Dealing With and Understanding Endogeneity

Enrique Pinzón

StataCorp LP

September 29, 2016 Sydney

Importance of Endogeneity

- Endogeneity occurs when a variable, observed or unobserved, that is not included in our models, is related to a variable we incorporated in our model.
- Model building
- Endogeneity contradicts:
 - Unobservables have no effect or explanatory power
 - The covariates cause the outcome of interest
- Endogeneity prevents us from making causal claims
- Endogeneity is a fundamental concern of social scientists (first to the party)

Importance of Endogeneity

- Endogeneity occurs when a variable, observed or unobserved, that is not included in our models, is related to a variable we incorporated in our model.
- Model building
- Endogeneity contradicts:
 - Unobservables have no effect or explanatory power
 - The covariates cause the outcome of interest
- Endogeneity prevents us from making causal claims
- Endogeneity is a fundamental concern of social scientists (first to the party)

Outline

- Defining concepts and building our intuition
- Stata built in tools to solve endogeneity problems
- Stata commands to address endogeneity in non-built-in situations

Defining concepts and building our intuition

A (10) A (10)

Building our Intuition: A Regression Model

The regression model is given by:

$$y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_k x_{ki} + \varepsilon_i$$

$$E(\varepsilon_i | x_{1i}, \ldots, x_{ki}) = 0$$

• Once we have the information of our regressors, on average what we did not include in our model has no importance.

$$E(y_i|x_{1i},\ldots,x_{ki})=\beta_0+\beta_1x_{1i}+\ldots+\beta_kx_{ki}$$

Building our Intuition: A Regression Model

The regression model is given by:

$$y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_k x_{ki} + \varepsilon_i$$

$$E(\varepsilon_i | x_{1i}, \ldots, x_{ki}) = 0$$

• Once we have the information of our regressors, on average what we did not include in our model has no importance.

$$E(\mathbf{y}_i|\mathbf{x}_{1i},\ldots,\mathbf{x}_{ki}) = \beta_0 + \beta_1 \mathbf{x}_{1i} + \ldots + \beta_k \mathbf{x}_{ki}$$

Graphically

(StataCorp LP)

2

イロト イヨト イヨト イヨト

Examples of Endogeneity

- We want to explain wages and we use years of schooling as a covariate. Years of schooling is correlated with unobserved ability, and work ethic.
- We want to explain to probability of divorce and use employment status as a covariate. Employment status might be correlated to unobserved economic shocks.
- We want to explain graduation rates for different school districts and use the fraction of the budget used in education as a covariate. Budget decisions are correlated to unobservable political factors.
- Estimating demand for a good using prices. Demand and prices are determined simultaneously.

・ロト ・四ト ・ヨト ・ヨト

A General Framework

If the unobservables, what we did not include in our model is correlated to our covariates then:

 $E(\varepsilon|X) \neq 0$

- Omitted variable "bias"
- Simultaneity
- Functional form misspecification
- Selection "bias"

A useful implication of the above condition

 $E(X'\varepsilon) \neq 0$

A General Framework

If the unobservables, what we did not include in our model is correlated to our covariates then:

 $E(\varepsilon|X) \neq 0$

- Omitted variable "bias"
- Simultaneity
- Functional form misspecification
- Selection "bias"

A useful implication of the above condition

 $E(X'\varepsilon) \neq 0$

< 回 > < 回 > < 回 >

A General Framework

If the unobservables, what we did not include in our model is correlated to our covariates then:

 $E(\varepsilon|X) \neq 0$

- Omitted variable "bias"
- Simultaneity
- Functional form misspecification
- Selection "bias"

A useful implication of the above condition

 $E(X'\varepsilon) \neq 0$

< 回 > < 回 > < 回 >

Example 1: Omitted Variable "Bias"

The true model is given by

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$
$$E(\varepsilon | x_1, x_2) = 0$$

the researcher does not incorporate x_2 , i.e. they think

$$y = \beta_0 + \beta_1 x_1 + \nu$$

The objective is to estimate β_1 . In our framework we get a consistent estimate if

$$E\left(\nu|x_1\right)=0$$

Example 1: Omitted Variable "Bias"

The true model is given by

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$
$$E(\varepsilon | x_1, x_2) = 0$$

the researcher does not incorporate x_2 , i.e. they think

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + \nu$$

The objective is to estimate β_1 . In our framework we get a consistent estimate if

$$E\left(\nu|x_1\right)=0$$

Example 1: Endogeneity

Using the definition of the true model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$
$$E(\varepsilon | x_1, x_2) = 0$$

We know that

 $\nu = \beta_2 \mathbf{X}_2 + \varepsilon$

and

 $E(\nu|x_1) = \beta_2 E(x_2|x_1)$

 $E(\nu|x_1) = 0$ only if $\beta_2 = 0$ or x_2 and x_1 are uncorrelated

Example 1: Endogeneity

Using the definition of the true model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$
$$E(\varepsilon | x_1, x_2) = 0$$

We know that

$$\nu = \beta_2 \mathbf{X}_2 + \varepsilon$$

and

$$E(\nu|x_1) = \beta_2 E(x_2|x_1)$$

 $E(\nu|x_1) = 0$ only if $\beta_2 = 0$ or x_2 and x_1 are uncorrelated

Example 1 Simulating Data

```
. clear
. set obs 10000
number of observations (_N) was 0, now 10,000
. set seed 111
. // Generating a common component for x1 and x2
. generate a = rchi2(1)
. // Generating x1 and x2
. generate x1 = rnormal() + a
. generate x2 = rchi2(2)-3 + a
. generate e = rchi2(1) - 1
. // Generating the outcome
. generate y = 1 - x1 + x2 + e
```

э.

