Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest model

Random Effects Probit Thinning bavestest interval

Change-point model bayesgraph matrix

Summary

References

Introduction to Bayesian Analysis in Stata

Gustavo Sánchez

StataCorp LLC

September 15 , 2017 Porto, Portugal

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

= nar

Outline

The gener idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Pro

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

Outline

- 1 Bayesian analysis: The general idea
- 2 Basic Concepts
 - The Method
 - The tools
 - Stata 14: The bayesmh command
 - Stata 15: The bayes prefix
 - Postestimation commands

3 A few examples

- Linear regression
- Panel data random effect probit model

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Change point model

Outline

The general idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest model

Random Effects Probit Thinning bayestest interval

- Change-point model bayesgraph matrix
- Summary
- References

The general idea

Frequentist

イロト 不得 トイヨト イヨト

3

Outline

The general idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest model

Random Effects Probit

- bayestest interval
- Change-point model bayesgraph matrix
- References

The general idea

Bayesian

to vere	which the	hours	vice_verie	terrer.		grade	111_010
1.401214		20	27		black	13	1.083333
1.02842			10	.00333333	is Lands	12	1.271443
5.009977	1	60	81	.0146667	black.	12	1.1166
1.180278		49			black	1.2	3.514103
1.777013		10	24		black	1.2	2.77866
		12	12	i	black.	12	1.77116
2.485978					black	3.8	3.032344
		4.5	75	1.035555	black	1.2	5.294512
			101		in Lawler	1.2	1.224.112
.414172		42	97	1.014447	in Lastie	2.2	1.160286
1.000074	3	42	**	2.938887	DARCH	3.8	0.00710
2.452927		**	70		black	3.8	50.0000
		40	1.8		hianic	1.7	
1.204144		49	22		in Lania	1.2	1.1.1.1.1.1.1
1.749997		+2	37	. 2222222	31.40N	3.8	1.451225

Outline

The general idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Prob

Thinning bayestest interval

Change-point model bayesgraph matrix

- ·

The general idea

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Outline

The general idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

Bayesian Analysis vs Frequentist Analysis

Frequentist Analysis

- Results are based on estimations for unknown fixed parameters.
- The data are considered to be a (hypothetical) repeatable random sample.
- Uses the data to obtain estimates about the unknown fixed parameters.
- Depends on whether the data satisfies the assumptions for the specified model.

"Frequentists base their conclusions on the distribution of statistics derived from random samples, assuming that the parameters are unknown but fixed."

Bayesian Analyis

- Results are based on probability distributions about unknown random parameters
- The data are considered to be fixed.
- The results are produced by combining the data with prior beliefs about the parameters.
- The posterior distribution is used to make explicit probabilistic statements

"Bayesian analysis answers questions based on the distribution of parameters conditional on the observed sample."

Outline

The general idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit Thinning bavestest interval

Change-point model bayesgraph matrix

References

Some Advantages

- Based on the Bayes rule, which applies to all parametric models.
- Inference is exact, estimation and prediction are based on posterior distribution.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Provides more intuitive interpretation in terms of probabilities (e.g Credible intervals).
- It is not limited by the sample size.

Outline

The general idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit Thinning bayestest interval

- Change-point model bayesgraph matrix
- Summary
- References

Some Disadvantages

- Subjectivity in specifying prior beliefs.
- Computationally challenging.
- Setting up a model and performing analysis could be an involving task.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

The general idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit Thinning bayestest interval

Change-point model bayesgraph matrix Summary

References

Some Examples (Taken from Hahn, 2014)

- TranScan Medical use small dataset and priors based on previous studies to determine the efficacy of its 2000 device for mammografy (FDA 1999).
- homeprice.com.hk used Bayesian analysis for pricing information on over a million real state properties in Hong Kong and surrounding areas (Shamdasany, 2011).
- Researchers in the energy industry have used Bayesian analysis to understand petroleum reservoir parameters (Glinsky and Gunning, 2011).

Outline

The general idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Method

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

The general idea

The Method

Bayes rule

Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Prob

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Method

• Let's start by writing the Bayes' Rule:

$$p(B|A) = \frac{p(A|B)p(B)}{p(A)}$$

Where:

p(A|B): conditional probability of A given B p(B|A): conditional probability of B given A p(B): marginal probability of B p(A): marginal probability of A

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline

The genera idea

The Method

Bayes rule

Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit Thinning

- Change-point model bayesgraph matrix Summary
- References

The Method

 If we have a probability model for a vector of observations y and a vector of unknown parameters θ, we can represent the model with a likelihood function:

$$L(\theta; \mathbf{y}) = f(\mathbf{y}; \theta) = \prod_{i=1}^{n} f(\mathbf{y}_i | \theta)$$

Where:

 $f(y; \theta)$: conditional probability of y give θ

 Let's assume that θ has a probability distribution π (θ), and that denote m(y) denote the marginal distribution of y, such that:

$$m(\mathbf{y}) = \int f(\mathbf{y}; \mathbf{\theta}) \, \pi(\mathbf{\theta}) \, d\mathbf{\theta}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The Method

Outline

The genera

The Method

Bayes rule

Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

 Let's now write the inverse law of probability (Bayes' Theorem):

$$f(\theta|\mathbf{y}) = \frac{f(\mathbf{y};\theta) \pi(\theta)}{f(\mathbf{y})}$$

