

## SIMPLE CORRECTION FOR MEASUREMENT ERRORS WITH STATA

8<sup>a</sup> Reunión Usuarios Stata, Madrid 22th October 2015 Anna DeCastellarnau ESS-CST, Universitat Pompeu Fabra anna.decastellarnau@upf.edu

"A simple procedure to correct for measurement errors in survey research"

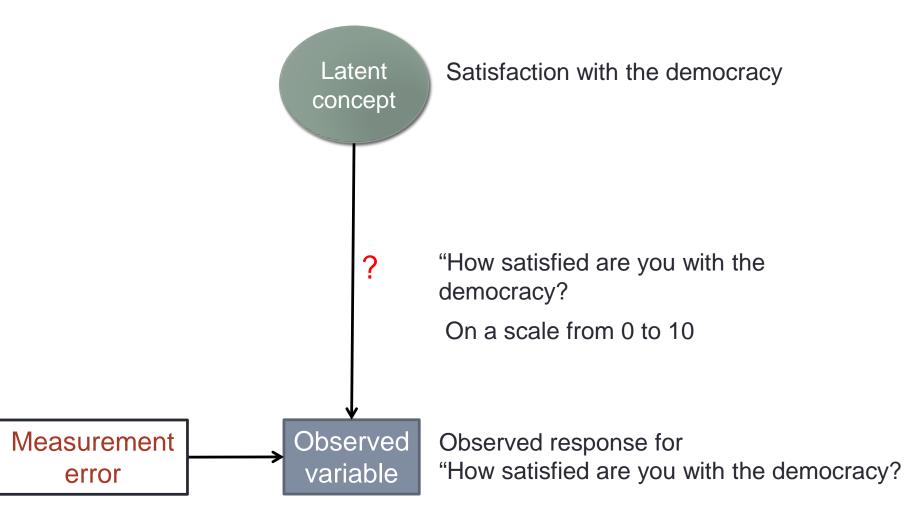
Written by: Anna DeCastellarnau and Willem Saris

http://essedunet.nsd.uib.no/cms/topics/measurement/

🗲 www.europeansocialsurvey.org

|                        | Results without corrections    | Results with corrections |  |  |  |
|------------------------|--------------------------------|--------------------------|--|--|--|
| Effects                | <b>Regression coefficients</b> | Regression coefficients  |  |  |  |
| Dependent V1<-         |                                |                          |  |  |  |
| V2                     | 0.248**                        | 0.406** +0.158           |  |  |  |
| V3                     | -0.022                         | 0.039 +0.061             |  |  |  |
| V4                     | 0.246**                        | 0.415** +0.169           |  |  |  |
| V5                     | 0.215**                        | 0.103** -0.112           |  |  |  |
| V6                     | -0.066**                       | -0.150** +0.084          |  |  |  |
| R <sup>2</sup>         | 0.226 (22.6%)                  | 0.456 (45.6%)            |  |  |  |
| ** if α<1% and * if 1% | -α<5% +0.2                     | 23                       |  |  |  |

- Increase in effects of more than 1 point on average
- Even changes in the sign of the effect happen
- Increase in more than factor 2 in the explained variance




