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Non. m Histogram
zz;asfi’t’yetric m Probably most commonly used method for estimating a
estimation probability density function

m Origin and binwidth need to be determined a-priori

m Kernel density estimation
m Another very popular method for density estimation
m Requires the choice of the kernel function (less important)
m And the smoothing parameter (aka bandwidth or window
width)
m Smoothing parameters: trade-off between bias and
variance
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Histograms with different binwidths
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Fx) == D K(x - Xi) (2)
i=1

m The basic idea of the self-consistent method is not to
search for an optimal bandwidth, given an arbitrary kernel
function...

m ...but to find an optimal shape of the kernel, given the
data.
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Self-consistent

ity Remember the classical kernel density estimator:

estimation

1 N x—X
fFx)=—=—Y K ’ 1
()= 75 LK) M)
1=
Self-consistent m The self-consistent estimate can be written as:
method 1 N
F) = 4 2 Klx =) 2)
m The basic idea of the self-consistent method is not to
search for an optimal bandwidth, given an arbitrary kernel
function...
m ...but to find an optimal shape of the kernel, given the
data.

No parameters need to be fixed beforehand.
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scdensity: the program

Self-consistent
density
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scdensity varname [if] [in]

[ , generate(newvarl [newvar2])
n(#) range(# #)

Ml  nograph name(name [, replacel) ]

program

m scdensity is available from SSC: ssc install
scdensity

m help scdensity for further information
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Monte Carlo simulations

m Experimental set-up

Four test densities.
MISE as measure of estimation accuracy:
MISE(f) = E [{f(x) — f(x)}?dx [Silverman, 1998]
Two kernel functions (Epanechnikov & Gaussian).
Three fixed bandwith rules of thumb:

ho = 0.9 min(c, 1Q/1.349)n~(5)

ho = 1.06 min(c, 1Q/1.349)n~(5)

ho >= 1.144gn~ ()
See [Silverman, 1998], [Haerdle et al., 2004],
[Scott, 1992], respectively.
Variable bandwidth estimation (aka adaptive kernel).
The user written -kdens- (available from SSC [Jann, 2005],
[Jann, 2007]) was used for kernel density estimation.
The user written -fmm- (SSC, [Deb, 2007]) was used for
fitting maximum likelihood mixture models.
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Abbreviations:

SCD = self-consistent method

EPH2 = Epanechnikov kernel with bandwidth #2 from
previous slide

m GKH1 = Gaussian kernel with bandwidth #1 from
Monte-Carlo previous slide

m GKH2 = Gaussian kernel with bandwidth #2 from
previous slide

m GKH3 = Gaussian kernel with bandwidth #3 from
previous slide

n
m ML = maximum likelihood
m
m

simulations

m ADK = adaptive kernel (Epanechnikov)



Test density a):
d(1,0%) = (2m) 20 Lexp{—1(x — p)?/o?}
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Results for test density a)
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Test density d):
f(x) = 36(0,1.2%) + 76(4, 1.4%) + 36(8,0.6)
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Given the test densities and kernel density estimators used
in the simulations, the self-consistent method was the
most accurate among the nonparametric estimators.

For one of the test densities (f(x) = 3¢(0,1) + 1¢(3,1))
...the self-consistent method performed nearly as well as
the (parametric) ML estimate

m ...without relying on any prior assumptions or parameter
fixations.

Conclusion

m The question remains: Is it of practical importance?

m Yes, it certainly can be of practical importance. The
following figure shows an example:
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Comparison of density estimates using real data
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m Program features
m Variance estimation, e.g. for confidence intervals/bands
m Weights
m Grid expansion

m Non- and semiparametric models
m Bivariate density estimation
m Smoothing & regression

Outlook
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Outline of the basic algorithm of the self-consistent

estimator (1)

Self-consistent

 Jensity m Departure: an optimal convolution kernel can be derived
for known densities [Watson & Leadbetter, 1963]

m The Fourier transform Kgp:(t) of the optimal kernel
Kopt(x) equals

N
N1+ ()] 2 (3)

Kopt(t) =

m where w(t) is the Fourier transform of the true density
f(x)

m Then, the Fourier transform of the density estimate in
equation (2) is

Appendix

NA(t)
Noire@ 2 W

O(t) = A(t)Kopr(t) =



Outline of the basic algorithm of the self-consistent

estimator (2)
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S ...where A(t) is the emprical characteristic function

N
1 )
A(t) = N z; exp(itX;) (5)
m Kopt(t) is of course only known if the true density is
known.

m The self-consistent method now uses equation (4) for
which the unknown term w is replaced with an initial
guess &g,

m ...which results in the estimate @&;.

Appendix

m Then the improved estimate &5 is obtained by using a
kernel which is optimal for &1, and so on.
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m This is iterated until a certain point in the sequence

NA

Wnt+l = WW (6)
m ...is reached, for which
NA
~ 7
wsc N—1+|C’(\Jsc|_2 ( )

m See [Bernacchia & Pigolotti, 2011] for a detailed
description.

Appendix
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