737

Markov switching dynamic regression for fertility rate

- Transition probabilities
. estat transition

Number of obs $=42$

Transition Probabilities	Estimate	Std. Err.	[95\% Conf. Interval]	
p11	.9178466	.06678	.6632132	.9844686
p12	.0821534	.06678	.0155314	.3367868
p 21	.0311448	.0327426	.003818	.2123665
p 22	.9688552	.0327426	.7876335	.996182

Markov switching dynamic regression for fertility rate

- Expected duration
. estat duration

Number of obs $=42$

Expected Duration	Estimate	Std. Err.	[95\% Conf. Interval]	
State1	12.17235	9.894526	2.969237	64.38565
State2	32.10806	33.75521	4.70884	261.9202

Markov switching dynamic regression for fertility rate

Probability of being in State 1

Probability of being in State 2

Markov-switching AR model

- Allow states to switch according to a Markov process
- Allow a gradual adjustment after a change of state.
- Often applied to lower frequency data (quarterly, yearly, etc.)

Markov-switching AR model

- The model can be written as:

$$
y_{t}=\mu_{s_{t}}+x_{t} \alpha+z_{t} \beta_{s_{t}}+\sum_{i=1}^{P} \phi_{i, s_{t}}\left(y_{t-i}-\mu_{s_{t-i}}-x_{t-i} \alpha+z_{t-i} \beta_{s_{t-i}}\right)+\epsilon_{t, s}
$$

Where:
y_{t} : Dependent variable
$\mu_{s_{t}}$: State-dependent intercept
x_{t} : Vector of exog. variables with state invariant coefficients α
z_{t} : Vector of exog. variables with state-dependent coefficients $\beta_{s_{t}}$
$\phi_{i, s_{t}}: i^{\text {th }}$ AR term in state s_{t}
$\epsilon_{s, t} \sim \operatorname{iid} N\left(0, \sigma_{s}^{2}\right)$

Markov switching AR model

- Example 3:
- Interbank interest rate for Spain
- Period: 1989Q4-2015Q3
- Source: Banco de España

Tipo interes interbancario (3 meses)

Tipo interes interbancario (3 meses) - First Difference

Markov switching AR model

- Example 3: Interest rate in Spain (1990Q1-2015Q3)

Variables:

r_interbank: Three months interbank rate
ipc: Consumer price index

Markov switching AR model

- Fit the model
mswitch ar D.r_interbank D.ipc if tin(1990q2,2012q4), /// states(2) ar(1) arswitch varswitch constant /// switch(,noconstant) nolog
- Transition probabilities and expected duration

estat transition
estat duration

Markov switching AR model

Markov switching AR model

. estat transition
Number of obs $=91$

Transition Probabilities	Estimate	Std. Err.	[95\% Conf. Interval]	
p11	.6238106	.1906249	.2523082	.8906938
p12	.3761894	.1906249	.1093062	.7476918
p21	.0917497	.0529781	.0282364	.2599153
p22	.9082503	.0529781	.7400847	.9717636

. estat duration
Number of obs = 91

Expected Duration	Estimate	Std. Err.	[95\% Conf. Interval]	
State1	2.658235	1.346997	1.33745	9.148609
State2	10.89922	6.293423	3.847408	35.41533

MSAR - Example 3: Probability of being in each State

Markov switching AR model

- predict state*, yhat dynamic (tq(2012q4))
- forvalues $i=1 / 2$ \{

2. generate y_st` $i^{\prime}=s t a t e{ }^{\prime} i^{\prime}+$ L. r_interbank 3. \}

Interest rate predictions by switching states

Markov switching AR model

- Comparing results from a different dynamic model (ARCH)
. arch D.r_interbank D.ipc if $\operatorname{tin}(1990 q 2,2012 q 4)$, arch (1) /// > garch(1) ar(1) nolog vsquish
ARCH family regression -- AR disturbances
Sample: 1990q2 - 2012q4 \quad Number of obs $\quad=\quad 91$
Distribution: Gaussian Wald chi2(2) $=\quad 18.56$
Log likelihood $=-45.09683 \quad$ Prob $>$ chi2 $=0.0001$

D.		OPG				
r_interbank	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf.	Interval]
r_interbank						
ipc						
D1.	. 0765736	. 0491625	1.56	0.119	-. 0197832	. 1729305
_cons	-. 1778991	. 081251	-2.19	0.029	-. 3371482	-. 0186501
ARMA						
ar						
	. 5016758	. 126954	3.95	0.000	. 2528505	. 7505011
ARCH						
arch						
L1.	. 3809789	. 2505937	1.52	0.128	-. 1101757	. 8721334
garch						
L1.	. 5630487	. 2146123	2.62	0.009	. 1424163	. 983681
_cons	. 0227445	. 0202104	1.13	0.260	-. 0168671	. 0623561

Markov switching AR model

- Comparing results from a different dynamic model (ARCH)

Interest rate predictions by switching states

Summary

(1) When we use Markov-Switching Regression Models
(C) Introductory concepts
(0) Markov-Switching Dynamic Regression

- Predictions
- State probabilities predictions
- Level predictions
- State expected durations
- Transition probabilities
© Markov-Switching AR Models

References

- Engel, C., and J. D. Hamilton. 1990. Long swings in the dollar: Are they in the data and do markets know it?. American Economic Review 80: 689-713.
- Hamilton, J. D. 1989. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57: 357-384.
- Garcia, R., and P. Perron. 1996. An analysis of the real interest rate under regime shifts. Review of Economics and Statistics 78: 111-125.
- Kim, C.-J., C. R. Nelson, and R. Startz. 1998. Testing for mean reversion in heteroskedastic data based on Gibbs-sampling-augmented randomization. Journal of Empirical Finance 5: 115-43.
- Lu, H.-M., D. Zeng, and H. Chen. 2010. Prospective infectious disease outbreak detection using Markov switching models. IEEE Transactions on Knowledge and Data Engineering 22: 565-577.
- Hamaker, E. L., R. P. P. P. Grasman, and J. H. Kamphuis. 2010. Regime-switching models to study psychological processes. In Individual Pathways of Change: Statistical Models for Analyzing Learning and Development, ed. P. C. Molenaar and K. M. Newell, 155-168. Washington, DC: American Psychological Association

