## SIMPLER STANDARD ERRORS FOR MULTI-STAGE REGRESSION-BASED

## ESTIMATORS: ILLUSTRATIONS IN HEALTH ECONOMICS

Joseph V. Terza<br>Department of Economics<br>Indiana University Purdue University Indianapolis<br>Indianapolis, IN 46202<br>Email: jvterza@iupui.edu

(November, 2014)

Please cite:
Terza, J.V. (2014): "Simpler Standard Errors for Multi-Stage Regression-Based Estimators: Illustrations in Health Economics," Keynote Address, Mexican Stata Users Group Meeting, Mexico City.

## Motivation

-- Focus here is on two-stage optimization estimators (2SOE)
-- Asymptotic theory for 2SOE (correct standard errors) available for many years
-- Both stages are maximum likelihood estimators (MLE)
Murphy, K.M., and Topel, R.H. (1985): "Estimation and Inference in TwoStep Econometric Models," Journal of Business and Economic Statistics, 3, 370-379.
-- More general cases
Newey, W.K. and McFadden, D. (1994): Large Sample Estimation and Hypothesis Testing, Handbook of Econometrics, Engle, R.F., and McFadden, D.L., Amsterdam: Elsevier Science B.V., 2111-2245, Chapter 36.

White, H. (1994): Estimation, Inference and Specification Analysis, New York: Cambridge University Press.

Motivation (cont'd)
-- Textbook treatments of the subject
Cameron, A.C. and Trivedi, P.K. (2005): Microeconometrics: Methods and Applications," New York: Cambridge University Press.

Greene (2008): Econometric Analysis, $6^{\text {th }}$ Edition, Upper Saddle River, NJ: Pearson, Prentice-Hall.

Wooldridge, J.M. (2010): Econometric Analysis of Cross Section and Panel Data, $2^{\text {nd }}$ Ed. Cambridge.
-- Nonetheless, applied researchers often implement bootstrapping methods or ignore the two-stage nature of the estimator and report the uncorrected outputs from packaged statistical software.

## Motivation (cont'd)

-- With a view toward easy software implementation (in Stata), we offer the practitioner a simplification of the textbook asymptotic covariance matrix formulations (and their estimators - standard errors) for the most commonly encountered versions of the 2 SOE -- those involving MLE or the nonlinear least squares (NLS) method in either stage.
-- We cast the discussion in the context of regression models involving endogeneity a sampling problem whose solution often requires a 2 SOE.

## Motivation (cont'd)

-- Examples of relevant methodological contexts involving endogeneity:

1) The two-stage residual inclusion (2SRI) estimator suggested by Terza et al.
(2008) for nonlinear models with endogenous regressors

Terza, J., Basu, A. and Rathouz, P. (2008): "Two-Stage Residual Inclusion Estimation: Addressing Endogeneity in Health Econometric Modeling," Journal of Health Economics, 27, 531-543.
2) The two-stage sample selection estimator (2SSS) developed by Terza (2009)
for nonlinear models with endogenous sample selection

Terza, J.V. (2009): "Parametric Nonlinear Regression with Endogenous Switching,"Econometric Reviews, 28, 555580.
3) Causal incremental and marginal effects estimators proposed by Terza (2014).

Terza, J.V. (2014): "Health Policy Analysis from a Potential Outcomes Perspective: Smoking During Pregnancy and Birth Weight," Unpublished manuscript, Department of Economics, Indiana University Purdue University Indianapolis.

## Motivation (cont'd)

-- In this presentation we will discuss (1) and (3) - 2SRI and Causal Effects
-- We will detail the analytics and Stata code for our simplified standard error formulae for both of these and give illustrative examples.

## 2SOE and Their Asymptotic Standard Errors

-- The parameter vector of interest is partitioned as $\omega^{\prime}=\left[\begin{array}{ll}\delta^{\prime} & \gamma^{\prime}\end{array}\right]$ and estimated in two-stages:
-- First, an estimate of $\delta$ is obtained as the optimizer of an appropriately specified first-stage objective function

$$
\begin{equation*}
\sum_{i=1}^{\mathrm{n}} \mathrm{q}_{1}\left(\delta, \mathrm{~V}_{1 \mathrm{i}}\right) \tag{1}
\end{equation*}
$$

where $V_{1 i}$ denotes the relevant subvector of the observable data for the ith sample individual $(i=1, \ldots, n)$.

2SOE and Their Asymptotic Standard Errors (cont'd)
-- Next, an estimate of $\gamma$ is obtained as the optimizer of

$$
\begin{equation*}
\sum_{i=1}^{n} \mathbf{q}\left(\hat{\delta}, \gamma, \mathbf{V}_{2 i}\right) \tag{2}
\end{equation*}
$$

where $V_{2 i}$ denotes the relevant subvector of the observable data for the ith sample individual, and $\hat{\boldsymbol{\delta}}$ denotes the first-stage estimate of $\boldsymbol{\delta}$.
-- Under fairly general conditions it can be shown that:

$$
D^{-\frac{1}{2}} \sqrt{n}\left(\left[\begin{array}{l}
\hat{\delta} \\
\hat{\gamma}
\end{array}\right]-\left[\begin{array}{l}
\delta \\
\gamma
\end{array}\right]\right)=D^{-\frac{1}{2}} \sqrt{n}(\hat{\omega}-\omega) \xrightarrow{d} \mathbf{N}(0, I)
$$

i.e., $\hat{\boldsymbol{\omega}}=\left[\begin{array}{ll}\hat{\boldsymbol{\delta}} \quad \hat{\gamma}\end{array}\right]$ is asymptotically normal with asymptotic covariance matrix $D$.

## 2SOE and Their Asymptotic Standard Errors: Some Notation

-- Rewriting the asymptotic covariance matrix of $\hat{\boldsymbol{\omega}}=\left[\begin{array}{ll}\hat{\boldsymbol{\delta}} & \hat{\gamma}\end{array}\right]$ in partitioned form we get

$$
D=\left[\begin{array}{ll}
D_{11} & D_{12}  \tag{3}\\
D_{12}^{\prime} & D_{22}
\end{array}\right]
$$

where
$D_{11}=\operatorname{AVAR} *(\hat{\boldsymbol{\delta}})$ denotes the asymptotic covariance matrix of $\hat{\boldsymbol{\delta}}$
$\mathbf{D}_{22}=\operatorname{AVAR}(\hat{\gamma})$
$D_{12}$ is left unspecified for the moment.
$\hat{\delta}$ and $\hat{\gamma}$ are the first and second stage estimators, respectively
and the "*" denotes the matrix two which the relevant "packaged" asymptotic covariance matrix estimator converges (by "packaged" we mean that which would be obtained from Stata ignoring the two-stage nature of the estimator.)

## 2SOE and Their Asymptotic Standard Errors (cont'd)

-- It is incorrect to ignore the two-stage nature of the estimator and use the
"packaged" standard errors from the second-stage [i.e., the packaged estimator of
$D_{22}$ in (3) with $D_{12}$ set equal to 0].
-- The problem is that the expressions for the correct asymptotic covariance matrix of the generic 2SOE found in textbooks [Cameron and Trivedi (2005), Greene (2012), and Wooldridge (2010)] are daunting.
-- As a result, applied researchers opt for approximation methods like bootstrapping, or ignore the need for correction and report "packaged" results.
-- In the following, we offer a substantial simplification of the correct form of $D$ (and its relevant partitions) that we hope will be useful to practitioners.

2SOE and Their Asymptotic Standard Errors: More Notation
$-q_{1}$ is shorthand notation for $q_{1}\left(\delta, V_{1}\right)$ as defined in (1)
-q is shorthand notation for $\mathrm{q}\left(\boldsymbol{\delta}, \gamma, \mathrm{V}_{2}\right)$ as defined in (2)
-- $\nabla_{\mathrm{s}} \mathrm{q}$ denotes the gradient of $\mathbf{q}$ with respect to parameter subvector s . This is a row vector whose typical element is $\partial q / \partial s_{j}$; the partial derivative of $q$ with respect to the jth element of $s$
$-\nabla_{s t} q$ denotes the Jacobian of $\nabla_{\mathrm{s}} \mathrm{q}$ with respect to $t$. This is a matrix whose typical element is $\partial^{2} q / \partial s_{j} \partial t_{m}$; the cross partial derivative of $q$ with respect to the $j t h$ element of $s$ and the mth element of $t$ - the row dimension of $\nabla_{s t} q$ corresponds to that of its first subscript and the column dimension to that of its second subscript.

## 2SOE: An Example

-- For example, suppose the vector of observable data for the ith sample individual
is $Z=\left[\begin{array}{llll}Y & X_{p} & X_{0} & W^{+}\end{array}\right]$where
$Y \equiv$ the outcome of policy interest
$X_{p} \equiv$ the policy variable of interest
$X_{0} \equiv$ a vector of observable confounders (control variables)
$\mathbf{W}^{+} \equiv$ a vector of identifying instrumental variables.
-- Suppose our objective is to estimate the regression (broadly defined) of $Y$ on
$\left[\begin{array}{ll}X_{p} & X_{0}\end{array}\right]$ purged of bias due to the potential endogeneity of $X_{p}$.