## Theory

### **Applicability using Stata**

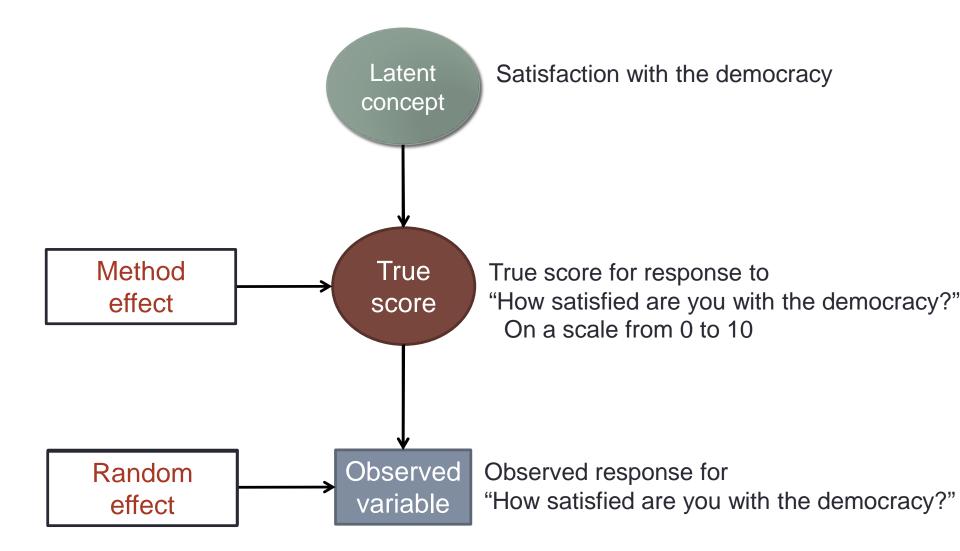
Benefits and possibilities

# WHAT DO WE MEASURE?



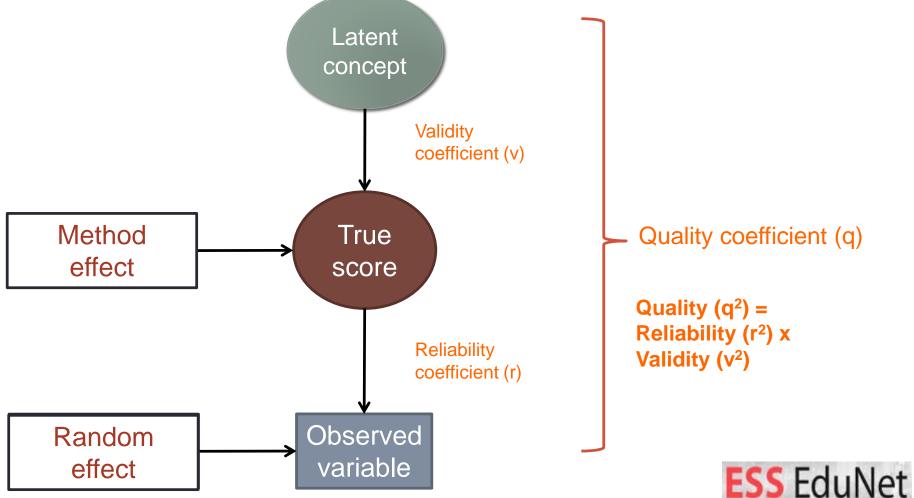
# WHAT IS MEASUREMENT ERROR?

• There are two components of M.E.:


#### Random error

• Captures the effect of unintended and unpredictable fluctuations of the respondents, interviewers, coders, etc...

#### Systematic error or method effect


- Captures the effect of the reaction of the respondents to a particular formulation of a question.
- Respondents can react differently to different formulations of questions even if the concept asked is not changed.

# WHAT DO WE MEASURE? (II)



# HOW IS THE QUALITY DEFINED?

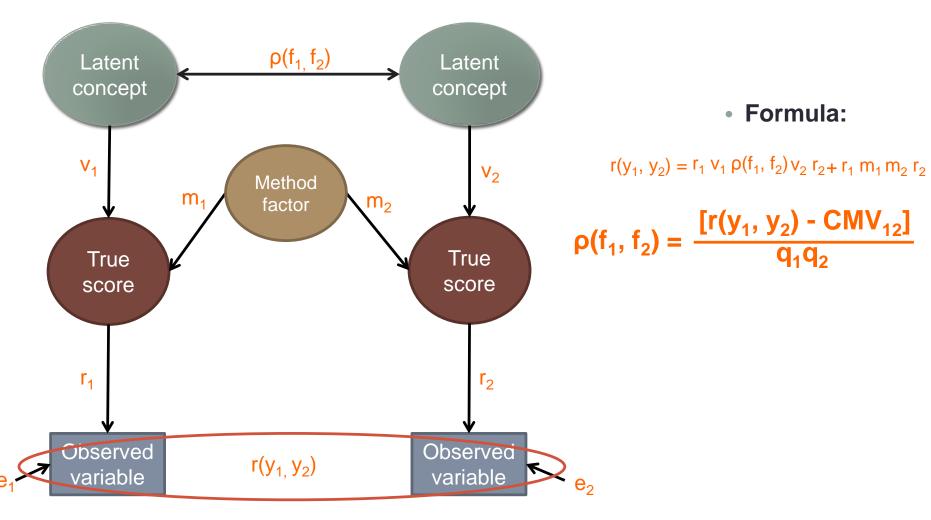
Quality (q<sup>2</sup>) is the strength between the latent concept and the observed variable.