< 日 > < 同 > < 回 > < 回 > < □ > <

Example 1 Estimation

- . // estimating true model
- . quietly regress y x1 x2
- . estimates store real
- . //estimating model with omitted variable
- . quietly regress y x1
- . estimates store omitted
- . estimates table real omitted, se

x1987104563195021 .00915198 .0148245 x2 .99993928 .00648263 _cons .9920283 .3296825	Variable	ole real	omitted			
x2 .99993928 .00648263 _cons .9920283 .3296825	x1	x198710456	31950213			
_cons .9920283 .3296825	x2	x2 .99993928 .00648263	.01102101			
.01678995 .0298398	_cons	ons .9920283 .01678995	.32968254 .02983985			

legend: b/se

Example 2: Simultaneity in a market equilibrium

The demand and supply equations for the market are given by

$$Q_d = \beta P_d + \varepsilon_d$$
$$Q_s = \theta P_s + \varepsilon_s$$

If a researcher wants to estimate Q^d and ignores that P^d is simultaneously determined, we have an endogeneity problem that fits in our framework.

不得る 不良る 不良る

Example 2: Assumptions and Equilibrium

We assume:

- All quantities are scalars
- $\beta < 0$ and $\theta > 0$
- *E*(ε_d) = *E*(ε_s) = *E*(ε_dε_s) = 0
 E(ε²_d) ≡ σ²_d

The equilibrium prices and quantities are given by:

$$P = \frac{\varepsilon_s - \varepsilon_d}{\beta - \theta}$$
$$Q = \frac{\beta \varepsilon_s - \theta \varepsilon_d}{\beta - \theta}$$

A (10) A (10)

Example 2: Endogeneity

This is a simple linear model so we can verify if

$$E\left(P_{d}\varepsilon_{d}\right)=0$$

Using our equilibrium conditions and the fact that ε_s and ε_d are uncorrelated we get

$$E(P_d \varepsilon_d) = E\left(\frac{\varepsilon_s - \varepsilon_d}{\beta - \theta} \varepsilon_d\right)$$
$$= \frac{E(\varepsilon_s \varepsilon_d)}{\beta - \theta} - \frac{E(\varepsilon_d^2)}{\beta - \theta}$$
$$= -\frac{E(\varepsilon_d^2)}{\beta - \theta}$$
$$= -\frac{\sigma_d^2}{\beta - \theta}$$

Example 2: Endogeneity

This is a simple linear model so we can verify if

$$E\left(P_d\varepsilon_d\right)=0$$

Using our equilibrium conditions and the fact that ε_s and ε_d are uncorrelated we get

$$E(P_d \varepsilon_d) = E\left(\frac{\varepsilon_s - \varepsilon_d}{\beta - \theta} \varepsilon_d\right)$$
$$= \frac{E(\varepsilon_s \varepsilon_d)}{\beta - \theta} - \frac{E(\varepsilon_d^2)}{\beta - \theta}$$
$$= -\frac{E(\varepsilon_d^2)}{\beta - \theta}$$
$$= -\frac{\sigma_d^2}{\beta - \theta}$$

Example 2: Graphically

э

イロト イヨト イヨト イヨト

Example 3: Functional Form Misspecification

Suppose the true model is given by:

$$y = sin(x) + \varepsilon$$

 $E(\varepsilon|x) = 0$

But the researcher thinks that:

$$y = x\beta + \nu$$

Example 3: Functional Form Misspecification

Suppose the true model is given by:

$$y = sin(x) + \varepsilon$$

 $E(\varepsilon|x) = 0$

But the researcher thinks that:

$$\mathbf{y} = \mathbf{x}\beta + \nu$$

Example 3: Real vs. Estimated Predicted values

(StataCorp LP)

