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Plan

I Background

I Primary breast cancer example

I Multi-state survival models
I Common approaches
I Some extensions
I Clinically useful measures of absolute risk

I New Stata multistate package

I Future research
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Background

I In survival analysis, we often concentrate on the time to a
single event of interest

I In practice, there are many clinical examples of where a
patient may experience a variety of intermediate events

I Cancer
I Cardiovascular disease

I This can create complex disease pathways
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An example from stable coronary diseaseAsaria

et al. (2016)

Figure 1 Structure of the Markov model and the role played by the 11 risk equations that we use to model disease progression.M.J. Crowther & P.C. Lambert Nordic SUG, Oslo 22nd August 2016 4 / 37
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Primary breast cancer (Sauerbrei et al., 2007)

I To illustrate, I use data from 2,982 patients with primary
breast cancer, where we have information on the time to
relapse and the time to death.

I All patients begin in the initial ‘healthy’ state, which is
defined as the time of primary surgery, and can then
move to a relapse state, or a dead state, and can also die
after relapse.

I Covariates of interest include; age at primary surgery,
tumour size (three classes; ≤ 20mm, 20-50mm, >
50mm), number of positive nodes, progesterone level
(fmol/l), and whether patients were on hormonal therapy
(binary, yes/no). In all analyses we use a transformation
of progesterone level (log(pgr + 1)).
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State 1: Post-surgery 

State 2: Relapse 

State 3: Dead 

Transition 1 
h1(t) 

Transition 3 
h3(t) 

Transition 2 
h2(t) 

Figure: Illness-death model for primary breast cancer example.
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Markov multi-state models

Consider a random process {Y (t), t ≥ 0} which takes the
values in the finite state space S = {1, . . . , S}. We define the
history of the process until time s, to be
Hs = {Y (u); 0 ≤ u ≤ s}. The transition probability can then
be defined as,

P(Y (t) = b|Y (s) = a,Hs−)

where a, b ∈ S. This is the probability of being in state b at
time t, given that it was in state a at time s and conditional
on the past trajectory until time s.
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Markov multi-state models

A Markov multi-state model makes the following assumption,

P(Y (t) = b|Y (s) = a,Hs−) = P(Y (t) = b|Y (s) = a)

which implies that the future behaviour of the process is only
dependent on the present.
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Markov multi-state models

The transition intensity is then defined as, For the kth
transition from state ak to state bk , the transition intensity
(hazard function) is

hk(t) = lim
δt→0

P(Y (t + δt) = bk |Y (t) = ak)

δt

which represents the transition rate from state ak to state bk
at time t. Our collection of transitions intensities (hazard
rates) governs the multi-state model.
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Estimating a multi-state models

I Essentially, a multi-state model can be specified by a
combination of transition-specific survival models

I The most convenient way to do this is through the
stacked data notation, where each patient has a row of
data for each transition that they are at risk for, using
start and stop notation (standard delayed entry setup)
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Consider the breast cancer dataset, with recurrence-free and
overall survival

. list pid rf rfi os osi if pid==1 | pid==1371, sepby(pid) noobs

pid rf rfi os osi

1 59.1 0 59.1 alive

1371 16.6 1 24.3 deceased

Time is recorded in months.

M.J. Crowther & P.C. Lambert Nordic SUG, Oslo 22nd August 2016 12 / 37



Background Primary breast cancer Multi-state models Transition probabilities Extensions Summary References

We can restructure using msset
Title

    msset  data preparation for multi-state and competing risks analysis

Syntax

        msset [if] [in] , id(varname ) states(varlist ) times(varlist ) [options ]

    options                         Description

    

      id(varname )                  identification variable

      states(varlist )              indicator variables for each state

      times(varlist )               time variables for each state

      transmatrix(matname )         transition matrix

      covariates(varlist )          variables to expand into transition specific covariates
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    msset creates the following variables:

        _from    starting state

        _to      receiving state

        _trans   transition number

        _start   starting time for each transition

        _stop    stopping time for each transition

        _status  status variable, indicating a transition (coded 1) or censoring (coded 0)
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. list pid rf rfi os osi if pid==1 | pid==1371, sepby(pid) noobs

pid rf rfi os osi

1 59.1 0 59.1 alive

1371 16.6 1 24.3 deceased

. msset, id(pid) states(rfi osi) times(rf os) covariates(age)

variables age_trans1 to age_trans3 created

. matrix tmat = r(transmatrix)

