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» Defining the timescale(s) of interest is essential in any
time-to-event analysis
» Different timescales could be important for different outcomes
» For example, time since diagnosis when considering survival
after a diagnosis of breast cancer
» Or, attained age for the incidence of breast cancer
» There are occasions when several timescales are simultaneously
of interest
» Incidence of breast cancer: attained age & time since childbirth
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Suppose we have two timescales of interest. How are these commonly
accounted for?
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Suppose we have two timescales of interest. How are these commonly
accounted for?

One option:

» Select the most important timescale as the primary timescale

» Split the data on the second timescale and include several
indicator variables in the model for this second timescale
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Suppose we have two timescales of interest. How are these commonly
accounted for?

One option:

» Select the most important timescale as the primary timescale

» Split the data on the second timescale and include several
indicator variables in the model for this second timescale

» Splitting data and fitting models to split data can be computationally
intensive

» The effect of the second timescale is not continuous
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Suppose we have two timescales of interest. How are these commonly
accounted for?

Another option:

» Select the most important timescale as the primary timescale

» Ignore the second timescale, or use some fixed time effect of the
second timescale (e.g., age at diagnosis for attained age)
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Suppose we have two timescales of interest. How are these commonly
accounted for?

Another option:

» Select the most important timescale as the primary timescale

» Ignore the second timescale, or use some fixed time effect of the
second timescale (e.g., age at diagnosis for attained age)

» Won't accurately account for the effect of the second timescale
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If we wanted to capture the effect of multiple timescales, how would we
do it more accurately?
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If we wanted to capture the effect of multiple timescales, how would we
do it more accurately?
» Time increases in the same way independent of the scale
» Thus, one timescale is a function of the other
» Where is the origin of the timescale?
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If we wanted to capture the effect of multiple timescales, how would we
do it more accurately?
» Time increases in the same way independent of the scale
» Thus, one timescale is a function of the other
» Where is the origin of the timescale?
» For example, consider time since diagnosis of a disease fy5g and
attained age fage

lage = ag€jgg t+ ldiag
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> If tdlag = 5 & aged,ag=55, tage = 60

>» Time since diagnosis
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The strcs command

Previously developed strcs to model the log hazard using flexible
parametric survival models (FPSMs)

v

v

FPSMs usually model the log cumulative hazard

v

Initially strcs was developed to deal with problems when
modelling multiple time-dependent effects

v

We realised they could be used to model multiple timescales
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Flexible parametric survival models

» Flexible parametric survival models (FPSMs) use restricted cubic
splines (RCS) to model some form of the hazard function

» RCS are piecewise cubic polynomials joined together at points
called knots

» Continuous 1st, and 2nd derivatives at the knots, linear before first
and after last knot

» RCS are able to capture complex hazard functions which standard

parametric models may struggle to capture
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FPSMs on the log hazard scale

» Non-proportional FPSM on the log hazard scale looks like:

covarlates D

In(h(t; x)) = s(In(t); vo) xﬁ + Z s(In(t

spline function

time-dependent effects
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Maximum likelihood estimation

Log-likelihood

InL; = d;In{h(t;)} — H(t)

» d; = event indicator
» h(t;)) = hazard function

» H(t;) = cumulative hazard function

Hi = [ ' h{ur)du
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Maximum likelihood estimation

Log-likelihood

InL; = d;In{h(t;)} — H(t)

» FPSMs on the log hazard scale: numerical integration required
to get cumulative hazard function

Ht) = /0 ' hlu)du
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The stmt command

» stmt is a Stata command which fits multiple timescales using
FPSMs on the log hazard scale

» Is specifically designed to model multiple timescales and is an
extension of strcs

» stmt uses Mata to numerically integrate the hazard function using
Gaussian quadrature

» The first timescale is specified using the stset command

» Still being developed
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stmt syntax

stmt varlist, [time1(Sub-options) time2(sub-options)
time3(sub-options) ...]

Timescale-specific sub-options

>

>

>

df (#) - degrees of freedom for effect of timescale
start(varname) - starting value of second & third timescales
tvc(varlist) - variables with time-dependent effects

logtoff - create restricted cubic spline for untransformed time
(default is log time scale)

Plus other options & timescale-specific sub-options found in the
stpm2 and strcs commands
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Example: Orchiectomy dataset

v

Swedish prostate cancer patients (60 961 observations)

v

Interested in risk of hip fracture after bilateral orchiectomy
Timescales of interest:

» Time since diagnosis of prostate cancer
» Attained age

v

v

Variable of interest is orch, indicator for orchiectomy
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Example: Two timescales, proportional hazards

. stset dateexit, fail(frac = 1) enter(datecancer)

> origin(datecancer) scale(365.25)

. stmt orch, timel(df(3)) time2(start(agediag) df(5) logtoff)
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Example: Two timescales, proportional hazards

. stset dateexit, fail(frac = 1) enter(datecancer)

> origin(datecancer) scale(365.25)

. stmt orch, timel(df(3)) time2(start(agediag) df(5) logtoff)

attained age

In(h(t)) = su1(In(f);v11) + Sea(t + a5 ve2) + Orch

time since
diagnosis
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Example: Two timescales, proportional hazards

. stmt orch, timel(df(3)) time2(start(agediag) df(5) logtoff)