э

イロト イヨト イヨト イヨト

Example 3: Endogeneity

Adding zero we have

$$y = x\beta - x\beta + \sin(x) + \varepsilon$$

$$y = x\beta + \nu$$

$$\nu \equiv \sin(x) - x\beta + \varepsilon$$

For our estimates to be consistent we need to have $E(\nu|X) = 0$ but

$$E(\nu|x) = sin(x) - x\beta + E(\varepsilon|x)$$

= sin(x) - x\beta
\$\neq 0\$

Example 3: Endogeneity

Adding zero we have

$$y = x\beta - x\beta + sin(x) + \varepsilon$$

$$y = x\beta + \nu$$

$$\nu \equiv sin(x) - x\beta + \varepsilon$$

For our estimates to be consistent we need to have $E(\nu|X) = 0$ but

$$E(\nu|x) = sin(x) - x\beta + E(\varepsilon|x)$$

= sin(x) - x
\neq 0

Example 3: Endogeneity

Adding zero we have

$$y = x\beta - x\beta + sin(x) + \varepsilon$$

$$y = x\beta + \nu$$

$$\nu \equiv sin(x) - x\beta + \varepsilon$$

For our estimates to be consistent we need to have $E(\nu|X) = 0$ but

$$E(\nu|x) = sin(x) - x\beta + E(\varepsilon|x)$$

= sin(x) - x\beta
\$\neq 0\$

Example 4: Sample Selection

- We observe the outcome of interest for a subsample of the population
- The subsample we observe is based on a rule For example we observe y if y2 ≥ 0
- In a linear framework we have that:

$$E(y|X_1, y_2 \ge 0) = X_1\beta + E(\varepsilon|X_1, y_2 \ge 0)$$

- If $E(\varepsilon|X_1, y_2 \ge 0) \neq 0$ we have selection bias
- In the classic framework this happens if the selection rule is related to the unobservables

・ 同 ト ・ ヨ ト ・ ヨ ト

Example 4: Endogeneity

If we define $X \equiv (X_1, y_2 \ge 0)$ we are back in our framework

$$E(y|X) = X_1\beta + E(\varepsilon|X)$$

And we can define endogeneity as happening when:

 $E(\varepsilon|X) \neq 0$

A (10) A (10) A (10) A

Example 4: Simulating data

```
. clear
. set seed 111
. quietly set obs 20000
. // Generating Endogenous Components
. matrix C = (1, .8 \setminus .8, 1)
. quietly drawnorm e v, corr (C)
. // Generating exogenous variables
. generate x1 = rbeta(2, 3)
. generate x^2 = rbeta(2, 3)
. generate x3 = rnormal()
. generate x4 = rchi2(1)
. // Generating outcome variables
. generate v1 = x1 - x2 + e
. generate y^2 = 2 + x^3 - x^4 + v
. guietly replace v1 = . if v2 <=0
```

Example 4: Estimation

. regress y1 x1 x2, nocons

Source	SS	df	MS	Numbe	Number of obs F(2, 14845) Prob > F R-squared		14,847
Model Residual	1453.18513 13252.8872	2 14,845	726.592566	F(2, Prob			813.88 0.0000 0.0988
Total	14706.0723	14,847	.990508004	- Adj F 1 Root	NSE MSE	= k	0.0987
yl	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
x1 x2	1.153796 7896144	.0290464 .0287341	39.72 -27.48	0.000	1.0968 84593	362 369	1.210731 7332919

2

イロン イ理 とく ヨン イヨン

- Endogeneity manifests itself in many forms
- This manifestations can be understood within a general framework
- Mathematically $E(\varepsilon|X) \neq 0$ which implies $E(X\varepsilon) \neq 0$
- Considerations that were not in our model (variables, selection, simultaneity, functional form) affect the system and the model.

イベト イモト イモト

Built-in tools to solve for endogeneity

э

< ロ > < 同 > < 回 > < 回 >

- ivregress, ivpoisson, ivtobit, ivprobit, xtivreg
- etregress, etpoisson, eteffects
- biprobit, reg3, sureg, xthtaylor
- heckman, heckprobit, heckoprobit
Instrumental Variables

- We model Y as a function of X₁ and X₂
- X₁ is endogenous
- We can model X₁
- X₁ can be divided into two parts; an endogenous part and an exogenous part

$$X_1 = f(X_2, Z) + \nu$$

- Z are variables that affect Y only through X_1
- Z are referred to as intrumental variables or excluded instruments

< 回 ト < 三 ト < 三

Instrumental Variables

- We model Y as a function of X₁ and X₂
- X₁ is endogenous
- We can model X₁
- X₁ can be divided into two parts; an endogenous part and an exogenous part

$$X_1 = f(X_2, Z) + \nu$$

- Z are variables that affect Y only through X_1
- Z are referred to as intrumental variables or excluded instruments

< 回 ト < 三 ト < 三

Instrumental Variables

- We model Y as a function of X₁ and X₂
- X₁ is endogenous
- We can model X₁
- X₁ can be divided into two parts; an endogenous part and an exogenous part

$$X_1 = f(X_2, Z) + \nu$$

- Z are variables that affect Y only through X₁
- Z are referred to as intrumental variables or excluded instruments

不得 トイ ヨト イヨト

What Are These Instruments Anyway?

- We are modeling income as a function of education. Education is endogenous. Quarter of birth is an instrument, albeit weak.
- We are modeling the demand for fish. We need to exclude the supply shocks and keep only the demand shocks. Rain is an instrument.