2SOE: An Example (cont'd)
-- A 2SOE of the following form might be appropriate:
First Stage: Consistently estimate $\delta$ via the nonlinear least squares (NLS) method.
For example, we might use

$$
\mathrm{q}_{1}\left(\delta, \mathrm{~V}_{1 \mathrm{i}}\right)=-\left(X_{\mathrm{pi}}-\mathrm{r}\left(\mathbf{W}_{\mathrm{i}} \delta\right)\right)^{2}
$$

where $V_{1}=\left[\begin{array}{lll}X_{p} & X_{0} & W^{+}\end{array}\right], W=\left[\begin{array}{ll}X_{0} & W^{+}\end{array}\right]$and $r()$ is a known function.
Second Stage: Consistently estimate $\gamma$ via a maximum likelihood estimator (MLE).
For example, we might use

$$
\mathbf{q}\left(\hat{\delta}, \gamma, \mathbf{V}_{2 \mathbf{i}}\right)=\ln \mathbf{f}\left(\mathbf{Y}_{\mathbf{i}} \mid \mathbf{X}_{\mathbf{p i}}, \mathbf{W}_{\mathbf{i}} ; \hat{\delta}, \gamma\right)
$$

with $V_{2}=Z$ and $f\left(Y \mid X_{p}, W ; \delta, \gamma\right)$ being the relevant conditional density of $Y$.
-- The devil is, of course, in the " $D$ "-tails (seek simple estimators of $D_{12}$ and $D_{22}$ )
-- The typical textbook rendition of the "D"-tails is something like the following

$$
\begin{aligned}
\mathbf{D}_{12}= & \mathbf{E}\left[\nabla_{\delta \delta \delta} \mathbf{q}_{1}\right]^{-1} \mathbf{E}\left[\nabla_{\gamma} \mathbf{q}^{\prime} \nabla_{\delta} \mathbf{q}_{1}\right] \mathbf{E}\left[\nabla_{\gamma \gamma} \mathbf{q}\right]^{-1}-\operatorname{AVAR} *(\hat{\boldsymbol{\delta}}) \mathbf{E}\left[\nabla_{\gamma \delta} \mathbf{q}\right]^{\prime} \mathbf{E}\left[\nabla_{\gamma \gamma} \mathbf{q}\right]^{-1} \\
\mathbf{D}_{22}= & \operatorname{AVAR}(\hat{\gamma})=\mathbf{E}\left[\nabla_{\gamma \gamma} \mathbf{q}\right]^{-1}\left\{\mathbf{E}\left[\nabla_{\gamma \dot{\mathbf{0}}} \mathbf{q}\right] \operatorname{AVAR}(\hat{\boldsymbol{\delta}}) \mathbf{E}\left[\nabla_{\gamma \delta} \mathbf{q}\right]\right]^{\prime} \\
& -\mathbf{E}\left[\nabla_{\gamma} \mathbf{q}^{\prime} \nabla_{\delta} \mathbf{q}_{1}\right] \mathbf{E}\left[\nabla_{\delta \hat{\delta} \delta} \mathbf{q}\right]^{-1} \mathbf{E}\left[\nabla_{\gamma \delta} \mathbf{q}\right]^{\prime} \\
& \left.-\mathbf{E}\left[\nabla_{\gamma \delta \mathbf{\delta}} \mathbf{q}\right] \mathbf{E}\left[\nabla_{\delta \delta} \mathbf{q}\right]^{-1} \mathbf{E}\left[\nabla_{\gamma} \mathbf{q}^{\prime} \nabla_{\delta} \mathbf{q}_{1}\right]^{\prime}\right\} \mathbf{E}\left[\nabla_{\gamma \mathbf{q}} \mathbf{q}\right]^{-1}+\operatorname{AVAR} *(\hat{\gamma})
\end{aligned}
$$

where $\operatorname{AVAR} *(\hat{\boldsymbol{\delta}})$ is the "packaged" and legitimate asymptotic covariance matrix of $\hat{\boldsymbol{\delta}}$, and $\operatorname{AVAR}^{*}(\hat{\gamma})$ is "packaged" but incorrect covariance matrix of $\hat{\gamma}$.
-- No need to define any of the components of this mess at this point. Just wanted to make a point.

## Simple Standard Error Formulae - MLE

-- When the second stage estimator is MLE the correct (and practical) formulations of the estimators of $D_{12}$ and $D_{22}$ simplify as

$$
\begin{aligned}
& \tilde{\mathbf{D}}_{12}^{*}=\overline{\mathbf{A V A R}} *(\hat{\boldsymbol{\delta}}) \tilde{\mathbf{E}} *\left[\nabla_{\gamma} \mathbf{q}^{\prime} \nabla_{\delta} \mathbf{q}\right]^{\prime} \overline{\mathrm{AVAR}} *(\tilde{\gamma}) \\
& \tilde{\mathbf{D}}_{22}^{*}=\overline{\mathbf{A V A R}} *(\tilde{\gamma}) \tilde{\mathbf{E}} *\left[\nabla_{\gamma} \mathbf{q}^{\prime} \nabla_{\delta} \mathbf{q}\right] \overline{\mathrm{AVAR}} *(\hat{\boldsymbol{\delta}}) \tilde{\mathbf{E}} *\left[\nabla_{\gamma} \mathbf{q}^{\prime} \nabla_{\delta} \mathbf{q}\right] \cdot \overline{\mathrm{AVAR}} *(\tilde{\gamma}) \\
& \\
& +\overline{\mathrm{AVAR}} *(\tilde{\gamma})
\end{aligned}
$$

where

$$
\tilde{\mathbf{E}} *\left[\nabla_{\gamma} \mathbf{q}^{\prime} \nabla_{\delta} \mathbf{q}\right]=\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \nabla_{\gamma} \mathbf{q}\left(\hat{\delta}, \tilde{\gamma}, \mathbf{V}_{2 \mathbf{i}}\right)^{\prime} \nabla_{\delta} \mathbf{q}\left(\hat{\boldsymbol{\delta}}, \tilde{\gamma}, \mathbf{V}_{2 \mathbf{i}}\right)
$$

and $\overline{\operatorname{AVAR}} *(\hat{\boldsymbol{\delta}})$ and $\overline{\operatorname{AVAR}} *(\tilde{\gamma})$ are the estimated covariance matrices obtained from the first and second stage packaged regression outputs, respectively.

## Simple Standard Error Formulae - NLS

-- When the second stage estimator is NLS such that

$$
\mathbf{q}\left(\delta, \gamma, \mathbf{V}_{2 i}\right)=-\left(\mathbf{Y}_{\mathbf{i}}-\mu\left(\delta, \gamma, \mathbf{V}_{3 i}\right)\right)^{2}
$$

where $Y$ is a scalar element of $V_{2}$ and $V_{3}$ is a subvector of $V_{2}$ (not including $Y$ ), the correct formulations of the estimators of $D_{12}$ and $D_{22}$ simplify as

$$
\begin{align*}
& \hat{\mathbf{D}}_{12}^{*}=-\widehat{\mathbf{A V A R}} *(\hat{\boldsymbol{\delta}}) \hat{\mathbf{E}} *\left[\nabla_{\gamma \delta} \mathbf{q}\right]^{\prime} \hat{\mathbf{E}} *\left[\nabla_{\gamma \gamma} \mathbf{q}\right]^{-1} \\
& \hat{\mathbf{D}}_{22}^{*}=\hat{\mathbf{E}} *\left[\nabla_{\gamma \gamma} \mathbf{q}\right]^{-1} \hat{\mathbf{E}} *\left[\nabla_{\gamma \delta} \mathbf{q}\right] \widehat{\mathbf{A V A R}} *(\hat{\boldsymbol{\delta}}) \hat{\mathbf{E}} *\left[\nabla_{\gamma \delta} \mathbf{q}\right] \cdot \hat{\mathbf{E}}\left[\nabla_{\gamma \gamma} \mathbf{q}\right]^{-1}+\widehat{\mathbf{A V A R}} *(\hat{\gamma}) \tag{4}
\end{align*}
$$

where

$$
\begin{aligned}
& \hat{\mathbf{E}} *\left[\nabla_{\gamma \delta} \mathbf{q}\right]=\sum_{\mathbf{i}=1}^{\mathrm{n}} \nabla_{\gamma} \boldsymbol{\mu}\left(\hat{\boldsymbol{\delta}}, \hat{\gamma}, \mathbf{V}_{3 \mathrm{i}}\right)^{\prime} \nabla_{\delta} \boldsymbol{\mu}\left(\hat{\boldsymbol{\delta}}, \hat{\gamma}, \mathbf{V}_{3 \mathbf{i}}\right) \\
& \hat{\mathbf{E}} *\left[\nabla_{\gamma \gamma} \mathbf{q}\right]=\sum_{\mathbf{i}=1}^{\mathrm{n}} \nabla_{\gamma} \boldsymbol{\mu}\left(\hat{\boldsymbol{\delta}}, \hat{\gamma}, \mathbf{V}_{3 \mathbf{i}}\right)^{\prime} \nabla_{\gamma} \boldsymbol{\mu}\left(\hat{\boldsymbol{\delta}}, \hat{\gamma}, \mathbf{V}_{3 \mathbf{i}}\right) .
\end{aligned}
$$

## Simple Standard Error Formulae - NLS (cont'd)

-- So, for example, the "t-statistic" $\left(\hat{\gamma}_{k}-\gamma_{k}\right) / \sqrt{\hat{\mathbf{D}}_{22(k)}^{*}}$ for the kth element of $\gamma$ is asymptotically standard normally distributed and can be used to test the hypothesis that $\gamma_{k}=\gamma_{k}^{0}$ for $\gamma_{k}^{0}$, a given null value of $\gamma_{k}$, where $\hat{\mathbf{D}}_{22(k)}^{*}$ denotes the kth diagonal element of $\hat{\mathbf{D}}_{\mathbf{2 2}}^{*}$.