- But notice that the marginal distribution of y, f(y), does not depend on (θ)
- Then, we can write the fundamental equation for Bayesian analysis:

 $p(\theta|\mathbf{y}) \propto L(\mathbf{y}|\theta) \pi(\theta)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

The genera idea

The Method

Bayes rule

Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mod

Random Effects Prob

Thinning bayestest interval

Change-point model bayesgraph matrix

ournal y

Let's go back to our initial example

Bayesian results according to User2

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

The general idea

The Method

Bayes rule

Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit

bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Method

- In the example we have the data (the likelihood component)
- We also have the experts belief (the prior component)
- Then, how do we get the posterior distribution?
- We use the fundamental equation

 $p(\theta|y) \propto L(y|\theta) \pi(\theta)$

Outline

The genera idea

The Method

Bayes rule

Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probi

bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Method

- Let's assume that both, the data and the prior beliefs, are normally distributed:
 - The data: $y \sim N(\theta, \sigma_d^2)$

• The prior:
$$\theta \sim N\left(\mu_p, \sigma_p^2\right)$$

- Homework...: Doing the algebra with the fundamental equation we find that the posterior distribution would be normal with:
 - The posterior: $\theta | \mathbf{y} \sim \mathbf{N} \left(\mu, \sigma^2 \right)$

Where:

$$\mu = \sigma^{2} \left(N\bar{y}/\sigma_{d}^{2} + \mu_{p}/\sigma_{p}^{2} \right)$$
$$\sigma^{2} = \left(N/\sigma_{d}^{2} + 1/\sigma_{p}^{2} \right)^{-1}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

The genera idea

The Method

Bayes rule Fundamental equation

MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Prob

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Method

- Doing the algebra was relatively straightforward in the previous case.
- What about more complex distributions?
 - Integration is performed via simulation
 - We need to use intensive computational simulation tools to find the posterior distribution in most cases.
 - Markov chain Monte Carlo (MCMC) methods are the current standard in most software. Stata implement two alternatives:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Metropolis-Hastings (MH) algorithm
- Gibbs sampling

Outline

- The genera idea
- The Method
- Bayes rule Fundamental equation
- MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mod

Random Effects Probi

- Thinning bayestest interval
- Change-point model bayesgraph matrix
- Summary
- References

The Method

- Metropolis-Hastings (MH) algorithm
 - 1 Specify a proposal probability distribution q(.)
 - 2 Set an initial state within the domain of the posterior distribution θ_0
 - 3 Propose a new state for the posterior distribution θ_t ; t=1,2,...
 - Compute an aceptance rate based on the ratio of the posterior distribution evaluated at the proposed state θ_t and at the previous state θ_{t-1}.

6 If the ratio is:

- Greater than 1 -> keep the proposed value (state)
- Less than one -> draw a random number from U(0,1) and keep θ_t if the ratio is greater than the random draw.
- 6 Repeat the process from 3 with the selected θ_t

Outline

The genera idea

The Method

Bayes rule Fundamental equation

MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit

bayestest interval Change-point model bayesgraph matrix

Summary

References

The Method

• Green points represent accepted proposal states and red points represent rejected proposal states.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Outline

The genera idea

The Method

Bayes rule Fundamental equation

MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Prob

Thinning bayestest interva

Change-point model bayesgraph matrix

Summary

References

The Method

- The trace plot illustrates the sequence of accepted proposal states.
- We expect to obtain a stationary sequence when convergence is achieved.

900

Outline

The genera idea

The Method

Bayes rule Fundamental equation

MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mod

Random Effects Prol

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Method

- An efficient MCMC should have small autocorrelation.
- We expect autocorrelation to become negligible after a few lags.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 「臣」のへで、

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest model

Random Effects Probit Thinning bavestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools for Bayesian regression

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh

bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Prob

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: bayesmh

- In Stata 14 we introduce bayesmh.
- This is a general purpose command to perform Bayesian analysis using MCMC (MH or Gibbs).
- We are going to work with a few examples to show different facilities available in Stata for the analysis.
- Let's look at our first example:
 - We have stats on number of wins by the Porto soccer team.
 - We fit a linear regression for yearly wins.
 - Let's consider three specifications:

(日) (日) (日) (日) (日) (日) (日)

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh

bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit

Change-point model bayesgraph matrix

Summary

References

The Stata tools: Regression with ${\tt bayesmh}$

• Here is one syntax with <code>bayesmh</code> to fit this model:

bayesmh wins gs,likelihood(normal({sigma2})) /// prior({wins:gs _cons}, normal(0,10000)) /// prior({sigma2}, igamma(.01,.01)) /// rseed(123)

• But let's use the Graphical User Interface (GUI) (Menus and dialog boxes):

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh

bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Prot

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: Menu for Bayesian regression

Make the following sequence of selection from the main menu:

Statistics > Bayesian analysis

- > General estimation and regression
- 2 Select 'Univariate linear models'
- Specify the dependent variable (wins) and the explanatory variable (gs)
- 4 Select the 'Likelihood model' (Normal regression)
 - For 'Variance' click on 'Create' and select 'Specify as a model parameter'