A D A D A D A

Solving for Endogeneity Using Instrumental Variables

- The solution is the get a consistent estimate of the exogenous part and get rid of the endogenous part
- An example is two-stage least squares
- In two-stage least squares both relationships are linear

- 4 回 ト 4 ヨ ト

Simulating the Model

- . clear
- . set seed 111
- . set obs 10000

number of observations (_N) was 0, now 10,000

- . generate a = rchi2(2)
- . generate e = rchi2(1) 3 + a
- . generate v = rchi2(1) 3 + a
- . generate x2 = rnormal()
- . generate z = rnormal()
- . generate x1 = 1 z + x2 + v
- . generate y = 1 x1 + x2 + e

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Estimation using Regression

. reg y x1 x2	2						
Source	SS	df	MS	Numb	er of ob	s =	10,000
				F(2,	9997)	=	1571.70
Model	12172.8278	2	6086.41388	8 Prob) > F	=	0.0000
Residual	38713.3039	9,997	3.87249214	R-sq	uared	=	0.2392
				- Adj	R-square	d =	0.2391
Total	50886.1317	9,999	5.08912208	Root	MSE	=	1.9679
У	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
x1 x2 _cons	4187662 .4382175 .4425514	.007474 .0209813 .0210665	-56.03 20.89 21.01	0.000 0.000 0.000	4334 .39 .4012	167 709 569	4041156 .479345 .4838459

. estimates store reg

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Manual Two-Stage Least Squares (Wrong S.E.)

```
. quietly regress x1 z x2
. predict double x1hat
(option xb assumed; fitted values)
. preserve
. replace x1 = x1hat
(10,000 real changes made)
. quietly regress y x1 x2
. estimates store manual
. restore
```

3

Estimation using Two-Stage Least Squares (2SLS)

. ivregress 2 Instrumental v	2sls y x2 () variables (2	(1=z) 2SLS) regress:	ion	Numbe Wald Prob R-squ Root	er of obs chi2(2) > chi2 uared MSE	; = = = =	10,000 1613.38 0.0000 2.5174
У	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
x1 x2 _cons	-1.015205 1.005596 1.042625	.0252942 .0348808 .0357962	-40.14 28.83 29.13	0.000 0.000 0.000	-1.064 .9372 .9724	781 314 656	9656292 1.073961 1.112784

Instrumented: x1 Instruments: x2 z

. estimates store tsls

3

Estimation

. estimates table reg tsls manual, se

Variable	reg	tsls	manual
x1	41876618	-1.0152049	-1.0152049
x2	.4382175	1.0055965	1.0055965
_cons	.02098126 .44255137	.03488076 1.0426249	.02794373 1.0426249
	.02106646	.03579622	.02867713

legend: b/se

2

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Other Alternatives

- sem, gsem, gmm
- These are tools to construct our own estimation
- sem and gsem model the unobservable correlation in multiple equations
- gmm is usually used to explicitly model a system of equations where we model the endogenous variable

< 回 > < 回 > < 回 >

What are sem and gsem

- SEM is for structural equation modeling and GSEM is for generalized structural equation modeling
- sem fits linear models for continuous responses. Models only allow for one level.
- gsem continuous, binary, ordinal, count, or multinomial, responses and multilevel modeling.
- Estimation is done using maximum likelihood
- It allows unobserved components in the equations and correlation between equations

What are sem and gsem

- SEM is for structural equation modeling and GSEM is for generalized structural equation modeling
- sem fits linear models for continuous responses. Models only allow for one level.
- gsem continuous, binary, ordinal, count, or multinomial, responses and multilevel modeling.
- Estimation is done using maximum likelihood
- It allows unobserved components in the equations and correlation between equations

A (10) A (10)

What is gmm

- Generalized Method of Moments
- Estimation is based on being to write objects in the form

$$E\left[g\left(x,\theta\right)\right]=0$$

- θ is the parameter of interest
- If you can solve directly we have a method of moments.
- When we have more moments than parameters we need to give weights to the different moments and cannot solve directly.
- The weight matrix gives more weight to the more efficient moments.

< 回 > < 回 > < 回 >

What is gmm

- Generalized Method of Moments
- Estimation is based on being to write objects in the form

$$E\left[g\left(x,\theta\right)\right]=0$$

- θ is the parameter of interest
- If you can solve directly we have a method of moments.
- When we have more moments than parameters we need to give weights to the different moments and cannot solve directly.
- The weight matrix gives more weight to the more efficient moments.

< 回 > < 回 > < 回 >

Estimation Using sem

. sem (y <- x2 x1) (x1 <- x2 z), cov(e.y*e.x1) nolog Endogenous variables Observed: y x1 Exogenous variables Observed: x2 z Structural equation model Number of obs = 10,000 Estimation method = m1 Log likelihood = -71917.224

	Coef.	OIM Std. Err.	Z	₽> z	[95% Conf.	Interval]
Structural						
y <- x1 x2 _cons	-1.015205 1.005596 1.042625	.0252942 .0348808 .0357962	-40.14 28.83 29.13	0.000 0.000 0.000	-1.064781 .9372314 .9724656	9656292 1.073961 1.112784
x1 <- x2 _cons	.9467476 987925 1.011304	.0244521 .0241963 .0243764	38.72 -40.83 41.49	0.000 0.000 0.000	.8988225 -1.035349 .9635269	.9946728 9405011 1.059081
var(e.y) var(e.x1)	6.337463 5.941873	.2275635 .0840308			5.90678 5.779438	6.799549 6.108874
cov(e.y,e.x1)	4.134763	.1675226	24.68	0.000	3.806424	4.463101
LR test of mod . estimates st	del vs. satur core sem	ated: chi2(0)) =	0.00,	Prob > chi2 =	
					(画)メヨンメヨン	E nar

