The grreg command for geometric rate regression

Matteo Bottai, Sc.D.

Unit of Biostatistics, Karolinska Institutet, Stockholm, Sweden

The grreg command was developed with Nicola Orsini

Survival in Cancer Patients

Matteo Bottai, ScD - Stata Users Meeting, Stockholm, Sep. 4, 2015

Survival in Cancer Patients

. strate

[... output omitted ...]

+				+
l D	Y	Rate	Lower	Upper
152	136.9425	1.10996	0.94681	1.30121
+				+

A patient died on average 1.11 times a year.

A Trivial Example

A cohort of 100 subjects is followed up for 2 days.

Day	At risk	Deaths	Survivors	Geometric Rate
1	100	80	20	80/100 = 0.80
2	20	4	16	4/20 = 0.20

Average geometric rate = $1 - (16/100)^{1/2} = 0.60$

The average daily risk is 60%. If 60% died every day, 16 would survive 2 days.

The incidence rate is 84/120 = 0.70 deaths/person-day.

Geometric Rate Regression

Poisson regression models incidence rates

Geometric rate regression models geometric rates

Geometric rate regression was introduced in Bottai (2015)

Geometric rates over Proportions

Let T be a time variable and S(t) = P(T > t).

The geometric rate over the time interval (0, t) is

 $g(0,t) = 1 - S(t)^{1/t}$

The geometric rate over the proportion interval (0, p) is

 $g(0,p) = 1 - (1-p)^{1/Q(p)}$

where $p = P(T \le t)$ and Q(p) is the quantile function.

Matteo Bottai, ScD - Stata Users Meeting, Stockholm, Sep. 4, 2015

The Primal Idea

Proposition (Bottai, 2015). The geometric rate

$$g(0,p) = 1 - (1-p)^{1/Q(p)}$$

is the (1-p)-quantile of the transformed time variable

$$T^* = 1 - (1 - p)^{1/T}$$

That is $P[T^* \le g(0, p)] = 1 - p$.

The above follows directly from the fact that for a fixed p the function $1 - (1-p)^{1/t}$ is monotonically decreasing in t for t > 0.

Geometric Rate Regression

Matteo Bottai, ScD - Stata Users Meeting, Stockholm, Sep. 4, 2015

A geometric rate regression model with linear link

 $g(0, p \mid x) = x'\gamma$

A geometric rate regression model with log link

 $\log g(0, p \mid x) = x'\gamma$

Survival in Cancer Patients

Matteo Bottai, ScD - Stata Users Meeting, Stockholm, Sep. 4, 2015

Survival at a Rate of 66.4% a Year (0.3% a Day)

The grreg Command

Eighty-nine percent of the patients died during follow up. I estimate the following geometric regression model

 $\log g(0, 0.89) = \gamma_0$

. grreg years, fail(died) p(.89)

Geometric ra	te regressio	on				
Proportion:	.89			No. of	subjects =	175
Link:	log			No. of	failures =	152
		Robust				
years 1	Rate Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval]
_cons	.6641147	.0148485	-18.31	0.000	.6356407	.6938642

The risk of dying in a year was 66.4% (0.3% in a day).

Matteo Bottai, ScD - Stata Users Meeting, Stockholm, Sep. 4, 2015

Geometric Rates per Period

10

Survival by Treatment

Matteo Bottai, ScD - Stata Users Meeting, Stockholm, Sep. 4, 2015

Survival in a Cohort of Men from Sweden

Geometric Rates by Treatment

. grreg years trt, f(died)

Geometric rate regression						
Proportion	: .5			No. of	subjects =	347
Link	: log			No. of	failures =	286
 years	Rate Ratio	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
trt _cons	.802882 .7054235	.0724971 .0450773	-2.43 -5.46	0.015 0.000	.6726537 .6223824	.9583229 .7995444

Half of the patients on MPA died at a yearly rate of 0.71. The risk on IFN was 20% smaller.

Matteo Bottai, ScD - Stata Users Meeting, Stockholm, Sep. 4, 2015

Mortality Rates and Physical Activity

I estimated the following geometric rate regression model

 $\log g(0, 0.25 \mid x) = \gamma_0 + \gamma_1 \text{PA2} + \gamma_2 \text{PA3} + \gamma_3 \text{PA4} + \text{covariates}$

The PA's were indicators of physical activity level.

This example is presented in Bottai (2015). The data are described in Zheng (2015).

Mortality Rate Ratios

The table shows the estimated rates for the first 25% of deaths.

Physical	Quantile	Annual	Rate Ratio		
Activity	(years)	Rate $(\%)$	Crude	Adjusted	
Very low	6.3 (5.5 7.0)	4.5 (4.1 4.9)	1.00 (referent)	1.00 (referent)	
Low	$8.7 (7.9 \ 9.4)$	$3.3 (3.0 \ 3.6)$	0.73 (0.64, 0.82)	$0.74 \ (0.65, 0.84)$	
High	$9.6 (8.9 \ 10.4)$	$2.9(2.7\ 3.2)$	$0.66\ (0.58, 0.75)$	$0.74 \ (0.65, 0.83)$	
Very high	$9.8 \ (9.1 \ 10.6)$	$2.9(2.6\ 3.2)$	$0.64 \ (0.57, 0.73)$	0.73 (0.64, 0.82)	

The mortality rate decreased over levels of physical activity. In the most active it was 36% smaller than in the least active.

Final Remarks

The grreg command can estimate geometric rate regression.

Geometric rates have not been used in medical sciences, yet.

They have long been used in demography and finance.

Incidence rates are different from geometric rates.

Assumptions can improve efficiency; for example

$$S(t) = \exp[-(\lambda t)^{\theta}] \iff g(0,p) = 1 - (1-p)^{\lambda[-\log(1-p)]^{-1/\theta}}$$

18

Matteo Bottai, ScD - Stata Users Meeting, Stockholm, Sep. 4, 2015

Matteo Bottai, ScD – Stata Users Meeting, Stockholm, Sep. 4, 2015

References

- ▶ Bottai M, A regression method for modelling geometric rates. *Statistical Methods in Medical Research*, 2015 (to appear)
- Medical Research Council Renal Cancer Collaborators. Interferon-α and survival in metastatic renal carcinoma: early results of a randomised controlled trial *Lancet*, 1999, 353:14-17
- Zheng Selin J, Orsini N, Ejdervik Lindblad B, Wolk A. Long-Term Physical Activity and Risk of Age-Related Cataract: A Population-Based Prospective Study of Male and Female Cohorts. *Ophthalmology*, 2014, 122(2):274-80

17