## Example: Two-Stage Residual Inclusion (2SRI)

-- Suppose the researcher is interested in estimating the effect that a policy variable of interest $X_{p}$ has on a specified outcome $Y$.
-- Moreover, suppose that the data on $X_{p}$ is sampled endogenously - i.e. it is correlated with an unobservable variable $X_{u}$ that is also correlated with $Y$ (an unobservable confounder).

## Example: 2SRI (cont'd)

-- To formalize this, we follow Terza et al. (2008), and assume that

$$
\begin{array}{cc}
E\left[Y \mid X_{p}, X_{0}, X_{u}\right]=\mu\left(X_{p}, X_{0}, X_{u} ; \beta\right) & \text { and } \quad X_{p}=r(W, \alpha)+X_{u} \\
\text { [outcome regression] } & \text { [auxiliary regression] }
\end{array}
$$

$X_{0}$ denotes a vector of observable confounders (variables that are possibly correlated with both $Y$ and $X_{p}$ )
$X_{u}$ is a scalar comprising the unobservable confounders
$\beta$ and $\alpha$ are parameters vectors

$$
\mathbf{W}=\left[\begin{array}{ll}
\mathbf{X}_{\mathbf{0}} & \mathbf{W}^{+}
\end{array}\right]
$$

$\mathbf{W}^{+}$is an identifying instrumental variable, and
$\mu()$ and $r()$ are known functions.

## Example: 2SRI (cont'd)

-- The true causal regression model in this case is

$$
\mathbf{Y}=\mu\left(\mathbf{X}_{\mathrm{p}}, \mathbf{X}_{\mathbf{o}}, \mathbf{X}_{\mathrm{u}} ; \boldsymbol{\beta}\right)+\mathbf{e}
$$

where $e$ is the random error term, tautologically defined as

$$
\mathrm{e}=\mathbf{Y}-\mu\left(\mathbf{X}_{\mathrm{p}}, \mathbf{X}_{0}, \mathbf{X}_{\mathrm{u}} ; \boldsymbol{\beta}\right)
$$

-- The $\beta$ parameters are not directly estimable (e.g. by NLS) due to the presence of the unobservable confounder $X_{u}$.

## Example: 2SRI (cont'd)

The following 2SOE is, however, feasible and consistent.
First Stage: Obtain a consistent estimate of $\alpha$ by applying NLS to the auxiliary
regression and compute the residuals as

$$
\hat{\mathbf{X}}_{\mathrm{u}}=\mathbf{X}_{\mathrm{p}}-\mathbf{r}(\mathbf{W}, \hat{\boldsymbol{\alpha}})
$$

where $\hat{\boldsymbol{\alpha}}$ is the first-stage estimate of $\boldsymbol{\alpha}$.

Second Stage: Estimate $\boldsymbol{\beta}$ by applying NLS to

$$
Y=\mu\left(X_{p}, X_{0}, \hat{X}_{u} ; \beta\right)+e^{2 \text { SRI }}
$$

where $\mathrm{e}^{2 S R I}$ denotes the regression error term.

## Example: 2SRI (cont'd)

-- In order to detail the asymptotic covariance matrix of this 2SRI estimator, we cast it in the framework of the generic 2SOE discussed above with $\alpha$ and $\boldsymbol{\beta}$ playing the roles of $\boldsymbol{\delta}$ and $\gamma$, respectively.
-- This version of the 2SRI estimator implements NLS in its first and second stages so the relevant versions of $q_{1}\left(\delta, V_{1}\right)$ and $q\left(\hat{\delta}, \gamma, V_{2}\right)$ are

$$
\mathbf{q}_{1}\left(\alpha, V_{1}\right)=-\left(X_{p}-r(W, \alpha)\right)^{2}
$$

and

$$
q\left(\hat{\alpha}, \beta, V_{2}\right)=-\left(Y-\mu\left(X_{p}, X_{0}, \hat{X}_{u} ; \beta\right)\right)^{2}
$$

where $V_{1}=\left[\begin{array}{ll}X_{p} & W\end{array}\right]$ and $V_{2}=\left[\begin{array}{lll}Y & X_{p} & W\end{array}\right]$.

Smoking and Birthweight: Parameter Estimation via 2SRI
-- Re-estimate model of Mullahy (1997) using 2SRI
Mullahy, J. (1997): "Instrumental-Variable Estimation of Count Data Models: Applications to Models of Cigarette Smoking Behavior," Review of Economics and Statistics, 79, 586-593.
$Y=$ infant birthweight in lbs
$X_{p}=$ number of cigarettes smoked per day during pregnancy

Outcome Regression
$E\left[Y \mid X_{p}, X_{0}, X_{u}\right]=\mu\left(X_{p}, X_{o}, X_{u} ; \beta\right)=\exp \left(X_{p} \beta_{p}+X_{0} \beta_{0}+X_{u} \beta_{u}\right)$

Auxiliary Regression

$$
\begin{aligned}
& X_{p}=\exp (\mathbf{W} \alpha)+X_{u} \Rightarrow X_{u}=X_{p}-\exp (W \alpha) \\
& q_{1}\left(\alpha, V_{1 i}\right)=-\left(X_{p i}-\exp \left(\mathbf{W}_{i} \alpha\right)\right)^{2} \\
& q\left(\alpha, \beta, V_{2 i}\right)=-\left(Y_{i}-\exp \left(X_{p i} \beta_{p}+X_{0} \beta_{0}+\left(X_{p i}-\exp \left(\mathbf{W}_{i} \alpha\right)\right) \beta_{u}\right)\right)^{2}
\end{aligned}
$$

Smoking and Birthweight: Parameter Estimation via 2SRI (cont'd)
$X_{0}=[1$ PARITY WHITE MALE $]$
$\mathbf{W}=\left[\begin{array}{ll}\mathbf{X}_{\mathbf{0}} & \mathbf{W}^{+}\end{array}\right]$
$\mathbf{W}^{+}=[$EDFATHER EDMOTHER FAMINCOM CIGTAX88]
PARITY = birth order
WHITE = 1 if white, 0 otherwise
MALE = 1 if male, if female
EDFATHER = paternal schooling - yrs.
EDMOTHER = maternal schooling - yrs.
FAMINCOM $=$ family income $\left(\times \mathbf{1 0}^{-3}\right)$
CIGTAX99 = per pack state excise tax on cigarettes.

Smoking and Birthweight: Parameter Estimation via 2SRI (cont'd)
-- Obtain the parameter estimates in both stages using the Stata "glm" command with "link(log)", "family(gaussian)" and "vce(robust)" options.
-- Using results for the case in which the $2^{\text {nd }}$ stage of the 2 SOE is NLS

$$
\begin{aligned}
& \hat{\mathbf{D}}_{11}^{*}=\widehat{\operatorname{AVAR}} *(\hat{\boldsymbol{\alpha}}) \\
& \hat{\mathbf{D}}_{12}^{*}=-\widehat{\operatorname{AVAR}} *(\hat{\alpha}) \hat{\mathbf{E}} *\left[\nabla_{\beta \alpha} \mathbf{q}\right]^{\prime} \hat{\mathbf{E}} *\left[\nabla_{\beta \beta} \mathbf{q}\right]^{-1}
\end{aligned}
$$

and
$\hat{\mathbf{D}}_{22}^{*}=\hat{\mathbf{E}} *\left[\nabla_{\beta \beta} \mathbf{q}\right]^{-1} \hat{\mathbf{E}} *\left[\nabla_{\beta \boldsymbol{q}} \mathbf{q}\right] \widehat{\mathbf{A V A R}} *(\hat{\boldsymbol{\alpha}}) \hat{\mathbf{E}} *\left[\nabla_{\beta \alpha} \mathbf{q}\right]^{\prime} \hat{\mathbf{E}} *\left[\nabla_{\beta \beta} \mathbf{q}\right]^{-1}+\widehat{\mathbf{A V A R}} *(\hat{\boldsymbol{\beta}})$

Smoking and Birthweight: Parameter Estimation via 2SRI (cont'd)
where

$$
\begin{aligned}
& \hat{\mathbf{E}} *\left[\nabla_{\beta \sigma} q\right]=-\sum_{i=1}^{n} \hat{\boldsymbol{\beta}}_{\mathbf{u}} \exp \left(\mathbf{X}_{\mathrm{i}} \hat{\boldsymbol{\beta}}\right)^{2} \exp \left(\mathbf{W}_{\mathrm{i}} \hat{\boldsymbol{\alpha}}\right) \mathbf{X}_{\mathrm{i}}^{\prime} \mathbf{W}_{\mathbf{i}} \\
& \hat{\mathbf{E}} *\left[\nabla_{\beta \beta} q\right]=\sum_{\mathrm{i}=1}^{\mathrm{n}} \exp \left(\mathbf{X}_{\mathrm{i}} \hat{\boldsymbol{\beta}}\right)^{2} \mathbf{X}_{\mathrm{i}}^{\prime} \mathbf{X}_{\mathrm{i}}
\end{aligned}
$$

$X_{i}=\left[\begin{array}{lll}X_{p i} & X_{o i} & \hat{X}_{u i}\end{array}\right]$, and $\widehat{\operatorname{AVAR}} *(\hat{\alpha})$ and $\widehat{\operatorname{AVAR}} *(\hat{\boldsymbol{\beta}})$ are the estimated covariance matrices obtained from first and second stage GLM estimation, respectively.