(StataCorp LP)

Estimation Using gmm

. gmm (eq1: y - {xb: x1 x2 _cons})	///		
> (eq2: x1 - {xpi: x2 z _cons}),	///		
<pre>> instruments(x2 z)</pre>	///		
> winitial(unadjusted, independent) nolog			
Final GMM criterion $Q(b) = 4.70e-33$			
note: model is exactly identified			
GMM estimation			
Number of parameters = 6			
Number of moments = 6			
Initial weight matrix: Unadjusted	Number of obs	=	10,00
GMM weight matrix: Robust			

		Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
xb							
د د cor	(1) (2) (1)	-1.015205 1.005596 1.042625	.0252261 .0362111 .0363351	-40.24 27.77 28.69	0.000 0.000 0.000	-1.064647 .934624 .9714094	9657627 1.076569 1.11384
xpi	z2	.9467476 987925	.0251266	37.68 -42.27	0.000	.8975004 -1.033738	.9959949
 Instruments . estimates	s fo s fo s fo	or equation ecor equation ecor	q1: x2 z _cc q2: x2 z _cc	41.49 ons ons	0.000	. 9635274	1.05908

æ

イロト イヨト イヨト イヨト

Summarizing the results of our estimation

Variable	reg	tsls	sem	gmm
x1	41876618	-1.0152049	-1.0152049	-1.0152049
x2	.4382175	1.0055965	1.0055965	1.0055965
_cons	.44255137	1.0426249 .03579622	1.0426249 .03579622	1.0426249 .03633511

legend: b/se

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Control Function Type Solutions

- The key element here is to model the correlation between the unobservables between the endogenous variable equation and the outcome equation
- This is what is referred to as a control function approach
- Heckman selection is similar to this approach

不得る 不良る 不良る

Heckman Selection

. clear

```
. set seed 111
. quietly set obs 20000
. // Generating Endogenous Components
. matrix C = (1, .4 \setminus .4, 1)
. quietly drawnorm e v, corr (C)
. // Generating exogenous variables
. generate x1 = rbeta(2, 3)
. generate x^2 = rbeta(2, 3)
. generate x3 = rnormal()
. generate x4 = rchi2(1)
. // Generating outcome variables
. generate y1 = -1 - x1 - x2 + e
. generate y_2 = (1 + x_3 - x_4) * .5 + v
. quietly replace y1 = . if y2 <=0
. generate vp = v1 !=.
```

3

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Heckman Solution

• Estimate a probit model for the selected observations as a function of a set of variables *Z*

Then use the probit models to estimate:

$$E(y|X_1, y_2 \ge 0) = X_1\beta + E(\varepsilon|X_1, y_2 \ge 0)$$

= $X_1\beta + \beta_s \frac{\phi(Z\gamma)}{\Phi(Z\gamma)}$

• In other words regress y on X_1 and $\frac{\phi(Z\gamma)}{\Phi(Z\gamma)}$

Heckman Solution

- Estimate a probit model for the selected observations as a function of a set of variables *Z*
- Then use the probit models to estimate:

$$\begin{split} E(y|X_1, y_2 \geq 0) &= X_1\beta + E(\varepsilon|X_1, y_2 \geq 0) \\ &= X_1\beta + \beta_s \frac{\phi(Z\gamma)}{\Phi(Z\gamma)} \end{split}$$

• In other words regress y on X_1 and $\frac{\phi(Z\gamma)}{\Phi(Z\gamma)}$

Heckman Estimation

. heckman yl	x1 x2,	select	(x3 x4)							
Iteration 0: Iteration 1:	log li log li	keliho keliho	d = -2544 d = -2544	19.645 19.586						
Iteration 2:	log li	kelihc	od = -2544	9.586						
Heckman select	tion mod	el			Nui	mber o	f obs	=	2	20,000
(regression mo	odel wit	h samp	le selecti	.on)	Cei	nsored	obs	=		9,583
					Un	censor	ed obs	=	1	10,417
Log likelihood	d = -254	49.59			Wa. Pro	ld chi ob > c	2(2) hi2	=	1()98.75).0000
y1	с	oef.	Std. Err.	Z	P>	z	[95%	Conf.	Inte	erval]
vl										
x1	-1.11	7284	.0464766	-24.04	0.	000	-1.20	8377	-1.0	026192
x2	-1.04	9901	.0458861	-22.88	0.	000	-1.13	9836	95	599656
cons	955	9192	.0329022	-29.05	0.	000	-1.02	0406	8	391432
select										
x3	.499	0633	.0104891	47.58	0.	000	.47	8505	.51	196216
x4	478	5327	.0101864	-46.98	0.	000	498	4976	45	585677
	.480	/396	.0125354	38.35	0.	000	.456	1/0/	.50	153084
/athrho	.461	4032	.0321988	14.33	0.	000	.398	2946	. 52	245117
/lnsigma	004	7001	.0092076	-0.51	0.	610	022	7466	.01	133465
rho	/131	2271	0262112				378	1888	A {	2117/7
siama		5311	.0091644				.977	5102	1.0)13436
lambda	.429	2051	.0288551				.372	6501	.48	357601
LR test of ind	dep. eqn	s. (rh	10 = 0):	chi2(1) =	2	08.78	Prob	> chi2	2 = (0.0000
. estimates st	tore hec	kman								
					4		나 소문.	▶ < 톤 ▶	2	200
(StataCorp LP)						Septen	nber 29, 2	016 Sydne	әу	44 / 58

