GMM and Treatment Effects

Enrique Pinzón

StataCorp LP

October 22, 2015 Madrid

(StataCorp LP)

October 22, 2015 Madrid 1 / 52

э

< 回 > < 回 > < 回 >

Introduction

- Challenges solved by treatment effects estimators
- Estimation methodology behind treatment effects. The Generalized Method of Moments (GMM)
- Research idea that involves the use of GMM.

Treatment Effects

We are interested in the outcomes of receiving a treatment in scenarios were researchers have observational data.

For instance:

- The impact on public education outcomes for schools that received a transfer and those that did not.
- Employment outcomes for individuals that participated in a job training program and those that did not.
- The effect on birth weight for babies of mothers that smoked relative to those of mothers that did not.

A B F A B F

Missing Values

bweight	mbsmoke	bweight0	bweight1
3119 3515 3147 4026 3544 3500 3289 3430 3147	nonsmoker nonsmoker nonsmoker nonsmoker nonsmoker smoker smoker smoker smoker	3119 3515 3147 4026 4366 3544	3500 3289 3430 3147
2778 3884	smoker smoker	•	3884

2

イロト イヨト イヨト イヨト

• We cannot observe individuals in both states simultaneously

- Design a random experiment
- We cannot do this because of technical or ethical concerns
- We need to account for covariates that are correlated with the treatment
- We will think of the problem in terms of models that govern the treatment result and the outcome

4 AR N 4 B N 4 B

• We cannot observe individuals in both states simultaneously

- Design a random experiment
- We cannot do this because of technical or ethical concerns
- We need to account for covariates that are correlated with the treatment
- We will think of the problem in terms of models that govern the treatment result and the outcome

< 🗇 > < 🖻 > < 🖻

We cannot observe individuals in both states simultaneously

- Design a random experiment
- We cannot do this because of technical or ethical concerns
- We need to account for covariates that are correlated with the treatment
- We will think of the problem in terms of models that govern the treatment result and the outcome

- We cannot observe individuals in both states simultaneously
 - Design a random experiment
 - We cannot do this because of technical or ethical concerns
- We need to account for covariates that are correlated with the treatment
- We will think of the problem in terms of models that govern the treatment result and the outcome

Notation and Definitions

- The potential outcome is denoted by the random variable y_{τ} with $\tau \in \{0, 1, \dots, K\}$.
- Usually people think about the binary case where there are only two levels y₀ and y₁
- Potential outcome mean

$$POM = E(y_{\tau})$$

Average treatment effect

$$ATE = E\left(y_k - y_0\right)$$

Average treatment effect on the treated

$$ATET = E(y_k - y_0 | \tau = k)$$

 From now on we will focus on binary treatments. All results are valid for multivariate treatments unless explicitly noted.

A (10) A (10)

OUTCOME MODEL:

$$y_0 = x\beta_0 + \varepsilon_0$$

$$y_1 = x\beta_1 + \varepsilon_1$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

 $\tau = \begin{cases} 1 & \text{if } w\gamma + \eta > 0\\ 0 & \text{otherwise} \end{cases}$

- w refers to the covariates that determine the treatment
- y_0 and y_1 are not observed. Only y, x, w, and τ are observed
- The random disturbances η , ε_0 , and ε_1 are independent
- The functional forms for the outcome model do not need to be linear
- All the estimators we will see arise from combinations of the outcome model and the treatment model

OUTCOME MODEL:

$$y_0 = x\beta_0 + \varepsilon_0$$

$$y_1 = x\beta_1 + \varepsilon_1$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

 $\tau = \begin{cases} 1 & \text{if } w\gamma + \eta > 0\\ 0 & \text{otherwise} \end{cases}$

- w refers to the covariates that determine the treatment
- y_0 and y_1 are not observed. Only y, x, w, and τ are observed
- The random disturbances η , ε_0 , and ε_1 are independent
- The functional forms for the outcome model do not need to be linear
- All the estimators we will see arise from combinations of the outcome model and the treatment model

OUTCOME MODEL:

$$y_0 = x\beta_0 + \varepsilon_0$$

$$y_1 = x\beta_1 + \varepsilon_1$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

 $\tau = \begin{cases} 1 & \text{if } w\gamma + \eta > 0\\ 0 & \text{otherwise} \end{cases}$

- w refers to the covariates that determine the treatment
- y_0 and y_1 are not observed. Only y, x, w, and τ are observed
- The random disturbances η , ε_0 , and ε_1 are independent
- The functional forms for the outcome model do not need to be linear
- All the estimators we will see arise from combinations of the outcome model and the treatment model

OUTCOME MODEL:

$$y_0 = x\beta_0 + \varepsilon_0$$

$$y_1 = x\beta_1 + \varepsilon_1$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