. list pid _start _stop _from _to _status _trans if pid==1 | pid==1371

pid _start _stop _from _to _status _trans

1 0 59.104721 1 2 0 1
1 0 59.104721 1 3 0 2

1371 0 16.558521 1 2 1 1
1371 0 16.558521 1 3 0 2
1371 16.558521 24.344969 2 3 1 3

.
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I Now our data is restructured and declared as survival
data, we can use any standard survival model available
within Stata

I Proportional baselines across transitions
I Stratified baselines
I Shared or separate covariate effects across transitions

I This is all easy to do in Stata; however, calculating
transition probabilities (what we are generally most
interested in!) is not so easy
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Calculating transition probabilities

P(Y (t) = b|Y (s) = a)

There are a variety of approaches

I Exponential distribution is convenient (Jackson, 2011)

I Numerical integration (Hsieh et al., 2002; Hinchliffe
et al., 2013)

I Ordinary differential equations (Titman, 2011)

I Simulation (Iacobelli and Carstensen, 2013; Touraine
et al., 2013; Jackson, 2016)
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Simulation
After fitting our model we can estimate the transition intensity
(hazard rate) for all transitions.

1. Define a large sample of N subjects (e.g. 100,000) and
simulate through different states.

2. The model is a series of competing risk scenarios.
3. Continue until all patients in an absorbing state (or

maximum follow-up time is reached).
4. At specified time points, we simply count how many

people are in each state, and divide by the total to get
our transition probabilities.

5. Other summaries e.g. mean time in each state.
6. Confidence intervals obtained by sampling, from MVN

distribution, with mean vector, β, and variance-covariance
matrix, V , and repeated M times.

7. Applicable to both Markov and non-Markov models.
M.J. Crowther & P.C. Lambert Nordic SUG, Oslo 22nd August 2016 18 / 37
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Can simulate from complex survival functions
We have shown how it is possible to simulate from complex
survival distributions(Crowther and Lambert, 2013). See
survsim command.
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Proportional baseline, transition specific age effect

. streg age_trans1 age_trans2 age_trans3 _trans2 _trans3, dist(weibull)

Weibull regression -- log relative-hazard form

No. of subjects = 7,482 Number of obs = 7,482
No. of failures = 2,790
Time at risk = 38474.53852

LR chi2(5) = 3057.11
Log likelihood = -5547.7893 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age_trans1 .9977633 .0020646 -1.08 0.279 .993725 1.001818
age_trans2 1.127599 .0084241 16.07 0.000 1.111208 1.144231
age_trans3 1.007975 .0023694 3.38 0.001 1.003342 1.01263

_trans2 .0000569 .000031 -17.95 0.000 .0000196 .0001653
_trans3 1.85405 .325532 3.52 0.000 1.314221 2.615619

_cons .1236137 .0149401 -17.30 0.000 .0975415 .1566547

/ln_p -.1156762 .0196771 -5.88 0.000 -.1542426 -.0771098

p .8907636 .0175276 .8570641 .9257882
1/p 1.122632 .0220901 1.080161 1.166774
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predictms
. predictms, transmat(tmat) at(age 50)

graph
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Figure: Predicted transition probabilities.
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predictms
. predictms, transmat(tmat) at(age 50) graph
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Extending multi-state models

. streg age_trans1 age_trans2 age_trans3 _trans2 _trans3 ,
> dist(weibull) anc(_trans2 _trans3)

// Is equivalent to...

. streg age if _trans==1, dist(weibull)

. est store m1

. streg age if _trans==2, dist(weibull)

. est store m2

. streg age if _trans==3, dist(weibull)

. est store m3

//Predict transition probabilities

. predictms, transmat(tmat) models(m1 m2 m3) at(age 50)

Separate models...we can now use different distributions

M.J. Crowther & P.C. Lambert Nordic SUG, Oslo 22nd August 2016 22 / 37



Background Primary breast cancer Multi-state models Transition probabilities Extensions Summary References

Extending multi-state models

. streg age_trans1 age_trans2 age_trans3 _trans2 _trans3 ,
> dist(weibull) anc(_trans2 _trans3)

// Is equivalent to...

. streg age if _trans==1, dist(weibull)

. est store m1

. streg age if _trans==2, dist(weibull)

. est store m2

. streg age if _trans==3, dist(weibull)

. est store m3

//Predict transition probabilities

. predictms, transmat(tmat) models(m1 m2 m3) at(age 50)

Separate models...we can now use different distributions

M.J. Crowther & P.C. Lambert Nordic SUG, Oslo 22nd August 2016 22 / 37



Background Primary breast cancer Multi-state models Transition probabilities Extensions Summary References

Building our model

Returning to the breast cancer dataset

I Choose the best fitting parametric survival model, using
AIC and BIC

I We find that the best fitting model for transitions 1 and 3
is the Royston-Parmar model with 3 degrees of freedom,
and the Weibull model for transition 2.