Two Steps Heuristically

- . quietly probit yp x3 x4
- . matrix A = e(b)
- . quietly predict double xb, xb
- . quietly generate double mills = normalden(xb)/normal(xb)
- . quietly regress y1 x1 x2 mills
- . matrix B = A, _b[x1], _b[x2], _b[_cons], _b[mills]

3

GMM Estimation

```
. local xb \{b1\} * x1 + \{b2\} * x2 + \{b0b\}
. local mills (normalden({xp:})/normal({xp:}))
. gmm (eg2: vp*(normalden({xp: x3 x4 cons})/normal({xp:})) - ///
           (1-yp) * (normalden (-{xp:}) / normal (-{xp:})))
>
      (eq1: v1 - (`xb') - {b3}*(`mills'))
     (eq3: (v1 - (`xb´) - {b3}*(`mills´))*`mills´),
>
>
     instruments(eq1: x1 x2)
     instruments(eg2: x3 x4)
>
      winitial (unadjusted, independent) guickderivatives
>
      nocommonesample from (B)
>
Step 1
Iteration 0: GMM criterion O(b) = 2.279e-19
Iteration 1: GMM criterion O(b) = 2.802e-34
Step 2
Iteration 0: GMM criterion O(b) = 5.387e-34
Iteration 1: GMM criterion O(b) = 5.387e-34
note: model is exactly identified
GMM estimation
Number of parameters =
                         7
Number of moments
                   =
                                                  Number of obs
Initial weight matrix: Unadjusted
                       Robust
GMM weight matrix:
```

		Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
	x3	.4992753	.0106148	47.04	0.000	.4784706	.52008
	x4	4779557	.0104455	-45.76	0.000	4984285	4574828
	_cons	.4798264	.012609	38.05	0.000	.4551132	.5045397
	/b1	-1.115395	.0472637	-23.60	0.000	-1.20803	-1.02276
	/b2	-1.048694	.0455168	-23.04	0.000	-1.137905	9594823
	/b0b	9514073	.0332245	-28.64	0.000	-1.016526	8862885
	/b3	.4199921	.0296825	14.15	0.000	.3618155	.4781686
*	Number of ol Number of ol Number of ol	oservations fo oservations fo oservations fo	or equation or equation or equation	eq2: 2000 eq1: 1041 eq3: 1041) 0 1 7 1 7	< □ > < 🗗 >	

SEM Estimation of Heckman

. gsei	m (y1 <-	- x1 x2 L@a)(yp <- x3 x4	L@a, pro	bit),	//	/	
General	lized st	ructural equ	ation model		Number	of obs	=	20,000
Respon	se	: y1			Number	of obs	=	10,417
Family		: Gaussian						
Respon	90	: identity			Number	of obs	=	20.000
Family	50	: Bernoulli			NUMBEL	01 005		20,000
Link		: probit						
Log li	kelihood	d = -25449.58	6					
$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	- [y1]]	L + [yp]L = 0)] cons = 1						
,								
		Coef.	Std. Err.	Z	P> z	[95	% Conf.	Interval]
y1 <-								
	x1	-1.117284	.0464766	-24.04	0.000	-1.2	08377	-1.026192
	XZ T.	-1.049901	.0458861	-22.88	0.000	-1.1	39836 N6749	9599656
	_cons	9559206	.0329017	-29.05	0.000	-1.0	20407	8914345
vn <-								
110	x3	.6175268	.0142797	43.24	0.000	.5	89539	.6455146
	x4	5921228	.0140871	-42.03	0.000	6	19733	5645125
	L	.7287588	.0296352	24.59	0.000	.67	06749	.7868426
	_cons	.5948535	.01/244	34.50	0.000	.5	61056	.6286511
	var(L)	1	(constraine	ed)				
va	r(e.y1)	.4595557	.0322516			.40	04984	.5273215

. estimates store hecksem

æ

イロト イヨト イヨト イヨト

Comparing SEM and HECKMAN

Variable	heckman	hecksem
xl	-1.117284	-1.1172841
x2	-1.0499007	-1.0499007
L	.04300011	.72875877
_cons	95591918 .03290222	95592061 .03290166

legend: b/se

3

・ロト ・四ト ・ヨト ・ヨト

Non Built-In Situations

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Control Function Approach in a Linear Model: The Model

. clear . set seed 111 . set obs 10000 number of observations (_N) was 0, now 10,000 . generate a = rchi2(2) . generate e = rchi2(1) -3 + a . generate v = rchi2(1) -3 + a . generate x2 = rnormal() . generate z = rnormal() . generate x1 = 1 - z + x2 + v . generate y = 1 - x1 + x2 + e