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Type 'sigma2' in 'Parameter name'

Outline

The generation of the generati

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh

bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Prob Thinning

bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: Menu for Bayesian regression

5 For "'Priors of model parameters' click on 'Create'

- Select wins:gs and wins:_cons
- · Select the 'Normal distribution'
- write '0' for the mean and '10000' for the variance.
- 6 Next, create the prior for the variance of the likelihood sigma2
 - Select the Inverse gamma distribution
 - Specify .01 and .01 for the 'Shape' and 'Scale' parameters.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Click on the 'Simulation' tab and set the 'Random-number seed' to 123

Outline

The genera

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh

bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit Thinning bavestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: Regression output

```
. bayesmh wins gs,likelihood(normal({sigma2})) ///
> prior({wins:gs _cons}, normal(0,10000)) ///
> prior({sigma2}, igamma(.01,.01)) ///
> rseed(123)
```

Burn-in ... Simulation ... Model summary

Likelihood:

```
wins ~ normal(xb_wins, {sigma2})
```

Priors:

```
{wins:gs _cons} ~ normal(0,10000)
        {sigma2} ~ igamma(.01,.01)
```

(1) Parameters are elements of the linear form xb_wins.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Bayes rule Fundamental equation MCMC Stata tools bayesmh bayesstats es Blocking bayesgraph bayes: prefix bayestats ic

bavestest interval

bayesgraph matrix

The Stata tools: Regression output

<pre>. bayesmh wins gs,likelihood(normal({sigma2})) > prior({wins:gs _cons}, normal(0,10000)) > prior({sigma2}, igamma(.01,.01)) > rseed(123)</pre>) ///) /// ///
Bavesian norm	al regression	.		MCMC ite	rations =	12.500
Random-walk M	Random-walk Metropolis-Hastings sampling Burn-in =					2,500
	MCMC sample size =					10,000
				Number o	fobs =	47
				Acceptan	ce rate =	. 2222
				Efficien	cy: min =	.04521
					avg =	.06161
Log marginal	likelihood =	-135.77023			max =	.07185
	 I				Equal-	tailed
	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
wins	+ 					
gs	.2360223	.0365801	.001405	.2363132	.162386	.3096086
_cons	6.711756	2.417745	.090197	6.704956	1.923868	11.53032
sigma2	9.380877	2.089641	.098277	9.040789	6.262636	14.55403

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh

bayesstats ess

Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit Thinning bavestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: bayesstats ess

• Let's use the postestimation command bayesstats ess to evaluate the effective sample size

. bayesstats ess

Efficiency	summaries	MCMC	sample	size =	10,000

		ESS	Corr. time	Efficiency
wins				
	gs	677.68	14.76	0.0678
	_cons	718.51	13.92	0.0719
	sigma2	452.10	22.12	0.0452

- We expect to have an acceptance rate (see previous slide) that is neither to small nor too large.
- · We also expect to have low correlation
- Efficiencies over 10% are considered good for MH. Efficiencies under 1% would be a source of concern.

Outline

The generation of the generati

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats es

Blocking

bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probi

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: Blocking of parameters

- Blocking of parameters
 - The update steps for MH are performed simultaneously for all parameters.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- For high dimensional models this may result in poor mixing.
- Blocking of parameters helps improving mixing efficiency

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats e:

Blocking

bayesgraph bayes: prefix bayesstats ic bayestest mode

Random

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: Blocking of parameters

- Blocking of parameters
 - How it works?
 - It separates the model parameters into two or more subsets of blocks.
 - MH updates are applied to each block separately
 - Computations are performed in the order the blocks are specified

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

bayesmh wins gs,likelihood(normal({sigma2})) /// prior({wins:gs_cons}, normal(0,10000)) /// prior({sigma2}, igamma(.01,.01)) /// block({wins:gs_cons}) block({sigma2}) /// rseed(123)

Outline

The generation idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats es: Blocking

bayesgraph bayes: prefix bayesstats ic bayestest mo

Random Effects Probit Thinning

Change-point model bayesgraph matrix

Summary

References

The Stata tools: Menu for Blocking of parameters

- Let's go back to our previous example:
 - 1 Click on the 'Blocking' tab
 - 2 Select 'Display block summary'
 - Olick on 'Create'
 - 4 Select wins:gs and wins:_cons and click 'OK'

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 6 Click on 'Create'
- 6 Select sigma2 and click 'OK'

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess

Blocking

bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit Thinning bavestest interval

Change-point model bayesgraph matrix Summary

sigma2

9.392034

2.136876

References

The Stata tools: Blocking of parameters

Burn-in						
Block summ	nary					
1: {wir 2: {sig	ns:gs _co gma2}	ons}				
Bayesian norma	l regression	n		MCMC ite	rations =	12,50
Random-walk Me	tropolis-Has	stings sampl	Ling	Burn-in	=	2,50
				MCMC sam	ple size =	10,00
				Number o	fobs =	4
				Acceptan	ce rate =	. 342
				Efficien	cy: min =	.0988
Log marginal l	ikelihood =	-135.7408			avg = max =	.115 .146
					Equal-	tailed
	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval
wins						
gs	.2363963	.0373595	.001188	.2366527	.1626758	.310946

.05585

9.09526

▲□▶▲□▶▲□▶▲□▶ □ のへで

6.170093

14.36234

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats es

Blocking

bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit Thinning bavestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: bayesstats ess

• Let's evaluate again the effective sample size

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000

	ESS	Corr. time	Efficiency
wins			
qs	988.18	10.12	0.0988
_cons	1015.90	9.84	0.1016
sigma2	1463.91	6.83	0.1464

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- The efficiency is now around 10% or more for all the parameters.
- Correlation was reduced
- The effective sample size is also higher for all the parameters.