I Adjust for important covariates; age, tumour size, number
of nodes, progesterone level

I Check proportional hazards assumption
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Final model

I Transition 1: Royston-Parmar baseline with df=3, age,
tumour size, number of positive nodes, hormonal therapy.
Non-PH in tumour size (both levels) and progesterone
level, modelled with interaction with log time.

I Transition 2: Weibull baseline, age, tumour size, number
of positive nodes, hormonal therapy.

I Transition 3: Royston-Parmar with df=3, age, tumour
size, number of positive nodes, hormonal therapy.
Non-PH found in progesterone level, modelled with
interaction with log time.
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Three separate models

. stpm2 age sz2 sz3 enodes pr_1 if _trans==1, ///

scale(hazard) df(3) tvc(sz2 sz3 pr_1) dftvc(1)

. estimates store m1

. streg age sz2 sz3 enodes pr_1 hormon if _trans==2, dist(weibull)

. estimates store m2

. stpm2 age sz2 sz3 enodes pr_1 if _trans==3, ///

scale(hazard) df(3) tvc(pr_1) dftvc(1)

. estimates store m3
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predictms, transmat(tmat) at(age 54 pr 1 3 sz2 1)

> models(m1 m2 m3)
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Figure: Probability of being in each state for a patient aged 54,
with progesterone level (transformed scale) of 3.
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predictms, transmat(tmat) at(age 54 pr 1 3 sz2 1)

> models(m1 m2 m3) ci
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Figure: Probability of being in each state for a patient aged 54,
50> size ≥20 mm, with progesterone level (transformed scale) of
3, and associated confidence intervals.
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Differences in transition probabilities
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. predictms, transmat(tmat) models(m1 m2 m3) ///

. at(age 54 pgr 3 size1 1) at2(age 54 pgr 3 size2 1) ci
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Ratios of transition probabilities
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. predictms, transmat(tmat) models(m1 m2 m3) ///

at(age 54 pgr 3 size1 1) at2(age 54 pgr 3 size2 1) ci ratio
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Length of stay

A clinically useful measure is called length of stay, which
defines the amount of time spent in a particular state.∫ t

s

P(Y (u) = b|Y (s) = a)du

Using this we could calculate life expectancy if t = ∞, and
a = b = 1 (Touraine et al., 2013). Thanks to the simulation
approach, we can calculate such things extremely easily.
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Length of stay
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. predictms, transmat(tmat) models(m1 m2 m3) ///

at(age 54 pgr 3 size1 1) ci los
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Differences in length of stay
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. predictms, transmat(tmat) models(m1 m2 m3) ///

at(age 54 pgr 3 size1 1) at2(age 54 pgr 3 size2 1) ci los
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Ratios in length of stay
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. predictms, transmat(tmat) models(m1 m2 m3) ///

at(age 54 pgr 3 size1 1) at2(age 54 pgr 3 size2 1) ci los ratio
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Sharing covariate effects

I Fitting models separately to each transition means we can
no longer share covariate effects - one of the benefits of
fitting to the stacked data

I We therefore want to fit different distributions, but
jointly, to the stacked data, which will allow us to
constrain parameters to be equal across transitions
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Transition-specific distributions, estimated jointly

Jointly fit models with different distributions. Can constrain
parameters to be equal for specified transitions.

. stms (age sz2 sz3 nodes pr 1 hormon, model(rp) df(3) scale(h)) ///

(age sz2 sz3 nodes pr 1 hormon, model(weib)) ///

(age sz2 sz3 nodes pr 1 hormon, model(rp) df(3) scale(h)) ///

, transvar( trans)

constrain(age 1 3 nodes 2 3)

. predictms, transmat(tmat) at(age 34 sz2 1 nodes 5) ci
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Summary
I Multi-state survival models are increasingly being used to

gain much greater insights into complex disease pathways

I The transition-specific distribution approach I’ve
described provides substantial flexibility

I We can fit a very complex model, but immediately obtain
interpretable measures of absolute and relative risk

I Software now makes them accessible
I ssc install multistate

I Extensions:
I Semi-Markov - reset with predictms
I Cox model will also be available (mstate in R)
I Reversible transition matrix
I Standardised predictions - std (Gran et al., 2015;

Sjölander, 2016)
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