Log likelihood = -7464.385 Number of obs = 60,961
| Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall

xb |
orch | 1.579357 .083613 8.63 0.000 1.423694 1.75204

rcs |
__ti_s1 | .0129676 .025773 0.50 0.615 -.0375467 .0634818
__t1_s2 | -.0206878 .0251947 -0.82 0.412 -.0700686 .028693
__t1_s3 | .0235215 .0259144 0.91 0.364 -.0272698 .0743129
__t2_s1 | .6799227 .0332591 20.44 0.000 .6147361 .7451092
__t2_s2 | -.1234378 .0342275 -3.61 0.000 -.1905225 -.0563532
__t2_s3 | .0913521 .0296776 3.08 0.002 .0331852 .1495191
__t2_s4 | .0038328 .0248068 0.15 0.877 -.0447878 .0524533
__t2_s5 | .0180132 .0214929 0.84 0.402 -.0241121 .0601384
_cons | -5.17632 .0348153 -148.68 0.000 -5.244557 -5.108084
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Example: Two timescales, proportional hazards

. stmt orch, timel(df(3)) time2(start(agediag) df(5) logtoff)

Log likelihood = -7464.385 Number of obs = 60,961
| Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall
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orch | 1.579357 .083613 8.63 0.000 1.423694 1.75204
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Example: Two timescales, non-proportional hazards

. stmt orch, timel(df(3)) ///
> time2(start(agediag) df(5) logtoff tvc(orch) dftvc(3))
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Example: Two timescales, non-proportional hazards

. stmt orch, timel(df(3)) ///
> time2(start(agediag) df(5) logtoff tvc(orch) dftvc(3))

Log likelihood = -7454.3291 Number of obs = 60,961
| Haz. Ratio  Std. Err. z P>|z| [95% Conf. Intervall

xb |
orch | 1.770931 .1044573 9.69  0.000 1.57759 1.987968

rcs |
__ti_s1 | .0142601 .0258053 0.55 0.581 -.0363173 .0648376
__tl_s2 | -.0196129 .0251721 -0.78 0.436 -.0689494 .0297235
__t1_s3 | .0268569 .0258941 1.04 0.300 -.0238946 .0776085
__t2_s1 | .7620801 .0410964 18.54  0.000 .6815326 .8426276
__t2_s2 | -.1308936 .0415365 -3.15 0.002 -.2123036 -.0494835
__t2_s3 | .1362839 .0345208 3.95 0.000 .0686243 .2039435
__t2_s4 | .0188686 .0258904 0.73  0.466 -.0318756 .0696129
__t2_s5 | .0165599 .0216135 0.77 0.444 -.0258018 .0589216
__t2_s_orchl | -.2428242 .0686272 -3.54 0.000 -.3773311 -.1083172
__t2_s_orch2 | -.0150246 .0680762 -0.22 0.825 -.1484516 .1184023
__t2_s_orch3 | -.1123459 .0509553 -2.20 0.027 -.2122165 -.0124754
_cons | -5.213729 .0370125 -140.86  0.000 -5.286272 -5.141186
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» We are in the process of writing a predict command to be used
after stmt

» Interested in predicting

Hazard for different values of the timescales

Survival

Hazard ratio over time

Hazard differences

Others?

v

v

v

v

v
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Predictions: current syntax

predict newvar, { hazard | xb } [startt1(#) startt2(#)
startt3(#) followup(#) n(#) at(varname # ...) zeros ]

Options
» starttl(#) - Prediction entry time for timescale 1

» startt2(#) - Prediction entry time for timescale 2 (etc. for
timescale 3)

» followup(#) - Follow-up time for prediction

» n(#) - How many intervals are needed for predictions up to the
follow-up

» at(varname #) - Predict at values of other variables in the model

» Others are to be included
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Prediction example

stmt orch, timel(df(3)) ///
> time2(start(agediag) df(5) logtoff tvc(orch) dftvc(3))
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Prediction example

stmt orch, timel(df(3)) ///
> time2(start(agediag) df(5) logtoff tvc(orch) dftvc(3))

. predict haz, hazard startt1(0) startt2(70) followup(3) ///
> n(10) at(orch 1)
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Prediction example

I

|

1. | 0 70 o
2. | .3 70.3  .00508109 |
3. | .6 70.6  .00512982 |
4. | .9 70.9  .0052459 |
5. | 1.2 71.2  .00538255 |
ettt I

6. | 1.5 71.5  .00552947 |
7. | 1.8 71.8  .00568337 |
8. 1 2.1 72.1  .00584082 |
9. 1 2.4 72.4  .0059984 |
10. | 2.7 72.7  .00615495 |
|--- |

1. | 3 73 .00631038 |
e +
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Prediction example

forvalues age = 70(5)85 {
predict haz_‘age’, hazard startt1(0) startt2(‘age’) ///
followup(5) n(200) at(orch 1)
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Prediction example
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Prediction example
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Prediction example

— () yeQrs
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Ongoing work

Interactions between the timescales

v

Allow timescales for some individuals and not others

v

More timescales?

\4

Predictions

v

v

Suggestions?
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Advantages and disadvantages

Disadvantages
» Numerical integration can be slow if you have large datasets
» N =686, model fits in ~ 6 secs
N = 60961, model fits n ~ 40 secs

N = 423298, model fits in ~ 9 mins
A Poisson model with split data to model the second timescale will

take a while to fit

v

\{

v

Advantages
» Easy way for users to model multiple timescales & get predictions

» Models multiple timescales in a continuous way
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