 $\tau = \begin{cases} 1 & \text{if } w\gamma + \eta > 0\\ 0 & \text{otherwise} \end{cases}$

- w refers to the covariates that determine the treatment
- y_0 and y_1 are not observed. Only y, x, w, and τ are observed
- The random disturbances η , ε_0 , and ε_1 are independent
- The functional forms for the outcome model do not need to be linear
- All the estimators we will see arise from combinations of the outcome model and the treatment model

OUTCOME MODEL:

$$y_0 = x\beta_0 + \varepsilon_0$$

$$y_1 = x\beta_1 + \varepsilon_1$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

 $\tau = \begin{cases} 1 & \text{if } w\gamma + \eta > 0 \\ 0 & \text{otherwise} \end{cases}$

- w refers to the covariates that determine the treatment
- y_0 and y_1 are not observed. Only y, x, w, and τ are observed
- The random disturbances η , ε_0 , and ε_1 are independent
- The functional forms for the outcome model do not need to be linear
- All the estimators we will see arise from combinations of the outcome model and the treatment model

A D A D A D A

OUTCOME MODEL:

$$y_0 = x\beta_0 + \varepsilon_0$$

$$y_1 = x\beta_1 + \varepsilon_1$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

$$\tau = \left\{ \begin{array}{ll} 1 & \text{if} \quad w\gamma + \eta > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

- w refers to the covariates that determine the treatment
- y_0 and y_1 are not observed. Only y, x, w, and τ are observed
- The random disturbances η , ε_0 , and ε_1 are independent
- The functional forms for the outcome model do not need to be linear
- All the estimators we will see arise from combinations of the outcome model and the treatment model

4 3 5 4 3 5 5

OUTCOME MODEL:

$$y_0 = x\beta_0 + \varepsilon_0$$

$$y_1 = x\beta_1 + \varepsilon_1$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

$$\tau = \left\{ \begin{array}{ll} 1 & \text{if} \quad w\gamma + \eta > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

- w refers to the covariates that determine the treatment
- y_0 and y_1 are not observed. Only y, x, w, and τ are observed
- The random disturbances η , ε_0 , and ε_1 are independent
- The functional forms for the outcome model do not need to be linear
- All the estimators we will see arise from combinations of the outcome model and the treatment model

A B F A B F

Treatment Effects in Stata

STATA 13

- Regression Adjustment (RA)
- Inverse Probability Weighting (IPW)
- Augmented Inverse Probability Weighting (AIPW)
- Inverse Probability Weighted Regression Adjustment (IPWRA)
- Nearest Neighbor Matching
- Propensity Score Matching

STATA 14

- Endogenous Treatment Effects (Control Function)
- Survival Outcome Treatment Effects
- Balancing

< 回 > < 回 > < 回 >

Graphical Representation of RA Estimation

Missing Values Solved

bweight	mbsmoke	bweight0	bweight1	hatbw1	hatbw0
3572 3289 3430 3119 3374 3760 2722 3402 3289	nonsmoker nonsmoker nonsmoker nonsmoker nonsmoker smoker smoker smoker smoker	3572 3289 3430 3119 3374 3760	2722 3402 3289	3179.558 3194.299 3120.591 3153.674 3147.075 3128.563 3112.234 3225.37 3142.703	3499.417 3494.323 3519.791 3244.215 3437.555 3179.807 3315.544 3353.492 3512.151
2580 3714 3175	smoker smoker smoker	•	2580 3714 3175	3020.785 3135.933 3006.043	3274.057 3177.26 3279.151

æ

イロト イヨト イヨト イヨト

Data from Cattaneo (2010) Journal of Econometrics

bweight: infant birth weight (grams) 1 if low birthweight baby lbweight: 1 if mother smoked mbsmoke: trimester of first prenatal care visit prenatal: 1 if first baby fbaby: 1 if mother married mmarried: mother's age mage: father's age fage: 1 if alcohol consumed during pregnancy alcohol:

Sample of newborns from the United States from 1997

< 回 > < 三 > < 三 >

Data from Cattaneo (2010) Journal of Econometrics

bweight: infant birth weight (grams) 1 if low birthweight baby lbweight: 1 if mother smoked mbsmoke: trimester of first prenatal care visit prenatal: 1 if first baby fbaby: 1 if mother married mmarried: mother's age mage: father's age fage: 1 if alcohol consumed during pregnancy alcohol:

Sample of newborns from the United States from 1997

< 回 > < 三 > < 三 >

RA Linear Outcome Average Treatment Effect (ATE)