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats es Blocking

bayesgraph

bayes: prefix bayesstats ic bayestest mode

Random Effects Probi

Thinning bayestest interval

Change-point model bayesgraph matrix

References

The Stata tools: bayesgraph

• We can use **bayesgraph** to look at the trace, the correlation, and the density. For example:

. bayesgraph diagnostic {gs}

(日)

- The trace indicates that convergence was achieved
- Correlation becomes negligible after 10 periods

Outline

- The genera idea
- The Method
- Bayes rule Fundamental equation MCMC

Stata tools

- bayesmh bayesstats ess Blocking bayesgraph bayes: prefix
- bayes: prefix bayesstats ic bayestest mode

Random Effects Probit Thinning bavestest interval

- Change-point model bayesgraph matrix
- Summary
- References

The Stata tools: bayes: prefix

- In Stata 15 we introduce the prefix command bayes:
- This is a simple syntax to perform Bayesian analysis.
- You specify the prefix followed by your estimation command.
- The specified estimation defines the likelihood for the model.
- The default priors are assumed to be noninformative in many cases.
- But the priors may become informative due to the scale of the parameters.
- The default priors could be consider a starting point.
- However, alternative priors may need to be considered.
- Postestimation commands would help decide on the final model.
- Let's use bayes: to fit our previous model:
Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic

bayestest model

Random Effects Probit Thinning bayestest interval

Change-point model bayesgraph matrix Summary

References

The Stata tools: bayes: prefix

. bayes, rseed(123) nomodelsummary: regress wins gs

Burn-in Simulation		
Bayesian linear regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	47
	Acceptance rate =	.3426
	Efficiency: min =	.09882
	avg =	.1156
Log marginal likelihood = -135.7408	max =	.1464

						Equal-	tailed
		Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
wins							
	qs	.2363963	.0373595	.001188	.2366527	.1626758	.3109461
	_cons	6.690619	2.452853	.076957	6.69004	1.683672	11.63661
	sigma2	9.392034	2.136876	.05585	9.09526	6.170093	14.36234

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Note: Default priors are used for model parameters.

Outline

The genera idea

```
The Method
```

Bayes rule Fundamental equation MCMC

Stata tools

```
bayesmh
bayesstats es
Blocking
bayesgraph
bayes: prefix
```

bayesstats ic bayestest model

Random Effects Probi

bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: bayesstats ic

- Let's fit now the other two models that we specify at the beginning of this example.
- We will store the results for the three models and we will use the postestimation command <code>bayesstats ic</code> to select one of them.

quietly {

bayes , rseed(123): regress wins gs estimates store m_gs

bayes , rseed(123): regress wins ga estimates store m_ga

bayes , rseed(123): regress wins gs ga estimates store m_full

bayesstats ic m_gs m_ga m_full,basemodel(m_ga)

Outline

- The genera idea
- The Method
- Bayes rule Fundamental equation MCMC
- Stata tools
- bayesmh bayesstats e Blocking
- bayesgraph
- bayesstats ic
- bayestest model

Random

- Effects Probit Thinning
- bayestest interval
- Change-point model bayesgraph matrix
- Summary
- References

The Stata tools: bayesstats ic

- bayesstats ic reports three statistics
 - · Log of the marginal likelihood
 - DIC:
 - It is designed for Bayesian estimation involving MCMC simulations.
 - It Has a penalty term based on the difference between the expected log likelihood and the likelihod at the posterior mean point.
 - You shoud select the model with the lowest DIC.
 - · Bayes factors (BF)
 - · Incorporates information about model priors.
 - Ratio of the marginal likelihood of two models (fit on the same sample).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- It can be used to compare nested and nonnested models.
- Not applicable to models with improper priors.

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats es Blocking bayesgraph bayes: prefix bavesstats ic

bayestest mode

Random

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: bayesstats ic

- Here is the output for <code>bayesstats ic</code>
 - . quietly {

. bayesstats ic m_gs m_ga m_full,basem(m_full) bayesf Bayesian information criteria

	DIC	log(ML)	BF
m_gs	240.6314	-135.7408	5.015833
m_ga	268.5267	-148.5384	.0000139
m_full	230.9162	-137.3534	

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

Interpretation for Bayes Factors (Jeffreys 1961)

log10(BF_jb)	BF_jb	Evidence against M_b
0 to 1/2	1 to 3.2	Bare mention
1/2 to 1	3.2 to 10	Substantial
1 to 2	10 to 100	Strong
> 2	> 100	Decisive

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic

bayestest model

Random Effects Probit Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: bayestest model

- bayestest model is another postestimation command to compare different models.
- We can again store the results for our alternative models, and then use <code>bayestest model</code>.