## 2SRI Estimation -- Notes on Stata Implementation

-- Use MATA for calculation of the estimated asymptotic covariance matrix.
-- Use the st_matrix MATA command immediately after first and second stage
GLM estimations to save $\widehat{\operatorname{AVAR}} *(\hat{\alpha})$ and $\widehat{\operatorname{AVAR}} *(\hat{\boldsymbol{\beta}})$ as MATA matrices, e.g.

## 2SRI Estimation -- Notes on Stata Implementation: $1^{\text {st }}$ Stage GLM

```
Stata Code
/**************************************************
** 2SRI Estimation begins here.
**************************************************/
/**************************************************
** First-stage NLS estimation of the auxiliary **
** exponential regression (via GLM). **
** Conduct Wald test of joint significance of **
** the instruments.
** Save xuhat and the predicted values from the**
** regression **
*************************************************/
glm CIGSPREG PARITY WHITE MALE EDFATHER EDMOTHER FAMINCOM CIGTAX88, ///
family(gaussian) link(log) vce(robust)
test (EDFATHER = 0) (EDMOTHER = 0) (FAMINCOM = 0) (CIGTAX88 = 0)
predict xuhat, response
predict expwalpha, mu
/**************************************************
** Load the coefficient vector and covariance **
** matrix from first-stage GLM into MATA **
** matrices. **
**************************************************/
mata: alpha=st_matrix("e(b)")'
mata: v1=st_matrix("e(V)")
```


## 2SRI Estimation -- Notes on Stata Implementation: $1^{\text {st }}$ Stage GLM (cont'd)

## Stata Output



## Stata Code

```
/*************************************
** Apply GLM for the 2SRI second stage. **
************************************************/
glm BIRTHWTLB CIGSPREG PARITY WHITE MALE xuhat, ///
family(gaussian) link(log) vce(robust)
```

Stata Output

| BIRTHWTLB | Robust |  |  |  | [95\% Conf. Interval] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CIGSPREG | - . 0140086 | . 0034369 | -4.08 | 0.000 | -. 0207447 | -. 0072724 |
| PARITY | . 0166603 | . 0048853 | 3.41 | 0.001 | . 0070854 | . 0262353 |
| WHITE | . 0536269 | . 0117985 | 4.55 | 0.000 | . 0305023 | . 0767516 |
| MALE | . 0297938 | . 0088815 | 3.35 | 0.001 | . 0123864 | . 0472011 |
| xuhat | . 0097786 | . 0034545 | 2.83 | 0.005 | . 003008 | . 0165492 |
| cons | 1.948207 | . 0157445 | 123.74 | 0.000 | 1.917348 | 1.979066 |

## 2SRI Asymptotic Standard Errors -- Notes on Stata Implementation

-- MATA code for calculating the estimated asymptotic covariance matrix

$$
\hat{\mathbf{D}}^{*}=\left[\begin{array}{cc}
\hat{\mathbf{D}}_{11}^{*} & \hat{\mathbf{D}}_{12}^{*} \\
\hat{\mathbf{D}}_{12}^{* \prime} & \hat{\mathbf{D}}_{22}^{*}
\end{array}\right]
$$

where

$$
\begin{aligned}
& \hat{\mathbf{D}}_{11}^{*}=\widehat{\operatorname{AVAR}} *(\hat{\alpha}) \\
& \hat{\mathbf{D}}_{12}^{*}=-\widehat{\operatorname{AVAR}} *(\hat{\alpha}) \hat{\mathbf{E}} *\left[\nabla_{\beta \alpha} \mathbf{q}\right]^{\prime} \hat{\mathbf{E}} *\left[\nabla_{\beta \beta} \mathbf{q}\right]^{-1}
\end{aligned}
$$

and

$$
\begin{aligned}
\hat{\mathbf{D}}_{22}^{*}=\hat{\mathbf{E}} *\left[\nabla_{\beta \beta} \mathbf{q}\right]^{-1} \hat{\mathbf{E}} *\left[\nabla_{\beta \alpha} \mathbf{q}\right] \widehat{\mathbf{A V A R}} *(\hat{\alpha}) \hat{\mathbf{E}} *\left[\nabla_{\beta \alpha} \mathbf{q}\right]^{\prime} \hat{\mathbf{E}} * & {\left[\nabla_{\beta \beta} \mathbf{q}\right]^{-1} } \\
& +\widehat{\mathbf{A V A R}} *(\hat{\boldsymbol{\beta}})
\end{aligned}
$$

$\hat{\mathbf{E}} *\left[\nabla_{\beta \alpha} \mathbf{q}\right]=-\sum_{\mathrm{i}=1}^{\mathbf{n}} \hat{\boldsymbol{\beta}}_{\mathbf{u}} \exp \left(\mathrm{X}_{\mathbf{i}} \hat{\boldsymbol{\beta}}\right)^{\mathbf{2}} \exp \left(\mathbf{W}_{\mathbf{i}} \hat{\boldsymbol{\alpha}}\right) \mathbf{X}_{\mathbf{i}}{ }^{\prime} \mathbf{W}_{\mathbf{i}}$
$\hat{\mathbf{E}} *\left[\nabla_{\beta \beta} \mathbf{q}\right]=\sum_{\mathrm{i}=1}^{\mathrm{n}} \exp \left(\mathbf{X}_{\mathrm{i}} \hat{\boldsymbol{\beta}}\right)^{2} \mathbf{X}_{\mathbf{i}}^{\prime} \mathbf{X}_{\mathrm{i}}$

```
/**************************************************
** Use the Stata "putmata" command to send
** Stata data variables into Mata vectors.
**************************************************/
putmata CIGSPREG BIRTHWTLB PARITY WHITE MALE EDFATHER ///
    EDMOTHER FAMINCOM CIGTAX88 xuhat expwalpha
```



```
.
/**************************************************
** MATA Start-up. **
**************************************************/
mata:
.
.
.
/**************************************************
** Load the coefficient vector and covariance **
** matrix from second-stage GLM into MATA **
** matrices. **
**************************************************/
beta=st_matrix("e(b)")'
v2=st_matrix("e(V)")
.
.
.
```


## 2SRI Asymptotic Standard Errors -- Notes on Stata Implementation (cont'd)

```
/**************************************************
** Load the coefficient vector and covariance **
** matrix from second-stage GLM into MATA **
** matrices. **
**************************************************/
beta=st_matrix("e(b)")'
v2=st_matrix("e(V)")
*
```



```
/**************************************************
** Load the W-variables for the rhs of the **
** first stage GLM equation into a MATA matrix **
** -- don't include the policy variable or xuhat**
** -- do include the IVs.
** -- do include a constant term
**
**************************************************/
W=PARITY, WHITE, MALE, EDFATHER, EDMOTHER, FAMINCOM, ///
    CIGTAX88, J(rows(PARITY),1,1)
/**************************************************
** Load the X-variables for the rhs of the **
** second stage GLM equation into a MATA matrix**
** -- don't include the policy variable or the *
** IVs
**************************************************/
X=PARITY, WHITE, MALE, xuhat
```


## 2SRI Asymptotic Standard Errors -- Notes on Stata Implementation (cont'd)

```
/**************************************************
** Generate 2 matrices:
** X0 does not include the policy variable xp
** X1 does include the policy variable xp
** Appending a constant term to the end of each
** matrix.
**************************************************/
X0=X,J(rows(X),1,1)
X1=xp,X,J(rows(X),1,1)
/**************************************************
** Compute x1b1 multiplying the matrix **
** of exogenous variables (X1) by the **
** coefficient vectors. **
**************************************************/
x1b1=X1*beta
```


## /**********************************************

** Compute the asymptotic covariance matrix of
** the 2SRI estimates (See Appendix A).
**********************************************/
paMu=-bxu*exp(x1b1): *expwalpha:*W
pbMu=exp(x1b1):*x1
pbaq=pbMu'*paMu

$$
\hat{\mathbf{E}} *\left[\nabla_{\beta \alpha} \mathbf{q}\right]=-\sum_{\mathrm{i}=1}^{\mathrm{n}} \hat{\boldsymbol{\beta}}_{\mathrm{u}} \exp \left(\mathbf{X}_{\mathrm{i}} \hat{\boldsymbol{\beta}}\right)^{2} \exp \left(\mathbf{W}_{\mathrm{i}} \hat{\boldsymbol{\alpha}}\right) \mathbf{X}_{\mathrm{i}}^{\prime} \mathbf{W}_{\mathrm{i}}
$$

pbbq=pbMu' *pbMu

$$
\hat{\mathbf{E}} *\left[\nabla_{\beta \beta} \mathbf{q}\right]=\sum_{\mathrm{i}=1}^{\mathrm{n}} \exp \left(\mathbf{X}_{\mathrm{i}} \hat{\boldsymbol{\beta}}\right)^{2} \mathbf{X}_{\mathbf{i}}^{\prime} \mathbf{X}_{\mathbf{i}}
$$

2SRI Asymptotic Standard Errors -- Notes on Stata Implementation (cont'd)

