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Non-parametric density estimation

Histogram

Probably most commonly used method for estimating a
probability density function

Origin and binwidth need to be determined a-priori

Kernel density estimation

Another very popular method for density estimation
Requires the choice of the kernel function (less important)
And the smoothing parameter (aka bandwidth or window
width)
Smoothing parameters: trade-off between bias and
variance
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Histograms with different binwidths
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Kernel density estimates (Epanechnikov) with
different bandwidths
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Self-Consistent Density Estimation

Remember the classical kernel density estimator:

f̂ (x) =
1

nh

N∑
i=1

K (
x − Xi

h
) (1)

The self-consistent estimate can be written as:

f̂ (x) =
1

n

N∑
i=1

K (x − Xi ) (2)

The basic idea of the self-consistent method is not to
search for an optimal bandwidth, given an arbitrary kernel
function...

...but to find an optimal shape of the kernel, given the
data.

No parameters need to be fixed beforehand.
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scdensity: the program

Syntax

scdensity varname [if] [in]
[ , generate(newvar1 [newvar2])
n(#) range(# #)
nograph name(name [, replace]) ]

scdensity is available from SSC: ssc install
scdensity

help scdensity for further information
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Monte Carlo simulations

Experimental set-up

Four test densities.

MISE as measure of estimation accuracy:
MISE (f̂ ) = E

∫
{f̂ (x)− f (x)}2dx [Silverman, 1998]

Two kernel functions (Epanechnikov & Gaussian).
Three fixed bandwith rules of thumb:

1 ho = 0.9 min(σ, IQ/1.349)n−( 1
5
)

2 ho = 1.06 min(σ, IQ/1.349)n−( 1
5
)

3 ho >= 1.144σn−( 1
5
)

See [Silverman, 1998], [Haerdle et al., 2004],
[Scott, 1992], respectively.
Variable bandwidth estimation (aka adaptive kernel).
The user written -kdens- (available from SSC [Jann, 2005],
[Jann, 2007]) was used for kernel density estimation.
The user written -fmm- (SSC, [Deb, 2007]) was used for
fitting maximum likelihood mixture models.
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Results

Abbreviations:

ML = maximum likelihood

SCD = self-consistent method

EPH2 = Epanechnikov kernel with bandwidth #2 from
previous slide

GKH1 = Gaussian kernel with bandwidth #1 from
previous slide

GKH2 = Gaussian kernel with bandwidth #2 from
previous slide

GKH3 = Gaussian kernel with bandwidth #3 from
previous slide

ADK = adaptive kernel (Epanechnikov)
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Test density a):
φ(µ, σ2) = (2π)−

1
2σ−1exp{−1

2(x − µ)2/σ2}
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Results for test density a)
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Test density b): f (x) = 1
2φ(0, 1) + 1

2φ(3, 1)
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Test density c): f (x) = 1
2φ(0, 1) + 1

2φ(5, 22)
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Test density d):
f (x) = 1

2φ(0, 1.22) + 1
4φ(4, 1.42) + 1

4φ(8, 0.62)
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Conclusion

Given the test densities and kernel density estimators used
in the simulations, the self-consistent method was the
most accurate among the nonparametric estimators.

For one of the test densities (f (x) = 1
2φ(0, 1) + 1

2φ(3, 1))

...the self-consistent method performed nearly as well as
the (parametric) ML estimate

...without relying on any prior assumptions or parameter
fixations.

The question remains: Is it of practical importance?

Yes, it certainly can be of practical importance. The
following figure shows an example:
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Comparison of density estimates using real data

7
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Outlook

Program features

Variance estimation, e.g. for confidence intervals/bands
Weights
Grid expansion

Non- and semiparametric models

Bivariate density estimation
Smoothing & regression
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Thank you!

joerg.luedicke@ufl.edu

mailto:joerg.luedicke@ufl.edu
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Outline of the basic algorithm of the self-consistent
estimator (1)

Departure: an optimal convolution kernel can be derived
for known densities [Watson & Leadbetter, 1963]

The Fourier transform Kopt(t) of the optimal kernel
Kopt(x) equals

Kopt(t) =
N

N − 1 + |ω(t)|−2
(3)

where ω(t) is the Fourier transform of the true density
f (x)

Then, the Fourier transform of the density estimate in
equation (2) is

ω̂(t) = ∆(t)Kopt(t) =
N∆(t)

N − 1 + |ω(t)|−2
(4)
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Outline of the basic algorithm of the self-consistent
estimator (2)

...where ∆(t) is the emprical characteristic function

∆(t) =
1

N

N∑
i=1

exp(itXi ) (5)

Kopt(t) is of course only known if the true density is
known.

The self-consistent method now uses equation (4) for
which the unknown term ω is replaced with an initial
guess ω̂0,

...which results in the estimate ω̂1.

Then the improved estimate ω̂2 is obtained by using a
kernel which is optimal for ω̂1, and so on.
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Outline of the basic algorithm of the self-consistent
estimator (3)

This is iterated until a certain point in the sequence

ω̂n+1 =
N∆

N − 1 + |ω̂n|−2
(6)

...is reached, for which

ω̂sc =
N∆

N − 1 + |ω̂sc |−2
(7)

See [Bernacchia & Pigolotti, 2011] for a detailed
description.
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