# HOW DO WE OBTAIN QUALITY?

- **Option 1:** Conduct a Multitrait-Multimethod (MTMM) experiment.
- Option 2: Use alternative approach...
  - Over the last decades many MTMM data have been collected
    - Database of:
      - 3,726 questions with quality information
      - In more than 20 countries and languages
      - From multiple surveys




- The formal and linguistic characteristics of these questions were carefully coded
  - The quality obtained from the MTMM experiments could be related to the characteristics of the survey questions.
- A new tool was developed:
  - Allows to predict the quality of survey questions
  - Requires only the coding of the characteristics of the survey question
  - Provides the information about the reliability and validity
  - It is available online for free: <u>sqp.upf.edu</u>

Already discussed in: Saris and Gallhofer (2014), Oberski et al (2011).



## HOW CAN WE SIMPLY CORRECT FOR M.E.?

Correction of the observed correlation matrix



# **EXAMINING THE FORMULA**

 $\rho(f_1, f_2) = \frac{[r(y_1, y_2) - CMV_{12}]}{q_1 q_2}$ 

- The correlation between two observed variables r(y1, y2) is known.
- The common method variance (CMV) is the factor that decreases the over estimation of the observed correlation of those variables that share the same method.
- The CMV between two variables (CMV<sub>12</sub>) is calculated as:  $r_1 \cdot m_1 \cdot m_2 \cdot r_2$
- The method effect  $m_i$  can be calculated as:  $\sqrt{(1 v_i^2)}$
- The quality coefficients q<sub>i</sub> can be calculated as: r<sub>i</sub> · v<sub>i</sub>
  The reliability and validity coefficients r<sub>i</sub> and v<sub>i</sub> calculated as:

The reliability and validity coefficients  $r_i$  and  $v_i$  can be obtained from:







### **Applicability using Stata**

**Benefits and possibilities** 

# SPAIN'S CASE ESS ROUND 6

#### Regression model:

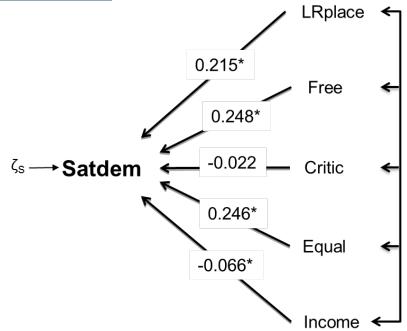
Satdem =  $\alpha + \beta_L$  Lrplace +  $\beta_F$  Free +  $\beta_C$  Critic +  $\beta_E$  Equal +  $\beta_I$  Income +  $\zeta_S$ 

#### Model variables:

- Satdem: Satisfaction with the democracy in Spain
- LRplace: Self-placement on the left-right political scale
- Free: Belief of freedom and fairness of elections in Spain
- Critic: Belief of opposition parties' freedom to criticize the Spanish government
- Equal: Belief that courts treat everyone the same
- Income: Household income



## ANALYSIS WITHOUT CORRECTION FOR M.E.


We can analyse our model based on the correlation matrix using...



\*Correlation matrix input #delimit ; ssd set correlations 1.000\ .3206 1.000\ .1173 .3429 1.000\ .3498 .2687 .1666 1.000\ .2873 .1083 .0809 .1954 1.000\ -.0275 .1392 .0560 .0164 .0072 1.000 ; #delimit cr

#### \*Regression model

sem (satdem <- free critic equal Irplace income), standardized estat eqgof



• R<sup>2</sup>: Only **22.6%** of the variance is explained

## **STEP 1: GET QUALITY INFORMATION**



- We coded the characteristics of the 6 questions in our model using the **SQP 2 coding process**.
- The quality information is obtained:

|         | r     | v     | q     | <b>r</b> <sup>2</sup> | <b>V</b> <sup>2</sup> | <b>q</b> <sup>2</sup> | m     |
|---------|-------|-------|-------|-----------------------|-----------------------|-----------------------|-------|
| Satdem  | 0.895 | 0.956 | 0.856 | 0.801                 | 0.914                 | 0.733                 | 0.293 |
| Free    | 0.874 | 0.892 | 0.779 | 0.764                 | 0.796                 | 0.607                 | 0.452 |
| Critic  | 0.876 | 0.895 | 0.783 | 0.767                 | 0.801                 | 0.613                 | 0.446 |
| Equal   | 0.875 | 0.897 | 0.784 | 0.766                 | 0.805                 | 0.615                 | 0.442 |
| LRplace | 0.858 | 0.940 | 0.807 | 0.736                 | 0.884                 | 0.651                 | 0.341 |
| Income  | 0.856 | 0.918 | 0.785 | 0.733                 | 0.843                 | 0.616                 | 0.397 |