D11=v1
$\hat{\mathbf{D}}_{11}^{*}=\widehat{\mathbf{A V A R}} *(\hat{\boldsymbol{\alpha}})$
D12=v1*pbaq'*invsym(pbbq)
$\hat{\mathbf{D}}_{12}^{*}=-\widehat{\mathbf{A V A R}} *(\hat{\boldsymbol{\alpha}}) \hat{\mathbf{E}} *\left[\nabla_{\beta \alpha} \mathbf{q}\right]^{\prime} \hat{\mathbf{E}} *\left[\nabla_{\beta \beta} \mathbf{q}\right]^{-1}$
D22 $=$ invsym(pbbq)*pbaq*v1*pbaq'* invsym(pbbq)+v2
$\hat{\mathbf{D}}_{22}^{*}=\hat{\mathbf{E}} *\left[\nabla_{\beta \beta} \mathbf{q}\right]^{-1} \hat{\mathbf{E}} *\left[\nabla_{\beta \alpha} \mathbf{q}\right] \widehat{\mathbf{A V A R}} *(\hat{\boldsymbol{\alpha}}) \hat{\mathbf{E}} *\left[\nabla_{\beta \alpha} \mathbf{q}\right]^{\prime} \hat{\mathbf{E}} *\left[\nabla_{\beta \beta} \mathbf{q}\right]^{-1}+\widehat{\mathbf{A V A R}} *(\hat{\boldsymbol{\beta}})$
D=D11, D12 \ D12', D22
$\hat{\mathbf{D}} *=\left[\begin{array}{ll}\hat{\mathbf{D}}_{11}^{*} & \hat{\mathbf{D}}_{12}^{*} \\ \hat{\mathbf{D}}_{12}^{* \prime} & \hat{\mathbf{D}}_{22}^{*}\end{array}\right]$

2SRI -- Notes on Stata Implementation: Results

|  | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | variable | estimate | t-stat | wrong-t-stat | $p$-value |
| 2 |  |  |  |  |  |
| 3 | CIGSPREG | -. 0140086 | -3.678995 | -4.07594 | . 0002342 |
| 4 | PARITY | . 0166603 | 3.180623 | 3.410309 | . 0014696 |
| 5 | WHITE | . 0536269 | 4.217293 | 4.545233 | . 0000247 |
| 6 | MALE | . 0297938 | 3.130267 | 3.3546 | . 0017465 |
| 7 | xuhat | . 0097786 | 2.557676 | 2.830723 | . 0105374 |
| 8 | constant | 1.948207 | 117.6448 | 123.7389 | 0 |

## Multi-Stage Causal Effect Estimators

-- Here the focus is on the evaluation of the anticipated or past effect of a specified policy on the value of an economic outcome of interest (Y) - the outcome.
-- The policy in question is typically defined in terms of a past or proposed change in a specified variable $\left(X_{p}\right)$ - the policy variable.
-- For example, consider the analysis of potential gains in infant birth weight (Y)
that may result from effective prenatal smoking prevention and cessation policy.
-- Here, $X_{p}$ represents smoking during pregnancy and the policy of interest, if fully
effective, would maintain zero levels of smoking for non-smokers (prevention) and convince smokers to quit before becoming pregnant (cessation).

## Multi-Stage Causal Effect Estimators: The Potential Outcomes Framework

-- For contexts in which the policy variable of interest ( $X_{p}$ ) is qualitative (binary),
Rubin (1974, 1977) developed the potential outcomes framework (POF) which facilitates clear definition and interpretation of various policy relevant treatment effects.
-- Terza (2014) extends the POF to encompass contexts in which $X_{p}$ is quantitative (discrete or continuous) and planned policy changes in $X_{p}$ are incremental or infinitesimal. See also Angrist and Pischke (2009), pp. 13-15 and 52-59.

Angrist and Pischke (2009), Mostly Harmless Econometrics, Princeton, N.J.: Princeton University Press
Terza, J.V. (2014): "Health Policy Analysis from a Potential Outcomes Perspective: Smoking During Pregnancy and Birth Weight," Unpublished manuscript, Department of Economics, Indiana University Purdue University Indianapolis.

## Multi-Stage Causal Effect Estimators: Review of the POF

-- Defining $\mathrm{Y}_{\mathrm{x}_{\mathrm{p}}^{*}}$ to be the random variable representing the distribution of potential
outcomes as they would manifest if the policy variable were exogenously mandated (ceteris paribus) to be $X_{p}^{*}$ - as in a fully effective policy intervention like the smoking and birthweight example described above.

## Multi-Stage Causal Effect Estimators: Review of the POF (cont'd)

-- Here we draw the distinction between $X_{p}$, the observable or factual version of the policy variable, and $X_{p}^{*}$, its unobservable (hypothetically mandated) or counterfactual version.
-- Likewise we use $Y$ to denote the observable version of the outcome, while $Y_{X_{p}^{*}}$ is the policy-relevant counterfactual.
-- Note that the symbols $X_{p}$ and $Y$ are doing notational double duty in that they are used as generic conceptual representations of the policy variable and outcome, respectively, and are also used denote their observable versions.

Multi-Stage Causal Effect Estimators: Review of the POF (cont'd)
--Clearly, the only measures of the effects of changes in the policy variable on the outcome that are policy relevant are those that are causally interpretable (CI).
-- We take as axiomatic that an effect measure is CI only if it is defined in terms of changes in the relevant potential outcome -- e.g., a change from $Y_{X_{p}^{\text {pre }}}$ to $Y_{X_{p}^{\text {post }}}$ that would be caused by a policy-induced exogenous change in $X_{p}$ from pre-policy to post policy (say from $X_{p}^{\text {pre }}$ to $X_{p}^{\text {post }}$ ).

## Multi-Stage Causal Effect Estimators: Review of the POF (cont'd)

-- This ensures that such a measure represents outcome effects that can be exclusively attributed to exogenously mandated (ceteris paribus) changes in the policy variable.
-- Without loss of generality we write $X_{p}^{p o s t}=X_{p}^{p r e}+\Delta$ ( $\Delta$ being the mandated policy change).

## Multi-Stage Causal Effect Estimators: Review of the POF (cont'd)

-- In generic terms, the estimation objective here is the difference between the distributions of $Y_{X_{p}}$ and $Y_{X_{p}^{\text {pre }}+\Delta}$ [or some particular aspect (parameter) thereof],
where $X_{p}^{p r e}$ and $X_{p}^{p r e}+\Delta$ represent well-defined and mandated pre- and postintervention versions of the policy variable, respectively.
-- For example, in a number of empirical policy analytic contexts, the following average incremental effect (AIE) is of interest

$$
\begin{equation*}
\operatorname{AIE}(\Delta)=\mathbf{E}\left[\mathbf{Y}_{\mathrm{X}_{\mathrm{p}}^{\mathrm{pre}}+\Delta}\right]-\mathbf{E}\left[\mathbf{Y}_{\mathrm{X}_{\mathrm{p}}} \mathrm{pre}\right] . \tag{5}
\end{equation*}
$$

-- Terza (2014) shows how the AIE and other counterfactual causal measures can be estimated using nonlinear regression methods and observable (factual) data.

Review of the POF: Back to the Example
-- In our birth weight/smoking example
-- $X_{p}^{\text {pre }}$ would denote the pre-policy prenatal smoking distribution
$-\Delta=-X_{p}^{\text {pre }}$ is the policy-induced change in prenatal smoking
-- $Y_{X_{p}}$ is the random variable representing the pre-policy distribution of birth
weights
-- $Y_{X_{p}^{\text {post }}}$ is the random variable representing the post-policy potential birth weight outcomes.
-- The relevant version of the AIE in this example is

$$
\begin{equation*}
\operatorname{AIE}(\Delta)=\mathbf{E}\left[\mathbf{Y}_{0}\right]-\mathbf{E}\left[\mathbf{Y}_{\mathbf{X}_{\mathrm{p}}^{\mathrm{pre}}}\right] . \tag{6}
\end{equation*}
$$

-- As this example demonstrates, in the general potential outcomes (PO) policy analytic framework, both $X_{p}^{\text {pre }}$ and $\Delta$ can be random variables.

## Multi-Stage Causal Effect Estimators: Review of the POF (cont'd)

-- Expression (5) is, in fact, quite general. For example, when the policy variable is
binary, if we set $X_{p}^{p r e}=0$ and $\Delta=1$ then (5) measures the average treatment effect
(ATE)

$$
\begin{equation*}
\mathrm{ATE}=\mathrm{E}\left[\mathrm{Y}_{1}\right]-\mathrm{E}\left[\mathrm{Y}_{0}\right] . \tag{7}
\end{equation*}
$$

-- Note that in this case $\Delta, X_{p}^{p r e}$ and $X_{p}^{p r e}+\Delta$, are all degenerate random variables.

Multi-Stage Causal Effect Estimators: Review of the POF (cont'd)
-- When the policy variable is continuous and no specific policy increment ( $\Delta$ ) has been defined (in which case it is typically assumed that $\Delta$ approaches 0 ), then the average marginal effect (AME) of an infinitesimal change in the policy variable is measured as

$$
\begin{equation*}
\mathrm{AME}=\lim _{\delta \rightarrow 0} \frac{\operatorname{AIE}(\delta)}{\delta} \tag{8}
\end{equation*}
$$

where $\operatorname{AIE}(\delta)$ is defined as in (5) and $\delta$ is a constant (a degenerate random variable).

## Multi-Stage Causal Effect Estimators: Review of the POF (cont'd)

-- The measures defined in (5), (7) and (8) are logical targets for health policy analysis.
-- Moreover, they are CI because they are PO-based.
-- Which of them is apropos a particular policy context will depend on the support
of the policy variable in question and whether or not the policy increment $(\Delta)$ is known.

