Estimating compound expectation in a regression framework with the new cereg command

2015 Nordic and Baltic Stata Users Group meeting

Celia García-Pareja Matteo Bottai

Unit of Biostatistics, IMM, KI

September 4th, 2015

Outline

- Introduction
- Motivating example
- Mean vs quantiles
- 4 Compound Expectation
- 5 Estimation of the CE
- 6 Data Example
- 7 Results
- Conclusions

Introduction

- Statistics is about summarizing information contained in observed data.
- The most informative, representative and precise the summary is, the better.
- Typical summary measures to provide are, for example, the sample mean and the quantiles.

Question

Which summary measure is more "suitable"? How precise is the information it provides?

Motivating example I

■ Simulated data on 450 observations drawn from a chi square with 4 d.f.

sqreg c, q(0.1 0.25 0.5 0.75 0.9) reps(200)

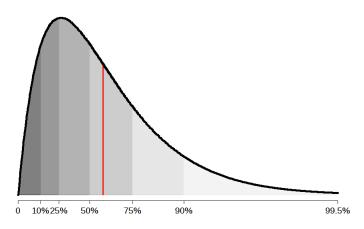
. sqreg c, q(0.1 0.20 0.0 0.10 0.3) Teps(200)								
						[95% Conf. Interval]		
q10	_cons	1.166131	.0805198	14.48	0.000	1.007888 1.324373		
q25						1.823406 2.28848		
q50		3.603483				3.369232 3.837734		
q75						5.037604 5.809522		
q90	_cons	7.642251				6.967232 8.317269		
. regress t								
						[95% Conf. Interval]		
	_cons	4.077057	.1276203	31.95	0.000	3.826249 4.327864		

Remarks

- Quantiles provide information about the whole distribution whereas the mean just refers to the mass center.
- Estimation of low quantiles is more precise than that of high quantiles.
- Inference on the mean is better than in high quantiles but worse than in low quantiles.

Motivating example II

Chi-squared distribuion with 4 df



Mean vs quantiles

The mean...

- Summarizes the data in a single number and it is easy to interpret.
- Its inference is extremely sensitive to the presence of outliers.
- Is informative just in case there is little variability in the data.

Quantiles...

- Provide a detailed picture of the underlying statistical distribution.
- Can be estimated with high precision in regions with high density of data.
- Provide information about single points of the distribution.

Mean vs quantiles

The mean...

- Summarizes the data in a single number and it is easy to interpret.
- Its inference is extremely sensitive to the presence of outliers.
- Is informative just in case there is little variability in the data.

Quantiles...

- Provide a detailed picture of the underlying statistical distribution.
- Can be estimated with high precision in regions with high density of data.
- Provide information about single points of the distribution.

Proposal

 Combine both summary measures providing a bridge between mean and quantiles.

Compound Expectation I

The conditional expectation of Y can be written in terms of its quantile function as

$$\mu(\mathbf{x}) = \mathsf{E}[Y|\mathbf{x}] = \int_{-\infty}^{\infty} y \mathrm{d}F_Y(y|\mathbf{x}) = \int_{0}^{1} Q_Y(p|\mathbf{x}) \mathrm{d}p.$$

Given a set of specified proportions $\{0, \lambda_1, \lambda_2, \dots, \lambda_{K-1}, 1\}$, we split $\mu(\mathbf{x})$ into components

$$\mu(\mathbf{x}) = \int_0^1 Q_Y(\rho|\mathbf{x}) d\rho = \int_0^{\lambda_1} Q_Y(\rho|\mathbf{x}) d\rho + \int_{\lambda_1}^{\lambda_2} Q_Y(\rho|\mathbf{x}) d\rho + \ldots + \int_{\lambda_{K-1}}^1 Q_Y(\rho|\mathbf{x}) d\rho.$$

Each component $\mu_k(\mathbf{x}) = \int_{\lambda_{k-1}}^{\lambda_k} Q_Y(p|\mathbf{x}) \mathrm{d}p$ measures the contribution of a fraction of the population to $\mu(\mathbf{x})$.

Compound Expectation II

We might also calculate the expectation of every k-th component

$$\overline{\mu}_k(\mathbf{x}) = \frac{\mu_k(\mathbf{x})}{\lambda_k - \lambda_{k-1}}.$$

 $\mu(\mathbf{x})$ can be then expressed as a weighted average of these expectations

$$\mu(\mathbf{x}) = \sum_{k=1}^{K} (\lambda_k - \lambda_{k-1}) \overline{\mu}_k(\mathbf{x}).$$

Special interest application settings

Distributions with large variability:

■ The mean is not representative and the quantiles might be insufficient.

Censored data:

Lack of information in the upper tail: the components can be computed up to the last observed quantile.