. teffects ra (bweight prenatall mmarried mage fbaby) (mbsmoke) Iteration 0: EE criterion = 7.734e-24 Iteration 1: EE criterion = 1.196e-25 Treatment-effects estimation Number of obs = 4642 Estimator : regression adjustment Outcome model : linear Treatment model: none

bweight	Coef.	Robust Std. Err.	z	₽> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	-239.6392	23.82402	-10.06	0.000	-286.3334	-192.945
POmean mbsmoke nonsmoker	3403.242	9.525207	357.29	0.000	3384.573	3421.911

3

RA Average Treatment Effect on the Treated (ATET)

. teffects ra (bweight prenatall mmarried mage fbaby) (mbsmoke), atet Iteration 0: EE criterion = 7.629e-24 Iteration 1: EE criterion = 2.697e-26 Treatment-effects estimation Number of obs = 4642 Estimator : regression adjustment Outcome model : linear Treatment model: none

bweight	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATET mbsmoke (smoker vs nonsmoker)	-223.3017	22.7422	-9.82	0.000	-267.8755	-178.7278
POmean mbsmoke nonsmoker	3360.961	12.75749	263.45	0.000	3335.957	3385.966

3

Inverse Probability Weighting (IPW)

- In contrast to RA estimators, IPW estimate models for the treatment
- We fit a model for the treatment and compute the probabilities of treatment
- We then compute a weighted average, using the inverse of the probability of being in each group.

A (10) A (10)

Inverse Probability Weight Calculation

. logistic mk Logistic regre Log likelihood	osmoke mmarrie ession d = -18.339432	ed alcohol m. 2	age fedu	Number LR chi2 Prob > Pseudo	of obs 2(4) chi2 R2	= = =	60 46.50 0.0000 0.5590
mbsmoke	Odds Ratio	Std. Err.	Z	P> z	[95%	Conf.	Interval]
mmarried alcohol mage fedu _cons	.0785086 18.81727 2.147569 .8189843 4.46e-07	.0909212 27.98003 .459327 .1157528 2.12e-06	-2.20 1.97 3.57 -1.41 -3.07	0.028 0.048 0.000 0.158 0.002	.0081 1.020 1.41 .6208 3.96e	122 649 218 252 -11	.7597976 346.9259 3.265909 1.080393 .0050329

```
. predict ps
(option pr assumed; Pr(mbsmoke))
. replace ps = 1/ps if mbsmoke==1
(30 real changes made)
. replace ps = 1/(1-ps) if mbsmoke==0
(30 real changes made)
```

3

Inverse Probability Weighting Graphically

(StataCorp LP)

October 22, 2015 Madrid 16 / 52

A (10) A (10) A (10)

Inverse Probability Weighting Estimation

. teffects ipw (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu)
Iteration 0: EE criterion = 1.713e-21
Iteration 1: EE criterion = 4.794e-27
Treatment-effects estimation Number of obs = 4642
Estimator : inverse probability weighted
Outcome model : weighted mean
Treatment model: logit

bweight	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	-231.7203	25.17975	-9.20	0.000	-281.0717	-182.3689
POmean mbsmoke nonsmoker	3403.527	9.576358	355.41	0.000	3384.757	3422.296

3

Double Robust Estimators Inverse Probability Weighted Regression Adjustment (IPWRA)

- Estimate a treatment model and compute inverse-probability weights
- Use the estimated inverse-probability weights and fit weighted regression models of the outcome for each treatment level
- Compute the means of the treatment-specific predicted outcomes

く 戸 と く ヨ と く ヨ と

ATET for Inverse Probability Weighted Regression Adjustment

```
. teffects ipwra (bweight prenatall mmarried mage fbaby) ///
> (mbsmoke mmarried c.mage##c.mage fbaby medu), atet
Iteration 0: EE criterion = 4.620e-21
Iteration 1: EE criterion = 1.345e-26
Treatment-effects estimation Number of obs = 4642
Estimator : IPW regression adjustment
Outcome model : linear
Treatment model: logit
```

bweight	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	. Interval]
ATET mbsmoke (smoker vs nonsmoker)	-224.0108	23.846	-9.39	0.000	-270.7481	-177.2735
POmean mbsmoke nonsmoker	3361.671	14.54939	231.05	0.000	3333.154	3390.187

Challenge of observational data

- Can only observe individuals when they are treated or controlled (Missing Data)
- Control and treatment groups are different (Balancing)

< 回 > < 回 > < 回 >

CONTROLLED EXPERIMENT (STAR)

- Student/Teacher Achievement Ratio (STAR)
- Tennessee experiment 11,598 kindergarten students (4 cohorts)
- Treatment was small classroom and outcomes were test scores
- Done in the 1985-1986 school year