Specification and Estimation AIE, ATE and AME via Regression Modeling
-- The expected potential outcome $\left(E\left[Y_{\mathrm{X}_{\mathrm{p}}^{*}}\right]\right.$ ), can be rewritten in a way that facilitates
the specification [estimation] of (5), (7) and (8) via nonlinear regression (NR) models [methods].

$$
\begin{equation*}
E\left[Y_{X_{p}^{*}}\right]=E_{X_{p}^{*}, X_{0}, X_{u}}\left[\mu\left(X_{p}^{*}, X_{0}, X_{u}, \tau\right)\right] \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mu\left(X_{p}, X_{0}, X_{u}, \tau\right)=E\left[Y \mid X_{p}, X_{0}, X_{u}\right] \\
& X_{o} \text { is a vector of observable confounders for } X_{p}
\end{aligned}
$$

and
$X_{u}$ is a scalar comprising all unobservable confounders for $X_{p}$.

Specification and Estimation AIE, ATE and AME via Regression Modeling (cont'd)
-- Using (9), the AIE, ATE and AME can be rewritten as:

$$
\begin{equation*}
\operatorname{AIE}(\Delta)=\mathbf{E}_{\mathbf{X}_{\mathrm{p}}^{\mathrm{pre}}+\Delta, \mathbf{X}_{0}, \mathbf{X}_{\mathrm{u}}}\left[\mu\left(\mathbf{X}_{\mathrm{p}}^{\mathrm{pre}}+\Delta, \mathbf{X}_{0}, \mathbf{X}_{\mathbf{u}}, \tau\right)\right]-\mathbf{E}_{\mathbf{X}_{\mathrm{p}}, \mathbf{X}_{0}, \mathbf{X}_{\mathrm{u}}}\left[\boldsymbol{\mu}\left(\mathbf{X}_{\mathrm{p}}^{\mathrm{pre}}, \mathbf{X}_{0}, \mathbf{X}_{\mathrm{u}}, \tau\right)\right] \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{ATE}=\mathbf{E}_{\mathbf{X}_{0}, \mathbf{X}_{u}}\left[\mu\left(1, \mathbf{X}_{0}, \mathbf{X}_{u}, \tau\right)\right]-\mathbf{E}_{\mathbf{X}_{0}, \mathbf{X}_{u}}\left[\mu\left(\mathbf{0}, \mathbf{X}_{0}, \mathbf{X}_{u}, \tau\right)\right] \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
=\mathbf{E}_{\mathbf{X}_{\mathbf{p}}^{\text {pre }}, \mathbf{X}_{0}, \mathbf{X}_{\mathrm{u}}}\left[\left.\frac{\partial \boldsymbol{\mu}\left(\mathbf{X}_{\mathbf{p}}^{*}, \mathbf{X}_{\mathbf{0}}, \mathbf{X}_{\mathbf{u}} ; \tau\right)}{\partial \mathbf{X}_{\mathbf{p}}^{*}}\right|_{\mathbf{X}_{\mathrm{p}}^{*}=\mathbf{X}_{\mathbf{p}}^{\text {pre }}}\right] . \tag{12}
\end{equation*}
$$

Specification and Estimation AIE, ATE and AME via Regression Modeling (cont'd)
-- Assuming that we have a consistent estimator for $\tau$ (say $\hat{\tau}$ ) and an appropriate observable proxy value for the unobservable $X_{u}\left[\operatorname{say} \hat{X}_{u}(W, \hat{\tau})\right.$-- note that we have already mentioned such a proxy in the context of 2SRI estimation, viz., the firststage residual], consistent estimators for (10), (11) and (12) are, respectively:

$$
\begin{equation*}
\widehat{\operatorname{AIE}(\Delta)}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{1}{\mathbf{n}}\left\{\mu\left(\mathrm{X}_{\mathrm{pi}}^{\mathrm{pre}}+\Delta_{\mathrm{i}}, \mathbf{X}_{\mathrm{oi}}, \hat{\mathbf{X}}_{\mathbf{u}}\left(\mathbf{W}_{\mathrm{i}}, \hat{\tau}\right) ; \hat{\tau}\right)-\mu\left(\mathrm{X}_{\mathrm{pi}}^{\mathrm{pre}}, \mathbf{X}_{\mathrm{oi}}, \hat{X}_{\mathbf{u}}\left(\mathbf{W}_{\mathrm{i}}, \hat{\tau}\right) ; \hat{\tau}\right)\right\} \tag{13}
\end{equation*}
$$

$\widehat{\operatorname{AIE}(\Delta)}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{1}{\mathbf{n}}\left\{\mu\left(1, X_{\mathbf{o i}}, \hat{X}_{u}\left(\mathbf{W}_{\mathrm{i}}, \hat{\tau}\right) ; \hat{\tau}\right)-\mu\left(0, X_{\mathrm{oi}}, \hat{X}_{u}\left(\mathbf{W}_{\mathrm{i}}, \hat{\tau}\right) ; \hat{\tau}\right)\right\}$

$$
\begin{equation*}
\widehat{A M E}=\left.\sum_{i=1}^{n} \frac{1}{n} \frac{\partial \mu\left(X_{p}^{*}, X_{o i}, \hat{X}_{u}\left(\mathbf{W}_{i}, \hat{\tau}\right) ; \hat{\tau}\right)}{\partial X_{p}^{*}}\right|_{X_{p}^{*}=X_{p i}^{p r e}} \tag{15}
\end{equation*}
$$

Asymptotic Properties of $\widehat{\operatorname{AIE}(\Delta)}, \widehat{\operatorname{AIE}(\Delta)}$ and $\widehat{\operatorname{AME}}$
-- We use the notation "PE" to denote the relevant policy effect [AIE, ATE or AME] and rewrite AIE, ATE and AME in generic form as

$$
\begin{equation*}
\widehat{\mathbf{P E}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\widehat{\mathbf{p e}}_{\mathrm{i}}}{\mathrm{n}} \tag{16}
\end{equation*}
$$

where $\widehat{p e}_{i}$ is shorthand notation for $\operatorname{pe}\left(X_{p i}^{p r e}, \Delta_{i}, X_{o i}, \hat{X}_{u}\left(W_{i}, \hat{\tau}\right), \hat{\tau}\right), \hat{\tau}$ is the consistent estimator of $\tau$ and

$$
\begin{aligned}
& \operatorname{pe}\left(X_{p}^{\text {pre }}, \Delta, X_{0}, X_{u}(\mathbf{W}, \delta), \tau\right)=\mu\left(X_{p}^{p r e}+\Delta, X_{0}, X_{u}(W, \tau), \tau\right) \\
& -\mu\left(X_{p}^{\text {pre }}, X_{0}, X_{u}(W, \tau), \tau\right) \quad \text { for (13) }
\end{aligned}
$$

Asymptotic Properties of $\widehat{\operatorname{AIE}(\Delta)}, \widehat{\operatorname{AIE}(\Delta)}$ and $\widehat{\operatorname{AME}}($ cont'd)

$$
\begin{aligned}
& \operatorname{pe}\left(X_{p}^{\text {pre }}, \Delta, X_{0}, X_{u}(W, \tau), \tau\right)=\mu\left(1, X_{0}, X_{u}(W, \tau) ; \tau\right) \\
&-\mu\left(0, X_{0}, X_{u}(W, \tau) ; \tau\right) \quad \text { for (14) } \\
& \operatorname{pe}\left(X_{p}^{\text {pre }}, \Delta, X_{0}, X_{u}(W, \tau), \tau\right)=\left.\frac{\partial \mu\left(X_{p}^{*}, X_{0}, X_{u}(W, \tau) ; \tau\right)}{\partial X_{p}^{*}}\right|_{X_{p}^{*}=X_{p}^{\text {pre }}} . \operatorname{for}(15)
\end{aligned}
$$

Asymptotic Properties of $\widehat{\operatorname{AIE}(\Delta)}, \widehat{\operatorname{AIE}(\Delta)}$ and $\widehat{\operatorname{AME}}$ (cont'd)
-- We can cast $[\hat{\tau} \widehat{\mathbf{P E}}]$ as a 2SOE:
-- First stage... consistent estimation of $\tau$ (e.g. via 2SRI).
-- Second stage... $\widehat{\text { PE }}$ itself is easily shown to be the optimizer of the following objective function

$$
\sum_{i=1}^{n} q\left(\hat{\tau}, P E, Z_{i}\right)
$$

where

$$
\mathbf{q}\left(\hat{\tau}, \mathbf{P E}, \mathbf{Z}_{\mathbf{i}}\right)=-\left(\widehat{\mathbf{p}}_{i}-\mathbf{P E}\right)^{2}
$$

$Z_{i}=\left[\begin{array}{lll}Y_{i} & X_{p i}^{p r e} & W_{i}\end{array}\right]$ and $\hat{\boldsymbol{\tau}}$ is the first-stage estimator of $\boldsymbol{\tau}$.