quietly {
 bayes , rseed(123): regress wins gs
 estimates store m_gs

bayes , rseed(123): regress wins ga estimates store m_ga

bayes , rseed(123): regress wins gs ga estimates store m_full

bayes , prior({wins:gs _cons}, normal(20,10)) /// rseed(123): regress wins estimates store m_meanonly

bayestest model m_gs m_ga m_full m_meanonly

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest model

Random Effects Probi

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: bayestest model

- bayestest model computes the posterior probabilities for each model.
- The result indicates which model is more likely.
- It requires that the models use the same data and that they have proper posterior.
- It can be used to compare models with:
 - Different priors and/or different posterior distributions.
 - Different regression functions.
 - Different covariates
- MCMC convergence should be verified before comparing the models.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest model

Random Effects Probi

- bayestest interval
- Change-point model bayesgraph matrix
- Summary
- References

The Stata tools: bayestest model

• Here is the output for bayestest model

. bayestest model m_gs m_ga m_full m_meanonly

	log (ML)	P (M)	P (M y)	
m_gs	-135.7408	0.2500	0.8211	
m_ga	-148.5384	0.2500	0.0000	
m_full	-137.3534	0.2500	0.1637	
m_meanonly	-139.7326	0.2500	0.0152	

Note: ML is computed using Laplace-Metropolis approximation.

We could also assign different priors for the models:

. bayestest model m_gs m_ga m_full m_meanonly, ///
prior(.2 .1 .4 .3)

	log(ML)	P (M)	P (M y)
m_gs	-135.7408	0.2000	0.7010
m_ga	-148.5384	0.1000	0.0000
m_full	-137.3534	0.4000	0.2795
m_meanonly	-139.7326	0.3000	0.0194

э

Note: ML is computed using Laplace-Metropolis approximation.

Outline

The general idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

Random Effects Probit model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: Random effects probit model

• We are going to use bayes: to fit a random effects probit model for a binary variable *y*_{*it*}, which depends on the latent variable.

$$\mathbf{y}_{it}^* = \beta_0 + \beta_1 \mathbf{x}_{it1} + \beta_2 \mathbf{x}_{it2} + \dots + \beta_k \mathbf{x}_{itk} + \alpha_i + \epsilon_{it}$$

Where:

$$y_{it} = \begin{cases} 1 & \text{if } y_{it}^* > 0 \\ 0 & \text{otherwise} \end{cases}$$

 $\alpha_i \sim N\left(0, \sigma_{\alpha}^2\right)$ is the individual random panel effect $\epsilon_{it} \sim N\left(0, \sigma_{e}^2\right)$ is the idiosyncratic error term

(ロ) (同) (三) (三) (三) (○) (○)

- This is also referred as a two-level random intercept model.
- We can also fit this model with meprobit or xtprobit, re

Outline

The genera idea

```
The Method
```

Bayes rule Fundamental equation MCMC

```
Stata tools
```

```
bayesmh
bayesstats ess
Blocking
bayesgraph
bayes: prefix
bayesstats ic
bayestest mode
```

Random Effects Probit

Thinning bayestest interval

```
Change-point
model
bayesgraph matrix
```

Summary

References

The Stata tools: Random effects probit model

- This time we are going to work with simulated data.
- Here is the code to simulate the panel dataset:

```
clear
set obs 100
set seed 1
* Panel level *
generate id=_n
generate alpha=rnormal()
expand 5
* Observation level *
bysort id:generate year=_n
xtset id year
generate x1=rnormal()
generate x2=runiform()>.5
```

```
generate x3=uniform()
generate u=rnormal()
```

* Generate dependent variable *
 generate y=.5+1*x1+(-1)*x2+1*x3+alpha+u>0

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest model

Random Effects Probit

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: Random effects probit model

Let's show the results with meprobit:

. meprobit	y x1 x2 x3	<pre> id:,no</pre>	Log		
Mixed-effects	probit regres	ssion	Number	of obs =	500
Group variable	:	id	Number	of groups =	100
			Obs per	group:	
			-	min =	5
				avg =	5.0
				max =	5
Integration me	thod: mvaghe	rmite	Integra	tion pts. =	7
			Wald ch	i2(3) =	82.83
Log likelihood	= -236.88589	9	Prob >	chi2 =	0.0000
У	Coef.	Std. Err.	P> z	[95% Conf.	Interval]
x1	.9769118	.1143889	0.000	.7527138	1.20111
x 2	9896286	.1853433	0.000	-1.352895	6263625
x 3	.9426958	.2941061	0.001	.3662584	1.519133
_cons	.5220418	.2187448	0.017	.0933098	.9507738
id					
war(cone)	1 31	3835866		7270500	2 225/0/

LR test vs. probit model: chibar2(01) = 67.24 Prob >= chibar2 = 0.0000

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: Random effects probit model

We now fit the model with bayes:

. bayes , dryrun: meprobit y x1 x2 x3 || id: Multilevel structure

id

{U0}: random intercepts

Model summary

Likelihood:

```
y ~ meprobit(xb_y)
Priors:
{y:x1 x2 x3 _cons} ~ normal(0,10000) (1)
. {U0} ~ normal(0,{U0:sigma2}) (1)
Hyperprior:
{U0:sigma2} _ igamma(.01,.01)
```

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

(1) Parameters are elements of the linear form xb_y.