Table: Balancing Statistics for STAR: GENDER

Statistic	Estimate	Robust S.E.	C.I.
Mean Treated	0.4857	0.0148	[0.4568, 0.5148]
Mean Control	0.4863	0.0085	[0.4696, 0.5030]
Difference	-0.0005	0.0191	[-0.038, 0.0369]
Ratio Variances	0.9994	0.02747	[0.946, 1.053]

크

< 回 > < 三 > < 三 >

Balancing (WHITE)

Table: Balancing Statistics for STAR: WHITE

Statistic	Estimate	Robust S.E.	C.I.
Mean Treated	0.681	0.017	[0.648, 0.714]
Mean Control	0.664	0.009	[0.646, 0.682]
Difference	0.017	0.023	[-0.28, 0.061]
Ratio Variances	0.974	0.033	[0.909, 1.040]

< 回 > < 三 > < 三 >

Balancing for Observational Data

- Health data on newborn babies in the United States (subset of Cattaneo 2010)
- Treatment is smoking during pregnancy
- Outcome of interest is low birthweight or birthweight

< 回 ト < 三 ト < 三

Balancing (Mother's Education)

Table: Balancing Statistics for : MOTHER'S EDUCATION

Statistic	Estimate	Robust S.E.	C.I.
Mean Treated	11.639	0.364	[10.924, 12.353]
Mean Control	12.923	0.099	[12.734, 13.125]
Difference	-1.291	0.456	[-2.184, -0.397]
Ratio Variances	0.731	0.095	[0.545, 0.917]

(4) (5) (4) (5)

4 A N

Balancing (Number of Prenatal Visits)

Table: Balancing Statistics for : Number of Prenatal Visits

Statistic	Estimate	Robust S.E.	C.I.
Mean Treated	9.862	0.335	[9.206, 10.518]
Mean Control	10.962	0.096	[10.774, 11.151]
Difference	-1.101	0.409	[-1.904, -0.298]
Ratio Variances	1.428	0.133	[1.169, 1.689]

< 回 > < 回 > < 回 >
Before Balancing

. teffects ipwra			111
> (bweight mage medu i.mrace i.mmarried i.prena	atall i.frace fage	e fedu)	111
> (mbsmoke i.mrace mage i.mmarried i.alcohol i.	.prenatall i.fbaby	7	111
<pre>> c.mage#(c.mage i.mmarried i.prenatal1))</pre>			
Iteration 0: EE criterion = 8.397e-20			
Iteration 1: EE criterion = 2.070e-26			
Treatment-effects estimation	Number of obs	=	4,642
Estimator : IPW regression adjustment			
Outcome model : linear			
Treatment model: logit			

bweight	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	-236.0222	29.55747	-7.99	0.000	-293.9537	-178.0906
POmean mbsmoke nonsmoker	3406.35	9.580925	355.53	0.000	3387.572	3425.129

æ

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Diagnostic: Summary Statistics

. tebalance summarize Covariate balance summary

	Raw Weighted	
	Number of obs = Treated obs = Control obs =	4,642 4,642.0 864 2,325.1 3,778 2,316.9
	Standardized differences Raw Weighted	Variance ratio Raw Weighted
mrace 1	1029446 .0045151	1.198452 .9915814
mage	300179 .0392884	.8818025 1.068054
mmarried married	5953009 .0120047	1.335944 .9894832
alcohol 1	.3222725 .0001366	4.509207 1.000699
prenatal1 Yes	3242695 .0032052	1.496155 .9951704
fbaby Yes	16632710012409	.9430944 .9996803
mage# mage	3028275 .0451331	.8274389 1.097548
mmarried# mage married	6329701 .0228823	1.157026 1.024093
prenatal1# mage Yes	4053969 .0180678	1.226363 1.026796

October 22, 2015 Madrid 28 / 52

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Diagnostic: Graphical

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Testing

```
tebalance overid
Iteration 0:
               criterion =
                             .09613375
Iteration 1:
               criterion =
                             .09621125
                                         (backed up)
                             .09631507
                                         (backed up)
Iteration 2.
               criterion =
Iteration 3:
               criterion =
                             .09640924
                                         (backed up)
Iteration 4:
               criterion =
                             .09641617
                                         (backed up)
Iteration 5:
                             .09730774
               criterion =
                             .09845507
Iteration 6:
               criterion =
Iteration 7:
               criterion =
                             .09974706
Iteration 8:
               criterion =
                             .10042566
Iteration 9:
               criterion =
                             .10053085
Iteration 10:
                             .10073921
               criterion =
Iteration 11:
               criterion =
                             .1009058
Iteration 12:
               criterion =
                             .10090754
Iteration 13:
               criterion =
                             .10091067
Iteration 14:
               criterion =
                             .10091127
Iteration 15:
               criterion =
                             .10091128
Overidentification test for covariate balance
         H0: Covariates are balanced:
         chi2(10)
                           8.9097
                       =
         Prob > chi2 =
                           0 5407
```