Estimation of the CE

Suppose that the conditional quantile function can be estimated as a linear combination of a set of covariates of interest:

$$\widehat{Q}_{Y}(p|\mathbf{x}) = \widehat{\beta}_{0p} + \widehat{\beta}_{1p}x_1 + \ldots + \widehat{\beta}_{sp}x_s = \sum_{j=0}^{s} \widehat{\beta}_{jp}x_j.$$

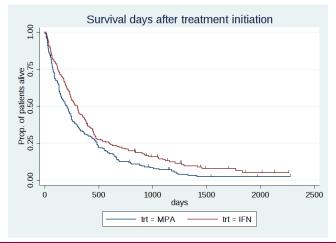
Every component $\hat{\mu}_k(\mathbf{x})$ can be expressed as

$$\hat{\mu}_k(\mathbf{x}) = \int_{\lambda_{k-1}}^{\lambda_k} \widehat{Q}_Y(\boldsymbol{p}|\mathbf{x}) \mathrm{d}\boldsymbol{p} = \int_{\lambda_{k-1}}^{\lambda_k} \sum_{j=0}^s \hat{\beta}_{j\boldsymbol{p}} x_j \mathrm{d}\boldsymbol{p} = \sum_{j=0}^s \left(\int_{\lambda_{k-1}}^{\lambda_k} \hat{\beta}_{j\boldsymbol{p}} \mathrm{d}\boldsymbol{p} \right) x_j = \sum_{j=0}^s \hat{B}_{jk} x_j.$$

■ Therefore, \hat{B}_{jk} is the effect of the *j*-th covariate in the *k*-th component.

Data Example

- 347 patients with metastatic renal carcinoma.
- Patients randomly assigned to either subcutaneous interferon- α (IFN) or oral medroxyprogesterone acetate (MPA).
- After the total follow-up time, 322 patients had died and the censoring rate was 7.2%.



Results I: components vs the overall mean

. cereg days trt, f(died) c(0.01 0.25 0.5 0.6 0.7 0.85 0.99) ${\tt reps}(50)$

Compound Expectation regression					subjects = failures =	347 322
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
q1_25						
	4.782368				-19.4211	
_cons	10.14267	21.43635	0.47	0.636	-31.8718	52.15713
q25_50						
trt	18.51029	11.62389	1.59		-4.272117	41.29269
_cons	33.18598	16.40143	2.02	0.043	1.039758	65.3322
q50_60						
trt	10.10135	4.666368	2.16	0.030	.9554328	19.24726
_cons	23.39756	3.992694	5.86	0.000	15.57202	31.22309
q60_70	 					
trt	9.886872	4.607069	2.15	0.032	.857183	18.91656
_cons	32.78498	2.640678	12.42	0.000	27.60935	37.96062
q70_85	 					
trt	25.59985	10.4843	2.44	0.015	5.051003	46.14869
_cons	79.52381	8.404415	9.46	0.000	63.05146	95.99616
q85_99	 					
trt	56.32177	20.61547	2.73	0.006	15.91619	96.72734
_cons	145.1348	31.29068	4.64	0.000	83.80616	206.4634

■ The overall life expectancy after treatment initiation for those who had MPA was 324.17 days and for those who had IFN was 449.34 days (125.20 days of difference).

Results II: life expectancy in portions of the population

. cereg days trt, f(died) c(0.01 0.25 0.5 0.6 0.7 0.85 0.99) reps(50) means

Compound Expectation regression					subjects = faiures =	347 322
	Coef.				[95% Conf.	Interval]
M1_25	 					
	19.92653					
_cons	42.26111	105.6167	0.40	0.689	-164.7439	249.2661
M25_50	i					
trt	74.04115				-2.198312	
_cons	132.7439	80.56393	1.65	0.099	-25.15848	290.6463
M50_60	I					
trt	101.0135	36.90469	2.74	0.006	28.6816	173.3453
_cons	233.9756	52.19961	4.48	0.000	131.6662	336.2849
M60_70	1					
trt	98.86872	37.31695	2.65	0.008	25.72885	172.0086
_cons	327.8498	34.85833	9.41	0.000	259.5288	396.1709
M70_85	+					
trt	170.6656	83.89101	2.03	0.042	6.242284	335.089
_cons	530.1587	61.65655	8.60	0.000	409.3141	651.0033
M85_99	+ 					
trt	402.2983	153.0327	2.63	0.009	102.3598	702.2368
_cons	1036.677	275.0323	3.77	0.000	497.6235	1575.73

Conclusions

- The compound expectation is a suitable summary measure in any scenario.
- It can be used in a regression framework and thus, it provides information about the effect of a set of covariates of interest.
- It represents a useful tool for groups comparison.
- In the presence of censoring, it can be computed up to the last observed quantile, avoiding extrapolation.

Further work:

 Optimize the components' width for every specific case, in order to achieve better inferences. Thank you for your attention.