Multiplicative models

Interaction analysis

Additive and Multiplicative Laplace Models for Survival Percentiles

Andrea Bellavia

Unit of Biostatistics, Unit of Nutritional Epidemiology Institute of Environmental Medicine Karolinska Institutet, Stockholm http://www.imm.ki.se/biostatistics andrea.bellavia@ki.se

Nordic and Baltic Stata Users Group meeting September 4th, 2015

Acknowledgements

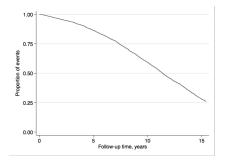
- Nicola Orsini
- Matteo Bottai
- Paolo Frumento
- Andrea Discacciati
- Alicja Wolk

Survival Percentiles

- In time-to-event analysis we define the *p*th survival percentile as the time *t* by which p% of the study population has experienced the event of interest, and (1-p)% have not
- Example The minimal value of T is 0, when everyone is alive. The time by which 50% of the participants have died is called 50th survival percentile, or median survival
- In the same way we can define all survival percentiles
- Survival percentiles are depicted in the survival curve

Survival Percentiles 0●000	Additive models	Multiplicative models	Interaction ar 0000000

Survival Percentiles (2)



Evaluating survival percentiles changes the prospective

In the classical approach the time is fixed and the probability (risk) is evaluated. Here the probability is fixed and the time by which that proportion of cases is achieved is evaluated

Modelling Survival Percentiles

- At the univariable level percentiles can be estimated with the non-parametric Kaplan-Meier method
- In Stata: sts graph, stqkm.
- stqkm provides differences in survival percentiles with CI. It can be installed by typing: net install stqkm, ///
 - from(http://www.imm.ki.se/biostatistics/stata)

Adjusted survival percentiles

- Common situation in epidemiology
- We have two main approaches:
- 1) Estimate a multivariable parametric (AFT, flexible parametric survival), or semi-parametric (COX) model.
 Back-calculate the survival function. Derive adjusted survival percentiles
- Computational and mathematical complexity, plus relying on the original model assumption, limit this application

Adjusted survival percentiles

- > 2) Quantile regression for censored data
- Recent developments (Powell, Portnoy, Peng-Huang)
- Bottai & Zhang introduced Laplace regression in 2010
- Recent developments have largely extended the potentiality and advantages of this method

Survival Percentiles	Additive models ●000	Multiplicative models	Interaction analysis 0000000

Laplace regression

- When the time variables T_i may be censored we observe the covariates x_i, y_i = min(t_i, c_i), and d_i = I(t_i ≤ c_i)
- The aim is to estimate the τ^{th} conditional quantile of T_i
- ► Given a quantile \(\tau\), a response variable \(Y\), and a set of covariates \(x\), a Laplace regression model establishes a linear relationship between a given percentile of T and a set of covariates

$$t_i(\tau) = x'_i\beta(\tau) + \sigma_i(\tau)u_i$$

- *u_i* follows the Asymmetric Laplace distribution
- Estimation is conducted via gradient search algorithm (Bottai et al. 2014), and standard errors are preferrabily estimated via bootstrap

Additive Laplace regression

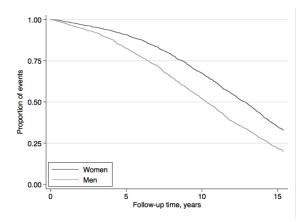
► In its basic form, a Laplace regression model establishes a linear association between a predictor E and the pth survival percentile of the time variable T

$$T(p|E=e) = \beta_{p0} + \beta_{p1} \cdot e$$

βs estimated from an additive Laplace regression are interpreted in terms of survival percentile differences (PD), absolute differences in time by which the chosen proportion of cases is achieved.