3

・ロト ・ 四ト ・ ヨト ・ ヨト

- Greatest challenges to establish causal relationships
- There is an unobservable (omitted) component that affects treatment assignment and outcome.
 - Tax reform on investment (tax evasion)
 - Increased gun ownership on violent crime (preference for non-violent crime an improvement in police effectiveness)
 - Smoking on birth weight (healthy life style)
- This is also true for controlled experiments
 - STAR experiment attrition and parental pressure

< 回 > < 回 > < 回 >

- Greatest challenges to establish causal relationships
- There is an unobservable (omitted) component that affects treatment assignment and outcome.
 - Tax reform on investment (tax evasion)
 - Increased gun ownership on violent crime (preference for non-violent crime an improvement in police effectiveness)
 - Smoking on birth weight (healthy life style)
- This is also true for controlled experiments
 - STAR experiment attrition and parental pressure

< 回 > < 回 > < 回 >

- Greatest challenges to establish causal relationships
- There is an unobservable (omitted) component that affects treatment assignment and outcome.
 - Tax reform on investment (tax evasion)
 - Increased gun ownership on violent crime (preference for non-violent crime an improvement in police effectiveness)
 - Smoking on birth weight (healthy life style)
- This is also true for controlled experiments
 - STAR experiment attrition and parental pressure

< 回 > < 三 > < 三 >

- Greatest challenges to establish causal relationships
- There is an unobservable (omitted) component that affects treatment assignment and outcome.
 - Tax reform on investment (tax evasion)
 - Increased gun ownership on violent crime (preference for non-violent crime an improvement in police effectiveness)
 - Smoking on birth weight (healthy life style)
- This is also true for controlled experiments
 - STAR experiment attrition and parental pressure

< 回 > < 三 > < 三 >

OUTCOME MODEL:

$$y_0 = g(x\beta_0 + \varepsilon_0)$$

$$y_1 = g(x\beta_1 + \varepsilon_1)$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

$$\tau = \left\{ \begin{array}{ll} 1 & \text{if} \quad w\gamma + \eta > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

ENDOGENEITY:

 $\begin{array}{l} E\left(\varepsilon_{0}|\eta\right) \neq 0\\ E\left(\varepsilon_{1}|\eta\right) \neq 0 \end{array}$

3

OUTCOME MODEL:

$$y_0 = g(x\beta_0 + \varepsilon_0)$$

$$y_1 = g(x\beta_1 + \varepsilon_1)$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

$$\tau = \left\{ \begin{array}{ll} 1 & \text{if} \quad w\gamma + \eta > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

ENDOGENEITY:

 $\begin{array}{l} E\left(\varepsilon_{0}|\eta\right) \neq 0\\ E\left(\varepsilon_{1}|\eta\right) \neq 0 \end{array}$

3

OUTCOME MODEL:

$$y_0 = g(x\beta_0 + \varepsilon_0)$$

$$y_1 = g(x\beta_1 + \varepsilon_1)$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

$$\tau = \left\{ \begin{array}{ll} 1 & \text{if} \quad w\gamma + \eta > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

ENDOGENEITY:

 $\begin{array}{l} E\left(\varepsilon_{0}|\eta\right) \neq 0\\ E\left(\varepsilon_{1}|\eta\right) \neq 0 \end{array}$

3

OUTCOME MODEL:

$$y_0 = g(x\beta_0 + \varepsilon_0)$$

$$y_1 = g(x\beta_1 + \varepsilon_1)$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

$$\tau = \begin{cases} 1 & \text{if } w\gamma + \eta > 0\\ 0 & \text{otherwise} \end{cases}$$

ENDOGENEITY:

 $\begin{array}{l} E\left(\varepsilon_{0}|\eta\right) \neq 0\\ E\left(\varepsilon_{1}|\eta\right) \neq 0 \end{array}$

3

OUTCOME MODEL:

$$y_0 = g(x\beta_0 + \varepsilon_0)$$

$$y_1 = g(x\beta_1 + \varepsilon_1)$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

$$\tau = \left\{ \begin{array}{ll} 1 & \text{if} \quad \textit{w}\gamma + \eta > \textit{0} \\ \textit{0} & \text{otherwise} \end{array} \right.$$

ENDOGENEITY:

 $\begin{array}{rcl} E\left(\varepsilon_{0}|\eta\right) & \neq & 0 \\ E\left(\varepsilon_{1}|\eta\right) & \neq & 0 \end{array}$

э

・ロト ・四ト ・ヨト ・ヨト

OUTCOME MODEL:

$$y_0 = g(x\beta_0 + \varepsilon_0)$$

$$y_1 = g(x\beta_1 + \varepsilon_1)$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

$$\tau = \left\{ \begin{array}{ll} 1 & \text{if} \quad \textit{w}\gamma + \eta > \textit{0} \\ \textit{0} & \text{otherwise} \end{array} \right.$$