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: Random effects probit model

We now fit the model with bayes:

. bayes ,nomodelsummary nodots rseed(123): meprobit y x1 x2 x3 || id: Burn-in \ldots Simulation \ldots Multilevel structure

id

{U0}: random intercepts

Bayesian multilevel probit regression Random-walk Metropolis-Hastings sampling Group variable: id	MCMC iterations = Burn-in = MCMC sample size = Number of groups = Obs per group;	12,500 2,500 10,000 100
	min = avg = max =	5.0 5
Family : Bernoulli Link : probit	Number of obs = Acceptance rate = Efficiency: min =	500 .3247 .01333
Log marginal likelihood	avg = max =	.02736

		1				Equal-	tailed
		Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
у							
	x 1	.9866518	.1129356	.006316	.9850336	.7789124	1.215904
	x 2	-1.005328	.1793814	.009673	-1.003398	-1.357951	6617393
	x 3	.9856235	.2968089	.014819	.9666234	.4282133	1.591159
	_cons	.5051288	.2055344	.017802	. 5032979	.0933563	.889766
id							
	U0:sigma2	1.432124	.4234419	.032504	1.388553	.7326054	2.388284

Note: Default priors are used for model parameters.

Outline

The genera idea

The Method

Bayes rule Fundamenta equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: bayesgraph diagnostic

• We can look at the diagnostic graph for a couple of variables:

. bayesgraph diagnostic {y:x1}

(日)

- The trace shows periods with trends.
- Correlation is persistent for around 25 periods.

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit

Thinning bayestest interval

- Change-point model bayesgraph matrix
- Summary
- References

The Stata tools: bayesgraph diagnostic

Look now at the diagnostic graphs for U0:sigma2

. bayesgraph diagnostic {U0:sigma2}

(日)

- The trace also shows periods with trends.
- Correlation is persistent for around 30 periods.

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit

Thinning bayestest interval

- Change-point model bayesgraph matrix
- Summary
- References

The Stata tools: thinning

- We can reduce autocorrelation by using thinning
- This would save the random draws skipping a prespecified number of simulated values in the iteration process for the MCMC.
- We can use the option 'thinning(#)' to indicate that Stata should save simulated values from every (1+k*#)th iteration (k=0,1,2,...).
- Let's try using 'thinning(5)'

bayes ,nomodelsummary nodots rseed(123) /// thinning(5): meprobit y x1 x2 x3 || id:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest model

Random Effects Prob

Thinning

bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: thinning

Let's show the results with 'thinning(5)'

. bayes, nomodel summary nodots rseed(123) thinning(5) :meprobit y x1 x2 x3 || id: note: discarding every 4 sample observations; using observations 1, 6, 11, ...

Burn-in ... Simulation ... Multilevel structure

id

{U0}: random intercepts

Bayesian multilevel probit regression Random-walk Metropolis-Hastings sampling Group variable: id	MCMC iterations = Burn-in = MCMC sample size = Number of groups =	52,496 2,500 10,000
Gloup variable. Iu	Obs per group: min = avg =	5.0
	max =	5
Family : Bernoulli Link : probit	Number of obs = Acceptance rate = Efficiency: min =	500 .3268 .05399
Log marginal likelihood	avg = max =	.102

	1				Equal-tailed	
	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
У						
x1	. 9977099	.1181726	.003773	.9936143	.7810441	1.242439
x2	-1.018063	.1892596	.00557	-1.012598	-1.396798	6509636
x 3	9539304	.2936949	.007279	.9514395	.3823801	1.52913
_cons	. 5433822	.2205077	.00949	. 5398387	.1216346	.9847166
id						
U0:sigma2	1.456558	.4384163	.015537	1.401461	.7611919	2.463175

Note: Default priors are used for model parameters.

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mod

Random Effects Prob

Thinning bayestest interval

Change-poin model

bayesgraph matrix

Summary

References

bayesgraph diagnostic

• We now look at the diagnostic graph for the same two variables:

. bayesgraph diagnostic {y:x1}

- The trace seems to indicate convergence this time.
- Autocorrelation decays quicker and becomes negligible after about 15 periods.

・ コ ト ・ 雪 ト ・ 目 ト ・

э

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Prob

Thinning

bayestest interval

- Change-point model bayesgraph matrix
- Summary
- References

The Stata tools: bayesgraph diagnostic

• We now look now at the diagnostic graphs for U0:sigma2

. bayesgraph diagnostic {U0:sigma2}

- The trace seems to indicate convergence this time.
- Autocorrelation decays quicker and becomes negligible after about 15 periods.