-

イロト 不得 トイヨト イヨト

Estimation Using a Control Function Approach

• The underlying model is

$$y = X_1\beta_1 + X_2\beta_2 + \varepsilon$$
$$X_2 = X_1\Pi_1 + Z\Pi_2 + \nu$$
$$\varepsilon = \nu\rho + \epsilon$$
$$E(\epsilon|X_1, X_2) = 0$$

• This implies that:

$$y = X_1\beta_1 + X_2\beta_2 + \nu\rho + \epsilon$$

We can regress y on X₁, X₂, and ρ
We can test for endogeneity

Estimation Using a Control Function Approach

• The underlying model is

$$y = X_1\beta_1 + X_2\beta_2 + \varepsilon$$
$$X_2 = X_1\Pi_1 + Z\Pi_2 + \nu$$
$$\varepsilon = \nu\rho + \epsilon$$
$$E(\epsilon|X_1, X_2) = 0$$

• This implies that:

$$\mathbf{y} = \mathbf{X}_1 \beta_1 + \mathbf{X}_2 \beta_2 + \nu \rho + \epsilon$$

We can regress y on X₁, X₂, and ρ
We can test for endogeneity

Estimation Using a Control Function Approach

• The underlying model is

$$y = X_1\beta_1 + X_2\beta_2 + \varepsilon$$
$$X_2 = X_1\Pi_1 + Z\Pi_2 + \nu$$
$$\varepsilon = \nu\rho + \epsilon$$
$$E(\epsilon|X_1, X_2) = 0$$

• This implies that:

$$\mathbf{y} = \mathbf{X}_1 \beta_1 + \mathbf{X}_2 \beta_2 + \nu \rho + \epsilon$$

- We can regress y on X_1 , X_2 , and ρ
- We can test for endogeneity

Estimation of Control Function Using gmm

<pre>. local xbeta . gmm (eq3: (x) > (eq1: y) > (eq2: (y) > instrume > winitial Final GMM crit note: model is GMM estimation</pre>	<pre>A {b1}*x1 + {b t1 - {xpi:x2 z v - (`xbeta')) v - (`xbeta')) ents(eq3: x2 z ents(eq1: x1 z (unadjusted, eerion Q(b) = s exactly ider h</pre>	<pre>b2}*x2 + {b3 c_cons})) * (x1-{xpi:} c) c2) independent 1.45e-32 ntified</pre>	}*(x1-{xp ///)), /// ///) nolog	pi:}) + {b)}	
Number of mome Initial weight GMM weight mat	ents = 7 matrix: Unac crix: Robu	ljusted Ist		Number	of obs =	10,000
	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
x2 z _cons	.9467476 987925 1.011304	.0251266 .0233745 .0243761	37.68 -42.27 41.49	0.000 0.000 0.000	.8975004 -1.033738 .9635274	.9959949 9421118 1.05908
/b1 /b2 /b3 /b0	-1.015205 1.005596 .6958685 1.042625	.0252261 .0362111 .0284014 .0363351	-40.24 27.77 24.50 28.69	0.000 0.000 0.000 0.000	-1.064647 .934624 .6402028 .9714094	9657627 1.076569 .7515342 1.11384
Instruments fo	or equation eq	43: x2 z _co	ns			

Instruments for equation eq1: x1 x2 _cons Instruments for equation eq2: cons

3

・ロト ・四ト ・ヨト ・ヨト

Ordered Probit with Endogeneity

The model is given by:

$$y_1^* = y_2\beta + x\Pi + \varepsilon$$

$$y_2 = x\gamma_1 + z\gamma_2 + \nu$$

$$y_1 = j \quad \text{if} \quad \kappa_{j-1} < y_1^* < \kappa_j$$

$$\kappa_0 = -\infty < \kappa_1 < \dots < \kappa_k = \infty$$

$$\varepsilon \sim N(0, 1)$$

$$cov(\nu, \varepsilon) \neq 0$$

æ

gsem Representation

$$y_{1gsem}^{*} = y_{2}b + x\pi + t + L\alpha$$

$$t \sim N(0, 1)$$

$$L \sim N(0, 1)$$

Where $y_{1gsem}^* = My_1^*$ and *M* is a constant. Noting that

$$y_{1gsem}^{*} = My_{1}^{*}$$

$$y_{2}b + x\pi + t + L\alpha = y_{2}M\beta + xM\Pi + M\varepsilon$$

Which implies that

$$M\varepsilon = t + L\alpha$$

$$M^{2} Var(\varepsilon) = Var(t + L\alpha)$$

$$M^{2} = 1 + \alpha^{2}$$

$$M = \sqrt{1 + \alpha^{2}}$$

э

gsem Representation

$$y_{1gsem}^{*} = y_{2}b + x\pi + t + L\alpha$$

$$t \sim N(0, 1)$$

$$L \sim N(0, 1)$$

Where $y_{1gsem}^* = My_1^*$ and *M* is a constant. Noting that

$$y_{1gsem}^* = My_1^*$$

$$y_2b + x\pi + t + L\alpha = y_2M\beta + xM\Pi + M\varepsilon$$

Which implies that

$$M\varepsilon = t + L\alpha$$

$$M^{2} Var(\varepsilon) = Var(t + L\alpha)$$

$$M^{2} = 1 + \alpha^{2}$$

$$M = \sqrt{1 + \alpha^{2}}$$
gsem Representation

$$y_{1gsem}^{*} = y_{2}b + x\pi + t + L\alpha$$

$$t \sim N(0, 1)$$

$$L \sim N(0, 1)$$

Where $y_{1gsem}^* = My_1^*$ and *M* is a constant. Noting that

$$y_{1gsem}^* = My_1^*$$

$$y_2b + x\pi + t + L\alpha = y_2M\beta + xM\Pi + M\varepsilon$$

Which implies that

$$M\varepsilon = t + L\alpha$$

$$M^{2} Var(\varepsilon) = Var(t + L\alpha)$$

$$M^{2} = 1 + \alpha^{2}$$

$$M = \sqrt{1 + \alpha^{2}}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Ordered Probit with Endogeneity: Simulation

```
. clear
. set seed 111
. set obs 10000
number of observations ( N) was 0, now 10,000
. forvalues i = 1/5 {
  2.
       gen x`i' = rnormal()
  3. }
. mat C = [1, .5 \setminus .5, 1]
. drawnorm e1 e2, cov(C)
. gen y2 = 0
. forvalues i = 1/5 {

 quietly replace y2 = y2 + x`i'

  3.1
. quietly replace y_2 = y_2 + e_2
. gen y1star = y2 + x1 + x2 + e1
. qen xb1 = y2 + x1 + x2
. \text{ gen } v1 = 4
. quietly replace y1 = 3 if xb1 + e1 \le .8
. quietly replace y1 = 2 if xb1 + e1 <=.3
. quietly replace y1 = 1 if xb1 + e1 <=-.3
. quietly replace v1 = 0 if xb1 + e1 <=-.8
```

э.

Ordered Probit with Endogeneity: Estimation

. gsem (y1 <- Generalized st Response Family Link Response Family Link Log likelihood (1) [y1]L - (2) [var(L)	- y2 x1 x2 L@ tructural equ : y1 : ordinal : probit : Gaussian : identity d = -18948.44 - [y2]L = 0)]_cons = 1	A, oprobit) Hation model	(y2 <- x1	x2 x3 x4 Number	l x5 L@a), var of obs =	(L@1) nolog 10,000
	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
y1 <- y2 x1 x2 L	1.284182 1.28408 1.293582 .7968852	.0217063 .0290087 .0287252 .0155321	59.16 44.27 45.03 51.31	0.000 0.000 0.000 0.000	1.241638 1.227224 1.237282 .7664428	1.326725 1.340936 1.349883 .8273275
y2 <- x1 x2 x3 x4 x5 L cons	.9959898 1.002053 .9938048 .9984898 1.002206 .7968852 .0089433	.0099305 .0099196 .0096164 .0095031 .0095257 .0155321 .0099196	100.30 101.02 103.34 105.07 105.21 51.31 0.90	0.000 0.000 0.000 0.000 0.000 0.000 0.367	.9765263 .9826106 .974957 .9798642 .9835358 .7664428 0104987	1.015453 1.021495 1.012653 1.017115 1.020876 .8273275 .0283853
y1 /cut1 /cut2 /cut3 /cut4	-1.017707 4071202 .4094317 1.017637	.0291495 .0273925 .0275357 .029513	-34.91 -14.86 14.87 34.48	0.000 0.000 0.000 0.000	-1.074839 4608085 .3554628 .9597921	9605751 3534319 .4634006 1.075481
var(L) var(e.y2)	.348641	(constraine	ed)		.3061354	.3970482

(StataCorp LP)

September 29, 2016 Sydney

56 / 58

э

Ordered Probit with Endogeneity: Transformation

. nlcom _b[y1:y2]/sqrt(1 + _b[y1:L]^2) _nl_1: _b[y1:y2]/sqrt(1 + _b[y1:L]^2)

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]			
_nl_1	1.004302	.0189557	52.98	0.000	.9671491	1.041454			
. nlcom _b[y1:x1]/sqrt(1 + _b[y1:L]^2) _n1_1: _b[y1:x1]/sqrt(1 + _b[y1:L]^2)									
	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]			
_nl_1	1.004222	.0214961	46.72	0.000	.9620909	1.046354			
. nlcom _b[y1:x2]/sqrt(1 + _b[y1:L]^2) _nl_1: _b[y1:x2]/sqrt(1 + _b[y1:L]^2)									
	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]			
_nl_1	1.011654	.0213625	47.36	0.000	.9697838	1.053523			

3

Conclusion

- We established a general framework for endogeneity where the problem is that the unobservables are related to observables
- We saw solutions using instrumental variables or modeling the correlation between unobservables
- We saw how to use gmm and gsem to estimate this models both in the cases of existing Stata commands and situations not available in Stata

< 回 > < 三 > < 三 >