ENDOGENEITY:

$$E(\varepsilon_0|\eta) \neq 0 E(\varepsilon_1|\eta) \neq 0$$

э

イロト イヨト イヨト イヨト

Solution: Control Function Approach

- Obtain residuals from treatment model $\hat{\eta}$
- Incorporate them into the estimation of outcome model.
- Estimate:

$$E(y_0|x, w, \eta) = g(x\beta_0 + \theta_0\eta)$$

$$E(y_1|x, w, \eta) = g(x\beta_1 + \theta_1\eta)$$

- **A**

Estimation

. eteffects ////
> (bweight mage medu i.mrace i.mmarried i.prenatall i.frace fage fedu) ///
> (mbsmoke i.mrace mage i.mmarried i.alcohol i.prenatall i.fbaby ///
> c.mage#(c.mage i.mmarried i.prenatall))
Iteration 0: EE criterion = 8.584e-23
Iteration 1: EE criterion = 6.151e-26
Endogenous treatment-effects estimation Number of obs = 4,642
Outcome model : linear
Treatment model: probit

bweight	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	-347.454	136.1922	-2.55	0.011	-614.3858	-80.52218
POmean mbsmoke nonsmoker	3325.45	28.89296	115.10	0.000	3268.821	3382.079

э.

イロト 不得 トイヨト イヨト

Testing for Endogeneity

э.

< 日 > < 同 > < 回 > < 回 > < □ > <

Generalized Method of Moments (GMM)

- All our treatment effects estimators use GMM
- We use GMM mainly to calculate standard errors, we know the true value of the parameters.
- We also use GMM for our overidentification test.

• GMM solves systems of equations that have the form:

 $E\left[g\left(x,\theta\right)\right]=0$

- A very wide range of problems can be written in this form
- The function g(.) is known
- The expected value is replaced using a sample average

< 回 > < 回 > < 回 >

A Simple Example

- We have a random variable W with $E(W) = \mu$ and $Var(W) = 3\mu$
- We are interested in one parameter μ and we have two moment conditions

$$E(W - \mu) = 0$$

$$E[(1/3)(W - \mu)^{2} - \mu] = 0$$

- We know the solutions to this two equations
- We have more equations than unknowns so the solution is not unique
- We have a nonlinear function of the parameters
- GMM weights the two solutions, giving a higher weight to the more efficient solution.

3

A Simple Example

- We have a random variable W with $E(W) = \mu$ and $Var(W) = 3\mu$
- We are interested in one parameter μ and we have two moment conditions

$$E(W - \mu) = 0$$

$$E[(1/3)(W - \mu)^{2} - \mu] = 0$$

- We know the solutions to this two equations
- We have more equations than unknowns so the solution is not unique
- We have a nonlinear function of the parameters
- GMM weights the two solutions, giving a higher weight to the more efficient solution.

3

< 回 > < 回 > < 回 >

A Simple Example

- We have a random variable W with $E(W) = \mu$ and $Var(W) = 3\mu$
- We are interested in one parameter μ and we have two moment conditions

$$E(W - \mu) = 0$$

 $E[(1/3)(W - \mu)^2 - \mu] = 0$

- We know the solutions to this two equations
- We have more equations than unknowns so the solution is not unique
- We have a nonlinear function of the parameters
- GMM weights the two solutions, giving a higher weight to the more efficient solution.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Efficiency

(StataCorp LP)

2

500

<ロ> (日) (日) (日) (日) (日)

DGP and Mean Estimate

				= rnormal(3,3)	. generate y . summarize y
Max	Min	Std. Dev.	Mean	Obs	Variable
12.90658	-7.028034	3.003027	2.929767	1,000	v

2

イロト イヨト イヨト イヨト

Estimation

```
. gmm (eql: y - {a}) (eq2: (1/3) \star (y - {a})^2 - {a}), ///
> instruments(eql eq2:) winitial(unadjusted, independent) twostep nolog
Final GMM criterion Q(b) = .0001936
GMM estimation
Number of parameters = 1
Number of moments = 2
Initial weight matrix: Unadjusted Number of obs = 1,000
GMM weight matrix: Robust
```

	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
/a	2.954494	.0766991	38.52	0.000	2.804167	3.104822
Instruments fo	or equation eq	gl: cons				

Instruments for equation eq2: _cons

Weight Matrix

```
. mat list e(W)

symmetric e(W)[2,2]

eq1: eq2:

_______cons ____cons

eq1:__cons .11113597

eq2:__cons .00293237 .0558026
```