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit Thinning bayestest interval

Change-point model bayesgraph matrix Summary

The Stata tools: bayestest interval

- We can perform interval testing with the postestimation command bayestest interval.
- It estimates the probability that a model parameter lies in a particular interval.
- For continuous parameters the hypothesis is formulated in terms of intervals.
- We can perform point hypothesis testing only for parameters with discrete posterior distributions.
- bayestest interval estimates the posterior distribution for a null interval hypothesis.
- bayestest interval reports the estimated posterior mean probability for Ho.

bayestest interval ({y:x1},lower(.9) upper(1.02)) /// ({y:x2},lower(-1.1) upper(-.8))

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mod

Random Effects Probit

bayestest interval

```
Change-point
model
bayesgraph matrix
Summary
```

References

The Stata tools: bayestest interval

• We can, for example, perform separate tests for different parameters:

I	Mean	Std. Dev.	MCSE
prob1	.3888	0.48750	.0077073
prob2	.5474	0.49777	.0097517

We can also perform a joint test:

. bayest	est inte	rval (({	y:x1},low	er(.9)	upper(1.02))) ///
>		({y:x2}	,lower(-1	.1) upp	per(8)),jo	oint)
Interval	tests	MCMC	sample si	ze =	10,000	
prob1	9 <	{y:x1} <	1.02, -1	.1 < {	$y:x^2 <8$	

1	Mean	Std. Dev.	MCSE
prob1	. 2249	0.41754	.0066399

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

The general idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest model

Random Effects Probit

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

Change-point model

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit

Thinning bayestest interval

Change-point model

Summary

References

The Stata tools: Change-point model

- Let's work now with an example where we write our model using a substitutable expression.
- We have data on yearly trademark applications in portugal:

- The series has a significant change around 1990.
- We may consider fitting a change-point model.

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest model

Random Effects Prob

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: Change-point model

Change point model specification

<pre>bayesmh trdmark=({mu1}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+{mu2}*sign(vear<{cp})+</pre>	/// ///vear>={cp})), ///
likelihood(normal({var}))	///
prior({mu1}, normal(3000,2000000))	///
prior({mu2}, normal(16000,2000000))	///
prior({cp}, uniform(1960,2016))	///
prior({var}, igamma(2,1))	///
initial({mu1} 5000 {mu2} 10000 {cp} 1960)	///
rseed(123) mcmcsize(40000)	///
dots(500,every(5000))	///
title(Change-point analysis)	

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mod

Random Effects Prot

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: Change-point model Change point model specification

```
. bayesmh trdmark=({mu1}*sign(year<{cp})+{mu2}*sign(year>={cp})),
                                                                     111
          likelihood(normal({var}))
                                                                     111
>
          prior({mu1}, normal(3000,2000000))
                                                                     111
>
          prior({mu2}, normal(16000,2000000))
                                                                     111
>
          prior({cp}, uniform(1960,2016))
                                                                     111
>
          prior({var}, igamma(2,1))
                                                                     111
>
          initial({mu1} 5000 {mu2} 10000 {cp} 1960)
                                                                     111
>
          rseed(123) mcmcsize(40000) dots(500, every(5000))
                                                                     111
>
          title(Change-point analysis)
>
```

Burn-in 2500 aaaaa done

Simulation	40000	5000	10000		
>	25000	30000	35000	40000	done

Model summary

Likelihood:

```
trdmark _ normal({mu1}*sign(year<{cp})+{mu2}*sign(year>={cp}), {var})
```

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

= 900

Priors:

{var}	~	igamma(2,1)
{mu1}	~	normal(3000,200000)
{mu2}	~	normal (16000, 2000000)
{cp}	~	uniform(1960,2016)

Outline

The genera

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Prob

Thinning bayestest interval

Change-point model bayesgraph matrix

C......

References

The Stata tools: Change-point model

Change point model specification

. F	oavesmh	<pre>trdmark=({mu1}*sign(vear<{cp})+{mu2}*sign(vear>={cp})).</pre>	111	
>		<pre>likelihood(normal({var}))</pre>	111	
>		<pre>prior({mu1}, normal(3000,2000000))</pre>	111	
>		<pre>prior({mu2}, normal(16000,2000000))</pre>	111	
>		<pre>prior({cp}, uniform(1960,2016))</pre>	111	
>		<pre>prior({var}, igamma(2,1))</pre>	111	
>		initial({mu1} 5000 {mu2} 10000 {cp} 1960)	111	
>		rseed(123) mcmcsize(40000) dots(500, every(5000))	111	
>		title(Change-point analysis)		
Cha	ange-poi	int analysis MCMC iterations	=	42,50
Rar	ndom-wal	k Metropolis-Hastings sampling Burn-in	=	2,50
		MCMC sample size	=	40,00
		Number of obs	=	5
		Acceptance rate	=	.411
		Efficiency: min	=	.00103
		avg	=	.0379
Log	g margir	mal likelihood = -621.28408 max	=	.136

					Equal-	tailed
	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
ср	1989.492	.2891978	.003918	1989.492	1989.023	1989.972
mu1	3754.837	153.0364	11.9209	3761.923	3468.338	4015.751
mu2	17448.84	144.531	7.04777	17448.23	17170.98	17736.22
var	463983.1	144106.8	22418.1	487445.9	89224.3	621052.3

Note: There is a high autocorrelation after 500 lags. Note: Adaptation tolerance is not met.

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probi

Thinning bayestest interval

Change-point model bayesgraph matrix

- Summary
- References

The Stata tools: bayesgraph matrix

- We can use <code>bayesgraph matrix</code> to look at the scatterplots for the simulated values of the coefficients and the variance.
- This may be useful to identify pairwise correlations that could suggest blocking for some of the parameters.

