

Modelling multiple timescales using flexible parametric survival models

Hannah Bower* Therese M-L. Andersson, Michael J. Crowther and Paul C. Lambert

*Department of Medical Epidemiology and Biostatistics Karolinska Institutet, Sweden

Nordic and Baltic Stata Users Group meeting 1st September 2017

- \triangleright Defining the timescale(s) of interest is essential in any time-to-event analysis
- \triangleright Different timescales could be important for different outcomes
	- \triangleright For example, time since diagnosis when considering survival after a diagnosis of breast cancer
	- \triangleright Or, attained age for the incidence of breast cancer
- \triangleright There are occasions when several timescales are simultaneously of interest
	- Incidence of breast cancer: attained age $&$ time since childbirth

One option:

- \triangleright Select the most important timescale as the primary timescale
- \triangleright Split the data on the second timescale and include several indicator variables in the model for this second timescale

One option:

- \triangleright Select the most important timescale as the primary timescale
- \triangleright Split the data on the second timescale and include several indicator variables in the model for this second timescale
	- \triangleright Splitting data and fitting models to split data can be computationally intensive
	- \triangleright The effect of the second timescale is not continuous

Another option:

- \triangleright Select the most important timescale as the primary timescale
- In Ignore the second timescale, or use some fixed time effect of the second timescale (e.g., age at diagnosis for attained age)

Another option:

- \triangleright Select the most important timescale as the primary timescale
- In Ignore the second timescale, or use some fixed time effect of the second timescale (e.g., age at diagnosis for attained age)
	- \triangleright Won't accurately account for the effect of the second timescale

If we wanted to capture the effect of multiple timescales, how would we do it more accurately?

If we wanted to capture the effect of multiple timescales, how would we do it more accurately?

- \blacktriangleright Time increases in the same way independent of the scale
- \triangleright Thus, one timescale is a function of the other
	- \triangleright Where is the origin of the timescale?

If we wanted to capture the effect of multiple timescales, how would we do it more accurately?

- \blacktriangleright Time increases in the same way independent of the scale
- \triangleright Thus, one timescale is a function of the other
	- \triangleright Where is the origin of the timescale?
- For example, consider time since diagnosis of a disease t_{diam} and attained age *tage*

$$
t_{age} = age_{diag} + t_{diag}
$$

Motivation

• If
$$
t_{diag} = 5
$$
 & $age_{diag} = 55$, $t_{age} = 60$

- \triangleright Previously developed strcs to model the log hazard using flexible parametric survival models (FPSMs)
- \triangleright FPSMs usually model the log cumulative hazard
- Initially strcs was developed to deal with problems when modelling multiple time-dependent effects
- \triangleright We realised they could be used to model multiple timescales
- \triangleright Flexible parametric survival models (FPSMs) use restricted cubic splines (RCS) to model some form of the hazard function
- \triangleright RCS are piecewise cubic polynomials joined together at points called knots
	- \triangleright Continuous 1st, and 2nd derivatives at the knots, linear before first and after last knot
- \triangleright RCS are able to capture complex hazard functions which standard parametric models may struggle to capture

 \triangleright Non-proportional FPSM on the log hazard scale looks like:

$$
\ln(h(t; x)) = \underbrace{S(\ln(t); \gamma_0)}_{\text{spline function}} + \underbrace{\overbrace{x\beta}^{\text{covariates}}}_{\text{time-dependent effects}}
$$

Log-likelihood

$$
\ln L_i = d_i \ln\{h(t_i)\} - H(t_i)
$$

- \blacktriangleright *d_i* = event indicator
- \blacktriangleright $h(t_i)$ = hazard function
- \blacktriangleright $H(t_i)$ = cumulative hazard function

$$
H(t_i) = \int_0^t h(u_i) du
$$

Log-likelihood

$$
\ln L_i = d_i \ln\{h(t_i)\} - H(t_i)
$$

FPSMs on the log hazard scale: numerical integration required to get cumulative hazard function

$$
H(t_i) = \int_0^t h(u_i) du
$$

- \triangleright stmt is a Stata command which fits multiple timescales using FPSMs on the log hazard scale
- \triangleright Is specifically designed to model multiple timescales and is an extension of strcs
- \triangleright stmt uses Mata to numerically integrate the hazard function using Gaussian quadrature
- \triangleright The first timescale is specified using the stset command
- \triangleright Still being developed

stmt *varlist*, [time1(*sub-options*) time2(*sub-options*) time3(*sub-options*) . . .]