э

イロト イヨト イヨト イヨト

Standard Errors

- GMM estimates the system of equations simultaneously
- It gets correct standard errors where a multistep estimator would get them incorrectly

・ 同 ト ・ ヨ ト ・ ヨ ト

Solution: Control Function Approach

- Obtain residuals from treatment model $\hat{\eta}$
- Incorporate them into the estimation of outcome model.
- Estimate:

$$E(y_0|x, w, \eta) = g(x\beta_0 + \theta_0\eta)$$

$$E(y_1|x, w, \eta) = g(x\beta_1 + \theta_\eta\eta)$$

< 回 ト < 三 ト < 三

How

$$\begin{split} \min_{\theta, W} \left[\bar{g}\left(x, \theta \right) \right]' W \left[\bar{g}\left(x, \theta \right) \right] \\ \bar{g}\left(x, \theta \right) &\equiv N^{-1} \sum_{i=1}^{N} g_i\left(x_i, \theta \right) \end{split}$$

If we have K parameters and L equations with L = K

$$\left[\overline{g}\left(x,\widehat{ heta}
ight)
ight] ^{\prime }\widehat{W}\left[\overline{g}\left(x,\widehat{ heta}
ight)
ight] =0$$

If L > K we know how far from zero we are and:

$$\left[\bar{\boldsymbol{g}}\left(\boldsymbol{x},\widehat{\boldsymbol{\theta}}\right)\right]'\widehat{\boldsymbol{W}}\left[\bar{\boldsymbol{g}}\left(\boldsymbol{x},\widehat{\boldsymbol{\theta}}\right)\right]\xrightarrow{\boldsymbol{d}}\chi^{2}_{\boldsymbol{L}-\boldsymbol{K}}$$

We can use this to test:

$$\mathsf{H}_{\mathsf{o}}: E\left[g\left(x,\theta\right)\right] = \mathsf{0}$$

4 A N

- We have the score equations
- Probability of being treated $p(x_i, \theta)$
- T_i indicator for being in treatment group
- Weighted observations $\frac{T_i}{p(x_i,\theta)}$ and $\frac{1-T_i}{1-p(x_i,\theta)}$
- It follows that:

$$E\left\{\frac{T_i}{p(x_i,\theta)}x_i - \frac{1 - T_i}{1 - p(x_i,\theta)}x_i\right\} = 0$$
$$E\left\{\frac{T_i}{p(x_i,\theta)}g(x_i) - \frac{1 - T_i}{1 - p(x_i,\theta)}g(x_i)\right\} = 0$$

- We have the score equations
- Probability of being treated $p(x_i, \theta)$
- T_i indicator for being in treatment group
- Weighted observations $\frac{T_i}{p(x_i,\theta)}$ and $\frac{1-T_i}{1-p(x_i,\theta)}$

It follows that:

$$E\left\{\frac{T_i}{p(x_i,\theta)}x_i - \frac{1 - T_i}{1 - p(x_i,\theta)}x_i\right\} = 0$$
$$E\left\{\frac{T_i}{p(x_i,\theta)}g(x_i) - \frac{1 - T_i}{1 - p(x_i,\theta)}g(x_i)\right\} = 0$$

- We have the score equations
- Probability of being treated $p(x_i, \theta)$
- T_i indicator for being in treatment group
- Weighted observations $\frac{T_i}{p(x_i,\theta)}$ and $\frac{1-T_i}{1-p(x_i,\theta)}$
- It follows that:

$$E\left\{\frac{T_i}{p(x_i,\theta)}x_i - \frac{1 - T_i}{1 - p(x_i,\theta)}x_i\right\} = 0$$
$$E\left\{\frac{T_i}{p(x_i,\theta)}g(x_i) - \frac{1 - T_i}{1 - p(x_i,\theta)}g(x_i)\right\} = 0$$

- We have the score equations
- Probability of being treated $p(x_i, \theta)$
- T_i indicator for being in treatment group
- Weighted observations $\frac{T_i}{\rho(x_i,\theta)}$ and $\frac{1-T_i}{1-\rho(x_i,\theta)}$
- It follows that:

$$E\left\{\frac{T_i}{p(x_i,\theta)}x_i - \frac{1 - T_i}{1 - p(x_i,\theta)}x_i\right\} = 0$$
$$E\left\{\frac{T_i}{p(x_i,\theta)}g(x_i) - \frac{1 - T_i}{1 - p(x_i,\theta)}g(x_i)\right\} = 0$$