Survival Percentiles	Additive models	Multiplicative models	Interaction analysis
00000	00●0		0000000

Example



50th PD=2.2 - Median survival is 2 years longer for women

Andrea Bellavia

Additive and Multiplicative Laplace

In Stata

```
The program can be installed from:
net install laplace, ///
from(http://www.imm.ki.se/biostatistics/stata)
```

Example

sysuse cancer, clear

xi: laplace studytime i.drug, q(.5) fail(died)

Equivariance to Monotonic Transformation

- Thanks to a peculiar property of the quantiles, the definition of a multiplicative model for survival percentiles is straightforward
- This property is defined as equivariance to monotonic transformation (EMT): let h be a non-decreasing function, then for any Y

$$Q_{h(Y)}(\tau) = h(Q_Y(\tau))$$

► In words, for any random variable T the quantiles of the transformed random variable h(T) are the transformed quantiles of the original T

Multiplicative Laplace regression

- To define a multiplicative model for survival percentiles the most intuitive approach is to specify a model that is linear on the logarithm of time
- The property of EMT assures that this can be achieved by simply operating a logarithmic transformation on the original time variable and by fitting a linear model on the logarithm of time

$$\log[T(p|E=e)] = \beta_{p0}^* + \beta_{p1}^* \cdot e$$

Andrea Bellavia

Coefficients' interpretation

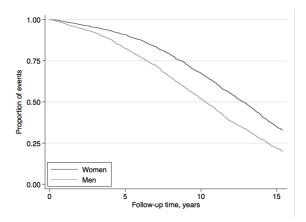
- βs estimated from this model do not have a simple interpretation
- However, it is possible to operate an exponential transformation to go back on the original time scale

$$T(p|E = e) = \exp(\beta_{p0}^* + \beta_{p1}^* \cdot e) = \exp(\beta_{p0}^*) \cdot \exp(\beta_{p1}^* \cdot e)$$

► exp(β^{*}_{p1}) can be interpreted as percentile ratio (PR) associated with the exposure, and shows how much faster/slower exposed participants attain the fixed proportion of p% of cases

Survival Percentiles	Additive models	Multiplicative models	Interaction analysis 0000000

Example



50th PR=1.22 - Median survival is achieved 22% faster by men

Andrea Bellavia

Additive and Multiplicative Laplace

In Stata

The estimation of a multiplicative model for the *p*th survival percentile can be achieved in Stata by including the option link in the laplace command

Example

sysuse cancer, clear xi: laplace studytime i.drug, q(.5) fail(died) /// link(log)

Survival Percentiles	Additive models	Multiplicative models 00000●0	Interaction analysis 0000000

Example

- Mortality data from 15.000 subjects
- ▶ 8400 participants (58%) died in 15 years of follow-up
- We focus on the impact of smoking on median survival adjusting for baseline age

Additive Model

```
T(50) = \beta_0 + \beta_1 \cdot smoking + \beta_2 \cdot age
laplace _t smoking age , q(50) fail(_d)
```

Multiplicative model

```
log[T(50)] = \beta_0^* + \beta_1^* \cdot smoking + \beta_2^* \cdot age
laplace _t smoking age , q(50) fail(_d) link(log)
```

Example - Results

Percentile Difference

The 50th PD (difference in median survival) is estimated by β_1 50th PD= -2.6 years, 95% CI: -3.0, -2.3

Percentile Ratio

The 50th PR (median ratio) is estimated by $\exp(\beta_1^*)$ 50th PR=0.79, 95% CI: 0.76, 0.81

Median survival was attained 21% slower in nonsmokers than in smokers. This acceleration resulted in a median survival difference of 2.6 years

Interaction in time-to-event analysis

- Statistical interaction can be evaluated on the additive or the multiplicative scale, and presentation of both scales is recommended
- In survival analysis, because of the popularity of Cox regression, the multiplicative scale alone is usually presented
- We defined the concept of interaction in the context of survival percentiles and presented how to evaluate additive and multiplicative interaction (*Epidemiology*, 2016, accepted for publication)

Additive mode

Multiplicative models

Interaction analysis

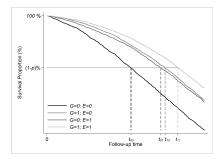
Interaction in the context of survival percentiles