Asymptotic Properties of $\widehat{\operatorname{AIE}(\Delta)}, \widehat{\operatorname{AIE}(\Delta)}$ and $\widehat{\operatorname{AME}}($ cont'd)
-- Because we can cast $[\hat{\tau} \widehat{\mathbf{P E}}]$ as a 2SOE, we know that under general conditions

$$
\mathbf{D}^{-\frac{1}{2}} \sqrt{\mathbf{n}}\left(\left[\begin{array}{c}
\hat{\tau} \\
\widehat{\mathbf{P E}}
\end{array}\right]-\left[\begin{array}{c}
\tau \\
\mathbf{P E}
\end{array}\right]\right) \xrightarrow{\mathbf{d}} \mathbf{N}(\mathbf{0}, \mathbf{I}) .
$$

The practical version of the consistent estimator of the partition of $D$ that pertains
to $\widehat{\mathrm{PE}}$ is the following analog to (4):

$$
\begin{align*}
\hat{\mathbf{D}}_{22}^{*}=\hat{\mathbf{E}} *\left[\nabla_{\mathrm{PEPE}} \mathbf{q}\right]^{-1} \hat{\mathbf{E}} *\left[\nabla_{\mathrm{PE} \mathrm{\tau}} \mathbf{q}\right] \widehat{\mathbf{A V A R}} *(\hat{\tau}) \hat{\mathbf{E}} * & {\left[\nabla_{\text {PE }} \mathbf{q}\right] \cdot \hat{\mathbf{E}} *\left[\nabla_{\text {PEPE }} \mathbf{q}\right]^{-1} } \\
& +\widehat{\mathbf{A V A R}} *(\widehat{\mathbf{P E}}) \tag{17}
\end{align*}
$$

Asymptotic Properties of $\widehat{\operatorname{AIE}(\Delta)}, \widehat{\operatorname{AIE}(\Delta)}$ and $\widehat{\operatorname{AME}}($ cont'd)
where

$$
\begin{aligned}
& \hat{\mathbf{E}} *\left[\nabla_{\mathbf{P E P E}} \mathbf{q}\right]=\mathbf{n} \\
& \hat{\mathbf{E}} *\left[\nabla_{\mathbf{P E \tau}} \mathbf{q}\right]=\sum_{\mathbf{i}=1}^{\mathbf{n}} \nabla_{\tau} \widehat{\mathbf{p e}}
\end{aligned}
$$

$$
\nabla_{\tau} \widehat{\mathbf{p e}_{i}} \text { is shorthand notation for } \nabla_{\tau} \mathbf{p e}\left(X_{p}^{\text {pre }}, \Delta, X_{0}, X_{u}(W, \tau), \tau\right) \text { evaluated at }
$$

$$
\left[\begin{array}{lllll}
\mathrm{X}_{\mathrm{pi}}^{\mathrm{pre}} & \Delta_{\mathrm{i}} & \mathrm{X}_{\mathrm{oi}} & \hat{\mathbf{X}}_{\mathrm{u}}\left(\mathbf{W}_{\mathrm{i}}, \hat{\tau}\right) & \hat{\tau}
\end{array}\right]
$$

$$
\widehat{\operatorname{AVAR}} *(\widehat{\mathrm{PE}})=\sum_{i=1}^{\mathrm{n}}\left(\widehat{\mathrm{pe}} \mathrm{e}_{\mathrm{i}}-\widehat{\mathbf{P E}}\right)^{2}
$$

and $\widehat{\operatorname{AVAR}} *(\hat{\tau})$ is the correct estimator of the asymptotic covariance matrix of $\hat{\boldsymbol{\tau}}$.

Asymptotic Properties of $\widehat{\operatorname{AIE}(\Delta)}, \widehat{\operatorname{AIE}(\Delta)}$ and $\widehat{\operatorname{AME}}($ cont'd)
In summary, we rewrite (17) as

$$
\begin{equation*}
\hat{\mathbf{D}}_{22}^{*}=\frac{1}{\mathbf{n}^{2}}\left\{\left(\sum_{i=1}^{\mathrm{n}} \nabla_{\tau} \widehat{\mathbf{p e}_{i}}\right) \widehat{\mathbf{A V A R}} *(\hat{\tau})\left(\sum_{i=1}^{\mathrm{n}} \nabla_{\tau} \widehat{\mathbf{p e}_{i}}\right)^{\prime}+\sum_{i=1}^{\mathrm{n}}\left(\widehat{\mathbf{p e}}{ }_{\mathrm{i}}-\widehat{\mathbf{P E}}\right)^{2}\right\} \tag{18}
\end{equation*}
$$

-- So, for example, the " t -statistic" $(\widehat{\mathrm{PE}}-\mathrm{PE}) / \sqrt{\hat{\mathrm{D}}_{22}^{*}}$ is asymptotically standard normally distributed and can be used to test the hypothesis that $\mathrm{PE}=\mathrm{PE}^{\mathbf{0}}$ for $\mathrm{PE}^{\mathbf{0}}$, a given null value of PE.

## Example: AIE of Smoking During Pregnancy on Birthweight

-- The objective is to evaluate a policy that would bring smoking during pregnancy to zero.
-- Pre-policy version of the policy variable: $X_{p}^{\text {pre }}=X_{p}$
-- Post-policy version of the policy variable: $X_{p}^{\text {post }}=X_{p}+\Delta$ where $\Delta=-X_{p}$
-- AIE estimator is the version of (16) in which

$$
\begin{aligned}
\operatorname{pe}\left(X_{p}^{\text {pre }}, \Delta,\right. & \left.X_{0}, X_{u}(\mathbf{W}, \tau), \tau\right) \\
& =\exp \left(\left[X_{p}+\Delta\right] \beta_{p}+X_{o} \beta_{0}+X_{u} \beta_{u}\right)-\exp \left(X_{p} \beta_{p}+X_{0} \beta_{0}+X_{u} \beta_{u}\right)
\end{aligned}
$$

where

$$
X_{u}=X_{p}-\exp (\mathbf{W} \alpha)
$$

and $\tau=\left[\begin{array}{ll}\alpha^{\prime} & \beta^{\prime}\end{array}\right]^{\prime}$.

## AIE of Smoking on Birthweight - Asymptotic Standard Error

-- The estimator of the correct asymptotic variance estimator of $\widehat{\mathbf{P E}}$ is the version of
(18) with

$$
\nabla_{\tau} \text { pe }=\left[\begin{array}{llll}
\nabla_{d} & \text { pe } & \nabla_{\beta_{\mathrm{p}}} \text { pe } & \nabla_{\beta_{0}} \text { pe }
\end{array} \nabla_{\boldsymbol{\beta}_{0}} \text { pe }\right]
$$

and $\nabla_{\mathrm{a}}$ pe as shorthand notation for $\nabla_{\mathrm{a}} \mathrm{pe}\left(\mathrm{X}_{\mathrm{p}}^{\mathrm{pre}}, \Delta, \mathrm{X}_{0}, \mathrm{X}_{\mathrm{u}}(\mathrm{W}, \tau), \tau\right)$

$$
\left[\mathrm{a}=\alpha, \beta_{\mathrm{p}}, \boldsymbol{\beta}_{\mathrm{o}} \text { or } \boldsymbol{\beta}_{\mathrm{u}}\right]
$$

-- Similarly, we use $\nabla_{a} \widehat{p e}_{i}$ as shorthand notation for $\nabla_{a}$ pe evaluated at

$$
\left[\begin{array}{lllll}
\mathbf{X}_{\mathrm{pi}}^{\mathrm{pre}} & \Delta_{\mathrm{i}} & \mathbf{X}_{\mathrm{oi}} & \hat{X}_{\mathrm{u}}\left(\mathbf{W}_{\mathrm{i}}, \hat{\tau}\right) & \hat{\tau}
\end{array}\right]
$$

AIE of Smoking on Birthweight - Asymptotic Standard Error
-- In this example we have

$$
\begin{aligned}
& \nabla_{\alpha} \widehat{\mathbf{p e}}_{i}=-\exp \left(\mathbf{W}_{\mathrm{i}} \hat{\alpha}\right) \hat{\boldsymbol{\beta}}_{\mathrm{u}}\left[\operatorname { e x p } \left(\left[\mathbf{X}_{\mathrm{pi}}+\Delta_{\mathrm{i}} \mid \hat{\boldsymbol{\beta}}_{\mathrm{p}}+\mathbf{X}_{\mathbf{o i}} \hat{\boldsymbol{\beta}}_{\mathbf{o}}+\hat{\mathbf{X}}_{\mathrm{ui}} \hat{\boldsymbol{\beta}}_{\mathrm{u}}\right)\right.\right. \\
&\left.-\exp \left(\mathbf{X}_{\mathrm{pi}} \hat{\boldsymbol{\beta}}_{\mathrm{p}}+\mathbf{X}_{\mathbf{o i}} \hat{\boldsymbol{\beta}}_{\mathbf{o}}+\hat{\mathbf{X}}_{\mathrm{ui}} \hat{\boldsymbol{\beta}}_{\mathbf{u}}\right)\right] \mathbf{W}_{\mathrm{i}}
\end{aligned}
$$

$$
\begin{aligned}
\nabla_{\beta_{\mathrm{p}}} \widehat{\mathrm{pe}}_{\mathrm{i}}=\exp \left(\left[\mathbf{X}_{\mathrm{pi}}+\Delta_{\mathrm{i}} \mid \hat{\boldsymbol{\beta}}_{\mathrm{p}}+\mathbf{X}_{\mathrm{oi}} \hat{\boldsymbol{\beta}}_{\mathbf{o}}+\hat{\mathbf{X}}_{\mathrm{ui}}\right.\right. & \left.\hat{\boldsymbol{\beta}}_{\mathrm{u}}\right)\left[\mathbf{X}_{\mathrm{pi}}+\Delta_{\mathrm{i}}\right] \\
& -\exp \left(\mathbf{X}_{\mathrm{pi}} \hat{\boldsymbol{\beta}}_{\mathrm{p}}+\mathbf{X}_{\mathrm{oi}} \hat{\boldsymbol{\beta}}_{\mathbf{o}}+\hat{\mathbf{X}}_{\mathrm{ui}} \hat{\boldsymbol{\beta}}_{\mathbf{u}}\right) \mathbf{X}_{\mathrm{pi}}
\end{aligned}
$$