. bayesgraph matrix {mu1} {cp} {mu2} {var}

- We observe pairwise correlations for {mu1}, {mu2} and {var}
- Then, we could perform the MCMC for those three parameters as a block and {cp} in a second block.

Outline

The genera idea

The Method

Bayes rule Fundamenta equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mod

Random Effects Probi

bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: bayesgraph trace

- We can use <code>bayesgraph trace</code> to look at the trace for all the parameters.
- This helps in determining convergence.

. bayesgraph trace

• We observe signs of lack of convergence, particularly for the variance.

э

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probi

bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: bayesgraph ac

- We can use <code>bayesgraph ac</code> to look at the autocorrelation for all the parameters.
- This also helps in determining convergence.

. bayesgraph ac

• The plot shows autocorrelation for almost all the parameters.

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest model

Random Effects Prot

bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: Change-point model with MCMC Blocking

Change point model specification with blocking

gn(year>={cp})), ///
///
///
///
///
///
nary ///
///
///

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

The generation of the generati

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: Change-point model with MCMC Blocking Change point model specification with blocking

1
/

Burn-in 2500 aaaaa done

Simulation	40000		.10000	.15000	.20000
>	25000	.30000	.35000	.40000 done	

Model summary

Likelihood: trdmark ~ normal({mul}*sign(year<{cp})+{mu2}*sign(year>={cp}), {var}) Priors: {var} ~ igamma(2,1) {mu1} ~ normal(3000,2000000) {mu2} ~ normal(16000,2000000) {cp} ~ uniform(1960,2016)

Block summary

1:	{var}	(Gibbs)
2:	{cp}	
3:	{mu1} {mu2}	

Outline

The generation of the generati

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest model

Random Effects Probit Thinning bavestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: Change-point model with MCMC Blocking

Change point model specification with blocking

<pre>. bayesmh trdmark=({mul}*sign(year<{cp})+{mu2}*sign(year>={cp})), /// > likelihood(normal({var})) /// prior({mu1}, normal(3000,2000000)) /// > prior({mu2}, normal(16000,2000000)) /// > prior({cp}, uniform(1960,2016)) /// > prior({cp}, uniform(1960,2016)) /// > initial(fun1) 5000 {mu2} 10000 {cp} 1960) ///</pre>									
>	block	k({var}, gib	bs) block({	cp}) block	summary	/	//		
>	rseed	d(123) mcmcs	ize(40000)	dots (500, e	very (5000)) ///			
>	title	e (Change-poi	nt analysis)					
Change-poi Metropolis Log margir	Change-point analysisMCMC iterations =42,500Metropolis-Hastings and Gibbs samplingBurn-in =2,500MCMC sample size =40,000Number of obs =55Acceptance rate =.5288Efficiency: min =.07912avg =.2638Log marginal likelihood = -533.33098max =								
	 I					Equal-	tailed		
	į	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]		
	cp	1989.496	.2944166	.003126	1989.496	1989.019	1989.975		
п	nu1	3780.26	341.1711	6.06443	3783.149	3108.712	4446.395		
п	nu2 j	17332.57	372.1327	6.47794	17344.63	16588.7	18068.87		
v	var	3798272	739589.8	4512.18	3708037	2612399	5480970		

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probi

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: bayesgraph matrix

• We check the scatterplots again for the simulated values of the coefficients and the variance.

. bayesgraph matrix

・ロト ・四ト ・ヨト ・ヨト

ъ

We do not observe any pairwise correlations now.

Outline

The genera idea

The Method

Bayes rule Fundamenta equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probit

bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: bayesgraph trace

• We can use <code>bayesgraph trace</code> to look at the trace for all the parameters.

. bayesgraph trace

The plots indicate that convergence seems to be achieved.

(日)

Outline

The genera idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Probi

bayestest interval

Change-point model bayesgraph matrix

Summary

References

The Stata tools: bayesgraph ac

• We can also use <code>bayesgraph ac</code> to look at the autocorrelation for all the parameters.

. bayesgraph ac

 Autocorrelation decays and becomes negligible quickly for almost all the parameters.

(日)

Outline

The gener idea

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest mode

Random Effects Pro

Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

Summary

1 Bayesian analysis: The general idea

2 Basic Concepts

- The Method
- The tools
- Stata 14: The bayesmh command
- Stata 15: The bayes prefix
- Postestimation commands

3 A few examples

- Linear regression
- · Panel data random effect probit model

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

· Change point model
Bayesian analysis in Stata

Outline

The genera

The Method

Bayes rule Fundamental equation MCMC

Stata tools

bayesmh bayesstats ess Blocking bayesgraph bayes: prefix bayesstats ic bayestest model

Random Effects Probit Thinning bayestest interval

Change-point model bayesgraph matrix

Summary

References

References

Glinsky, M. E. and Gunnin, J. 2011. *Understanding uncertainty in GSEM*. World Oil, 232(1), 57—62, Jan. http://www.worldoil.com/Understanding-uncertainty-in-CSEM-January-2011.html, assessed-Jan.18,2012.

Hahn, Eugene D. 2014. *Bayesian Methods for Management and Business: Pragmatic Solutions for Real Problems*. John Wiley and Sons.

Shamdasany, P. 2011. *Smart Money*. South China Morning Post. p. 2., Jul. 4.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@