Additive interaction

$$I_{add} = (t_{11} - t_{00}) - [(t_{10} - t_{00}) + (t_{01} - t_{00})]$$

Multiplicative interaction

 $I_{mul} = (t_{11} \cdot t_{00})/(t_{10} \cdot t_{01})$



Andrea Bellavia Additive and Multiplicative Laplace Karolinska Institutet

Model-based additive and multiplicative interaction

Inclusion of a product term between two predictors G and E in an additive and multiplicative Laplace model will serve as a test for additive and multiplicative interaction, respectively

Additive interaction

$$T(p|G = g, E = e) = \beta_{p0} + \beta_{p1} \cdot g + \beta_{p2} \cdot e + \beta_{p3} \cdot g \cdot e$$

Multiplicative interaction

 $\log[T(p|G=g, E=e)] = \beta_{p0}^* + \beta_{p1}^* \cdot g + \beta_{p2}^* \cdot e + \beta_{p3}^* \cdot g \cdot e$

▶ β_{p3} and exp(β^{*}_{p3}) will test for the presence of additive and multiplicative interaction between G and E

Survival Percentiles 00000	Additive models	Multiplicative models	Interaction analysis

Example

We evaluate the interaction between smoking and education in predicting median survival

Additive Model

 $T(50) = \beta_0 + \beta_1 \cdot smoke + \beta_2 \cdot educat + \beta_3 \cdot smoke \cdot educat$ laplace _t smoke educat inter , q(50) fail(_d)

Multiplicative model

$$\begin{split} \log[T(50)] &= \beta_0^* + \beta_1^* \cdot smoke + \beta_2^* \cdot educat + \beta_3^* \cdot smoke \cdot educat \\ \texttt{laplace _t smoke educat inter, q(50) fail(_d) /// \\ \texttt{link(log)} \end{split}$$

Multiplicative models

Example - Results

Additive Interaction Interaction on the additive scale is estimated by β_3 I_{add} = 2.1 years, 95% CI: 1.2, 2.9

Multiplicative Interaction

Interaction on the multiplicative scale is estimated by $\exp(\beta_3^*)$ I_{mul} =1.08, 95% CI: 1.00, 1.17

Survival Percentiles 00000	Additive models	Multiplicative models	Interaction analysis 00000●0

Summary

- Survival percentiles are defined as the time points by which specific proportion of events are achieved
- Statistical models for survival percentiles, such as Laplace regression, offer all modelling advantages such as multivariable adjustment and interaction assessment
- Thanks to properties of the quantiles, the Laplace models can be defined in both the additive and multiplicative scales
- The additive and multiplicative Laplace models estimate survival percentile differences (absolute measures) and percentile ratios (relative measures), respectively
- An additional importante advantage is that inclusion of product terms in the additive and multiplicative models will serve as tests for additive and multiplicative interactions in the metric of time

Andrea Bellavia

 Survival Percentiles
 Additive models
 Multiplicative models
 Interaction analysis

 00000
 000000
 0000000
 0000000

References on Laplace regression

- Bottai M, Zhang J. Laplace regression with censored data. Biometrical Journal. 2010
- Orsini N et al. Evaluating percentiles of survival. Epidemiology. 2012
- Bottai M, Orsini N. A command for Laplace regression. Stata Journal. 2013
- Bottai M, Orsini N, Geraci M A gradient search maximization algorithm for the asymmetric Laplace likelihood. Journal of Statistical Computation and Simulation. 2014
- Bellavia A. et al. Using Laplace Regression to Model and Predict Percentiles of Age at Death When Age Is the Primary Time Scale Am Journal of Epi. 2015
- Bellavia A., Bottai M., Orsini N. Evaluating additive interaction using survival percentiles. Epidemiology, 2016 - In press
- Bellavia A., Bottai M., Orsini N. Survival percentile ratios. Submitted

Andrea Bellavia