Timescale-specific sub-options

- \blacktriangleright df(#) degrees of freedom for effect of timescale
- ► start(*varname*) starting value of second & third timescales
- ► tvc(varlist) variables with time-dependent effects
- \triangleright logtoff create restricted cubic spline for untransformed time (default is log time scale)
- \triangleright Plus other options & timescale-specific sub-options found in the stpm2 and strcs commands
- \triangleright Swedish prostate cancer patients (60 961 observations)
- Interested in risk of hip fracture after bilateral orchiectomy
- \blacktriangleright Timescales of interest:
	- \triangleright Time since diagnosis of prostate cancer
	- \blacktriangleright Attained age
- \triangleright Variable of interest is orch, indicator for orchiectomy

- . stset dateexit, fail(frac = 1) enter(datecancer)
- > origin(datecancer) scale(365.25)

- . stset dateexit, fail(frac = 1) enter(datecancer)
- > origin(datecancer) scale(365.25)

$$
\ln(\mathbf{h}(t)) = \underbrace{S_{t1}(\ln(t); \gamma_{t1})}_{\text{time since} \atop \text{diagness}} + \overbrace{S_{t2}(t + \text{age}_{\text{diag}}; \gamma_{t2})}^{\text{attained age}} + \text{orch}
$$

. stmt orch, time $1(df(3))$ ///

> time2(start(agediag) df(5) logtoff tvc(orch) dftvc(3))

- . stmt orch, time $1(df(3))$ ///
- > time2(start(agediag) df(5) logtoff tvc(orch) dftvc(3))

- \triangleright We are in the process of writing a predict command to be used after stmt
- \blacktriangleright Interested in predicting
	- \blacktriangleright Hazard for different values of the timescales
	- \blacktriangleright Survival
	- \blacktriangleright Hazard ratio over time
	- \blacktriangleright Hazard differences
	- \triangleright Others?

Predictions: current syntax

predict *newvar*, $\{ \text{hazard} \mid \text{xb} \}$ [startt1(#) startt2(#) startt3(#) followup(#) n(#) at(*varname* # . . .) zeros]

Options

- \triangleright startt1(#) Prediction entry time for timescale 1
- \triangleright startt2(#) Prediction entry time for timescale 2 (etc. for timescale 3)
- \triangleright followup(#) Follow-up time for prediction
- \triangleright n(#) How many intervals are needed for predictions up to the follow-up
- ► at(*varname* #) Predict at values of other variables in the model
- \triangleright Others are to be included
- . stmt orch, time $1(df(3))$ ///
- > time2(start(agediag) df(5) logtoff tvc(orch) dftvc(3))
- . stmt orch, time $1(df(3))$ ///
- > time2(start(agediag) df(5) logtoff tvc(orch) dftvc(3))
- . predict haz, hazard startt1(0) startt2(70) followup(3) ///
- > n(10) at(orch 1)

Hannah Bower **[Nordic and Baltic Stata Users Group meeting](#page-1-0)** 1st September 2017 20 / 25

```
forvalues age = 70(5)85 {
     predict haz_'age', hazard startt1(0) startt2('age') ///
          followup(5) n(200) at(orch 1)
}
```


- \blacktriangleright Interactions between the timescales
- \blacktriangleright Allow timescales for some individuals and not others
- \blacktriangleright More timescales?
- \blacktriangleright Predictions
- \blacktriangleright Suggestions?

Disadvantages

- \triangleright Numerical integration can be slow if you have large datasets
	- \triangleright *N* = 686, model fits in \approx 6 secs
	- \blacktriangleright *N* = 60961, model fits n \approx 40 secs
	- \triangleright *N* = 423298, model fits in \approx 9 mins
	- \triangleright A Poisson model with split data to model the second timescale will take a while to fit

Advantages

- \blacktriangleright Easy way for users to model multiple timescales & get predictions
- Models multiple timescales in a continuous way

[1] H. Bower, M. J. Crowther, and . P.C. Lambert.

strcs: A command for fitting flexible parametric survival models on the log-hazard scale.

The Stata Journal, 16:989–1012, 2016.

[2] P. Royston and M. K. B. Parmar.

Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects.

Statistics in Medicine, 21(15):2175–2197, Aug 2002.