- We have the score equations
- Probability of being treated $p(x_i, \theta)$
- T_i indicator for being in treatment group
- Weighted observations $\frac{T_i}{\rho(x_i,\theta)}$ and $\frac{1-T_i}{1-\rho(x_i,\theta)}$
- It follows that:

$$E\left\{\frac{T_i}{p(x_i,\theta)}x_i - \frac{1-T_i}{1-p(x_i,\theta)}x_i\right\} = 0$$
$$E\left\{\frac{T_i}{p(x_i,\theta)}g(x_i) - \frac{1-T_i}{1-p(x_i,\theta)}g(x_i)\right\} = 0$$

Test of Strict Exogeneity

$$y_{it} = x_{it}\beta + \alpha_i + \varepsilon_{it}$$
(1)

$$E(\alpha_i | \mathbf{x}_{it}) = E(\varepsilon_{it} | \mathbf{x}_{it}) = \mathbf{0}$$
(2)

$$E(\alpha_i|x_{i1},\ldots,x_{iT}) = 0$$
(3)

$$E(\varepsilon_{it}|x_{i1},\ldots,x_{iT},\alpha_i) = 0$$
(4)

- (3) and (4) represent strict exogeneity
- Ordinary least squares (OLS) is consistent under (1) an (2) Random Effects (RE) is NOT
- (OLS) and Random Effects (RE) are consistent under (3) and (4)

4 A N

The moment conditions of OLS and Random Effects are given by:

$$E[(y_{it} - x_{it}\beta) x_{it}] = 0 \text{ OLS}$$

$$E[(\tilde{y}_{it} - \tilde{x}_{it}\beta) x_{it}] = 0 \text{ RE}$$

- Say β has dimensions $K \times 1$
- We have 2K moment conditions and K overidentifying restrictions (OVERID TEST)
- We could also use GMM with 2K moments assuming parameters from OLS and RE are different. Then test $\beta_{RE} = \beta_{OLS}$.

イベト イモト イモト
Weight Matrix

. reover y x1 x2, nolog Final GMM criterion Q(b) = .0009141 GMM estimation Number of parameters = 8 Number of moments 11 = Initial weight matrix: Unadjusted Number of obs 3000 = GMM weight matrix: Cluster (id) (Std. Err. adjusted for 1,000 clusters in id)

Robust Coef. Std. Err. [95% Conf. Interval] P>|z| z ols re x1 .9660433 .0189498 50.98 0.000 .9289023 1.003184 x2 .9762426 .0215371 45.33 0.000 .9340307 1.018454 1.041375 .0361566 28.80 0.000 .9705095 1.112241 cons within x1 .966068 .0189482 50.98 0.000 .9289302 1.003206 x2 .0215073 45.39 .9761178 0.000 .9339641 1.018271 between x1 .9663328 .0189535 50.98 0.000 .9291846 1.003481 x2 .9766673 .0215971 45.22 0.000 .9343377 1.018997 1.041571 .0361565 28.81 0.000 .9707059 1.112437 _cons

```
. estat overid
Test of overidentifying restriction:
Hansen's J chi2(2) = 2.74223 (p = 0.2538)
```

3

Monte Carlo

$$T = 3$$

$$N = 1000$$

$$e_{it} \sim \frac{(\chi_3^2 - 3)}{\sqrt{6}}$$

$$u_i = \frac{(\chi_5^2 - 5)}{\sqrt{10}}$$

$$\epsilon_j \sim N(0, 1) \quad j \in \{1, 2\}$$

$$x_{1it} = \epsilon_1 + \mathbb{I}(t > 1) * (e_{it}\rho)$$

$$x_{2it} = \epsilon_2 + \mathbb{I}(t > 1) * (e_{it}\rho)$$

$$\rho \in \{0, .05, 0.1, 0.15, 0.2\}$$

$$y_{it} = 1 + x_{1it} + x_{2it} + u_i + e_{it}$$

- Violations of strict exogeneity occur when $\rho > 0$ in the equations above
- Results for $\rho = 0$ asses the size of the tests
- Levels of $\rho > 0$ are used to study the power of the tests
- We use 2000 repetitions for our simulations

3

Results

Strict Exogeneity Parameter	Test Statistic	Rejection Rate
$\rho = 0$	overid (Sargan)	0.044
	exact id (Wald)	0.046
$\rho = 0.05$	overid (Sargan)	0.146
	exact id (Wald)	0.148
$\rho = 0.10$	overid (Sargan)	0.455
	exact id (Wald)	0.457
$\rho = 0.15$	overid (Sargan)	0.799
	exact id (Wald)	0.798
$\rho = 0.20$	overid (Sargan)	0.965
	exact id (Wald)	0.964

2

<ロ> <問> <問> < 同> < 同> < 同> 、

Conclusion

- I talked about the problems inherent in obtaining treatment effects and tools in Stata to address them
- I explained the workings of GMM and how it is used in our estimations
- I showed how that intuition can be extended to answer a relevant research question.

A B b 4 B b