$$
\nabla_{\beta_{0}} \widehat{\mathbf{p}}_{i}=\left[\exp \left(\left[\mathbf{X}_{\mathrm{pi}}+\Delta_{\mathrm{i}} \mathbf{l} \hat{\boldsymbol{\beta}}_{\mathrm{p}}+\mathbf{X}_{\mathrm{oi}} \hat{\boldsymbol{\beta}}_{\mathbf{o}}+\hat{\mathbf{X}}_{\mathrm{ui}} \hat{\boldsymbol{\beta}}_{\mathbf{u}}\right)-\exp \left(\mathbf{X}_{\mathrm{pi}} \hat{\boldsymbol{\beta}}_{\mathrm{p}}+\mathbf{X}_{\mathrm{oi}} \hat{\boldsymbol{\beta}}_{\mathbf{o}}+\hat{\mathbf{X}}_{\mathrm{ui}} \hat{\boldsymbol{\beta}}_{\mathbf{u}}\right)\right] \mathbf{X}_{\mathbf{o i}}\right.
$$

$$
\left.\nabla_{\boldsymbol{\beta}_{\mathrm{u}}} \widehat{\mathbf{p e}}_{\mathrm{i}}=\left[\exp \left(\left[\mathbf{X}_{\mathrm{pi}}+\Delta_{\mathrm{i}}\right)\right] \hat{\boldsymbol{\beta}}_{\mathrm{p}}+\mathbf{X}_{\mathbf{o i}} \hat{\boldsymbol{\beta}}_{\mathbf{o}}+\hat{\mathbf{X}}_{\mathrm{ui}} \hat{\boldsymbol{\beta}}_{\mathbf{u}}\right)-\exp \left(\mathbf{X}_{\mathrm{pi}} \hat{\boldsymbol{\beta}}_{\mathrm{p}}+\mathbf{X}_{\mathrm{oi}} \hat{\boldsymbol{\beta}}_{\mathbf{o}}+\hat{\mathbf{X}}_{\mathrm{u}} \hat{\boldsymbol{\beta}}_{\mathbf{u}}\right)\right] \hat{\mathbf{X}}_{\mathrm{ui}}
$$

where $\hat{X}_{u i}=X_{p i}-\exp \left(\mathbf{W}_{\mathrm{i}} \hat{\alpha}\right)$

## AIE of Smoking on Birthweight: MATA Code for AIE Estimate

```
/*************************************************
** Compute the estimated average incremental
** effect (the policy effect) for each
** individual in the sample.
************************************************/
pei=exp(x1incb1):-exp(x1b1)
pe( ( }\mp@subsup{\textrm{p}}{\textrm{pre}}{,},\Delta,\mp@subsup{X}{0}{\prime},\mp@subsup{X}{u}{\prime}(W,\tau),\tau
    = exp([[\mp@subsup{X}{p}{}+\Delta]\mp@subsup{\beta}{p}{}+\mp@subsup{X}{0}{}\mp@subsup{\beta}{0}{}+\mp@subsup{X}{u}{}\mp@subsup{\beta}{u}{})-\operatorname{exp}(\mp@subsup{X}{p}{}\mp@subsup{\beta}{p}{}+\mp@subsup{X}{0}{}\mp@subsup{\beta}{0}{}+\mp@subsup{X}{u}{}\mp@subsup{\beta}{u}{})
/*************************************************
** Compute the AIE.
**
*************************************************/
pe=mean (pei)
\[
\widehat{\mathbf{P E}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\widehat{\mathbf{p e}}_{\mathrm{i}}}{\mathrm{n}}
\]
```


## AIE of Smoking on Birthweight: MATA Code for Requisite Gradient Components

```
/*************************************************
** Construct the gradient component of the asy
** variance of the AIE that pertains to alpha.
*************************************************/
palfa=-expwalpha:*bxu:*pei:*W
\[
\begin{aligned}
\nabla_{\alpha} \widehat{\mathbf{p e}}_{\mathrm{i}}=-\exp \left(\mathbf{W}_{\mathrm{i}} \hat{\boldsymbol{\alpha}}\right) \hat{\boldsymbol{\beta}}_{\mathrm{u}}\left[\operatorname { e x p } \left(\left[\mathbf{X}_{\mathrm{pi}}+\Delta_{\mathrm{i}} \mid \hat{\boldsymbol{\beta}}_{\mathrm{p}}\right.\right.\right. & \left.+\mathbf{X}_{\mathbf{o i}} \hat{\boldsymbol{\beta}}_{\mathbf{o}}+\hat{\mathbf{X}}_{\mathrm{ui}} \hat{\boldsymbol{\beta}}_{\mathbf{u}}\right) \\
& \left.-\exp \left(\mathbf{X}_{\mathrm{pi}} \hat{\boldsymbol{\beta}}_{\mathrm{p}}+\mathbf{X}_{\mathrm{oi}} \hat{\boldsymbol{\beta}}_{\mathbf{o}}+\hat{\mathbf{X}}_{\mathrm{ui}} \hat{\boldsymbol{\beta}}_{\mathbf{u}}\right)\right] \mathbf{W}_{\mathrm{i}}
\end{aligned}
\]
```


## 

** Construct the gradient component of the asy **
** variance of the AIE that pertains to betap.
*********************************************/
pbetap=exp(x1incb1): *xpinc:-exp(x1b1):*xp

$$
\begin{aligned}
& \nabla_{\beta_{\mathrm{p}}} \widehat{\mathbf{p e}}_{\mathrm{i}}=\exp \left(\left[\mathbf{X}_{\mathrm{pi}}+\Delta_{\mathrm{i}} \mid \hat{\boldsymbol{\beta}}_{\mathrm{p}}+\mathbf{X}_{\mathrm{oi}} \hat{\boldsymbol{\beta}}_{\mathbf{o}}+\hat{\mathbf{X}}_{\mathrm{ui}} \hat{\boldsymbol{\beta}}_{\mathrm{u}}\right)\left[\mathbf{X}_{\mathrm{pi}}+\Delta_{\mathrm{i}}\right]\right. \\
&-\exp \left(\mathbf{X}_{\mathrm{pi}} \hat{\boldsymbol{\beta}}_{\mathrm{p}}+\mathbf{X}_{\mathbf{o i}} \hat{\boldsymbol{\beta}}_{\mathbf{o}}+\hat{X}_{\mathrm{ui}} \hat{\boldsymbol{\beta}}_{\mathrm{u}}\right) \mathbf{X}_{\mathrm{pi}}
\end{aligned}
$$

## AIE of Smoking on Birthweight: MATA Code for Requisite Gradient Components

## (cont'd)

```
/*************************************************
** Construct the gradient component of the asy
** variance of the AIE that pertains to betao **
** and betau. *
* NOTE THAT XO INCLUDES XUHAT. * *
*************************************************
pbetao=pei:*X0
```



```
< [\mp@subsup{\mathbf{X}}{0i}{}\mp@subsup{\hat{X}}{ui}{}}
```

AIE of Smoking on Birthweight: MATA Code for the Estimated Asymptotic

## Covariance Matrix

```
/*************************************************
** Sum and concatenate to construct the full **
** gradient component of the asy variance of the**
** AIE.
*************************************************/
ppe=colsum(palfa),colsum(pbetap),colsum(pbetao)
/*************************************************
** Compute the estimated asymptotic variance of **
** the AIE.
*************************************************/
varpe=(1:/n^2):*(ppe*D*ppe':+sum((pei:-pe):^2))
```



```
4 LINES OF CODE TO CALCULATE THE CORRECT ASY VARIANCE
ESTIMATE FOR THE AIE ESTIMATOR
```

Results for Smoking and Birthweight Model
GLM Exponential Condition Mean NLS Regression
1
2
34
5

| 1 | variable | estimate | t-stat | wrong-t-stat | $p$-value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 |  |  |  |  |  |
| 3 | CIGSPREG | -. 0140086 | -3.678995 | -4.07594 | . 0002342 |
| 4 | PARITY | . 0166603 | 3.180623 | 3.410309 | . 0014696 |
| 5 | WHITE | . 0536269 | 4.217293 | 4.545233 | . 0000247 |
| 6 | MALE | . 0297938 | 3.130267 | 3.3546 | . 0017465 |
| 7 | xuhat | . 0097786 | 2.557676 | 2.830723 | . 0105374 |
| 8 | constant | 1.948207 | 117.6448 | 123.7389 | 0 |

AIE of Eliminating Smoking During Pregnancy
12

| 1 |  | \%smoke-decr | incr-effect | std-err | t-stat | p-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 |  |  |  |  |  |  |
| 3 | 2SRI-correct | 100 | . 2300237 | . 0726222 | 3.167401 | . 0015381 |
| 4 | c-delta-meth | 100 | . 2300237 | . 0703486 | 3.269771 | . 0010763 |
| 5 | 2SRI-wrong | 100 | . 2300237 | . 0661442 | 3.47761 | . 0005059 |
| 6 | w-delta-meth | 100 | . 2300237 | . 0636395 | 3.614479 | . 000301 |