• Where method effect  $m_i$  is calculated as:  $\sqrt{(1-v^2)}$ 

## **STEP 2: CORRECTION OF CORR MATRIX**

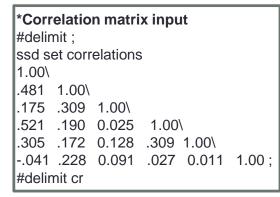
#### Observed correlation matrix without correction:

|         | Satdem | Free  | Critic | Equal LRplace Income |       |       |
|---------|--------|-------|--------|----------------------|-------|-------|
| Satdem  | 1.000  |       |        |                      |       |       |
| Free    | 0.321  | 1.000 |        |                      |       |       |
| Critic  | 0.117  | 0.343 | 1.000  |                      |       |       |
| Equal   | 0.350  | 0.269 | 0.167  | 1.000                |       |       |
| Lrplace | 0.287  | 0.108 | 0.081  | 0.195                | 1.000 |       |
| Inc     | -0.028 | 0.139 | 0.056  | 0.016                | 0.007 | 1.000 |

 $\rho(f_1, f_2) = \frac{[r(y_1, y_2) - CMV_{12}]}{q_1 q_2}$ 

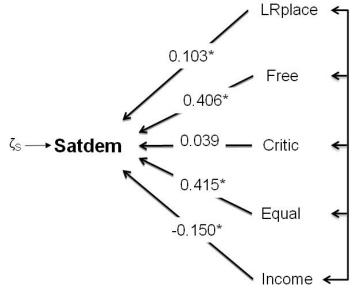
#### New correlation matrix corrected for measurement errors

|         | Satdem | Free  | Critic | Equal LRplace Income |       |       |
|---------|--------|-------|--------|----------------------|-------|-------|
| Satdem  | 1.000  |       |        |                      |       |       |
| Free    | 0.481  | 1.000 |        |                      |       |       |
| Critic  | 0.175  | 0.309 | 1.000  |                      |       |       |
| Equal   | 0.521  | 0.190 | 0.025  | 1.000                |       |       |
| Lrplace | 0.305  | 0.172 | 0.128  | 0.309                | 1.000 |       |
| Inc     | -0.041 | 0.228 | 0.091  | 0.027                | 0.011 | 1.000 |




# ANALYSIS WITH CORRECTION FOR M.E.

 Analysing the new correlation matrix corrected for measurement errors using...




ssd init satdem free critic equal Irplace income /\*variables\*/ ssd set observations 1403 /\*observations\*/



#### \*Regression model

sem (satdem <- free critic equal Irplace income), standardized estat eqgof



• R<sup>2</sup>: Now 45.6% of the variance is explained

# COMPARING THE RESULTS WITH AND WITHOUT M.E.

|                | Results witho | Results with corrections |          |        |       |
|----------------|---------------|--------------------------|----------|--------|-------|
| Effects        | Coeff         | E.Var                    | Coeff    |        | E.Var |
| Satdem <-      |               | 0.773                    |          |        | 0.544 |
| Free           | 0.248**       |                          | 0.406**  | +0.158 |       |
| Critic         | -0.022        |                          | 0.039    | +0.061 |       |
| Equal          | 0.246**       |                          | 0.415**  | +0.169 |       |
| Lrplace        | 0.215**       |                          | 0.103**  | -0.112 |       |
| Income         | -0.066**      |                          | -0.150** | +0.084 |       |
| R <sup>2</sup> | 0.226 (       | 0.456 (45.6%)            |          |        |       |

\*\* if  $\alpha$ <1% and \* if 1%< $\alpha$ <5%



Theory

**Applicability using Stata** 

**Benefits and possibilities** 

# **Benefits and possibilities**

## Benefits:

- Your results will be better
- The R<sup>2</sup> of your model will increase.
- You don't need to perform an experiment to test the quality of your measures.
- SQP is available online for free.
- Comparability across countries

## Possibilties with Stata:

- SEM is simple in Stata when the correlation or the covariance matrix is used.
- The covariance matrix can also be corrected for M.E. to obtain the unstandardized results.
- Different models that can be applied in Stata are illustrated in the Edunet module.

# THANK YOU FOR YOUR ATTENTION!

Further information in:

"A simple procedure to correct for measurement errors in survey research"

Written by: Anna DeCastellarnau and Willem Saris

http://essedunet.nsd.uib.no/cms/topics/measurement/

anna.decastellarnau@upf.edu