Gustavo Sanchez

Senior Econometrician StataCorp LP

Mexico City, Mexico

Outline

Outline

- Applications, concepts and components
- Examples
 - Mediation Model
 - Measurement Models
 - SEM Model
 - Other Models

Outline

Outline

- Applications, concepts and components
- Examples
 - Mediation Model
 - Measurement Models
 - SEM Model
 - Other Models

Outline

Outline

- Applications, concepts and components
- Examples
 - Mediation Model
 - Measurement Models
 - SEM Model
 - Other Models

- Structural Equation Models: Applications, Concepts and Components
 - Applications

SEM: Applications

- Psychology (e.g. Behavioral analysis, depression)
- Sociology (e.g. Social network, work environment)
- Marketing (e.g. Consumer satisfaction, new products development)
- Academic research (e.g. Analysis of learning abilities)
- Medicine (e.g. Sleep disorders, population health services)
- And more

L Structural Equation Models: Applications, Concepts and Components

Applications

SEM: Applications

• Example: Path diagram for a SEM model

- L Structural Equation Models: Applications, Concepts and Components
 - Applications

SEM: Applications

Models

- Linear regression
- ANOVA
- Multivariate regression
- Simultaneous equation models
- Path analysis
- Simultaneous equation models
- Mediation analysis
- Confirmatory factor analysis
- Reliability estimation
- Full structural equations models
- Multiple indicators and multiple causes (MIMIC)
- Latent growth curve
- Multiple group models

- Structural Equation Models: Applications, Concepts and Components
 - Concepts

SEM: Concepts: SEM

- "Structural equation modeling was developed by geneticists (Wright 1921) and economists (Haavelmo 1943; Koopmans 1950, 1953) so that qualitative cause-effect information could be combined with statistical data to provide quantitative assessment of cause-effect relationships among variables of interest" Pearl (2000).
- "SEM is a class of statistical techniques used for estimating and testing hypotheses on causal relationships among a set of associated variables"
- "A significant number of models can be expressed as particular cases of structural equation models."

- L Structural Equation Models: Applications, Concepts and Components
 - Concepts

SEM: Concepts: SEM

- "Structural equation modeling was developed by geneticists (Wright 1921) and economists (Haavelmo 1943; Koopmans 1950, 1953) so that qualitative cause-effect information could be combined with statistical data to provide quantitative assessment of cause-effect relationships among variables of interest" Pearl (2000).
- "SEM is a class of statistical techniques used for estimating and testing hypotheses on causal relationships among a set of associated variables"
- "A significant number of models can be expressed as particular cases of structural equation models."

- L Structural Equation Models: Applications, Concepts and Components
 - Concepts

SEM: Concepts: SEM

- "Structural equation modeling was developed by geneticists (Wright 1921) and economists (Haavelmo 1943; Koopmans 1950, 1953) so that qualitative cause-effect information could be combined with statistical data to provide quantitative assessment of cause-effect relationships among variables of interest" Pearl (2000).
- "SEM is a class of statistical techniques used for estimating and testing hypotheses on causal relationships among a set of associated variables"
- "A significant number of models can be expressed as particular cases of structural equation models."

- L Structural Equation Models: Applications, Concepts and Components
 - Concepts and components

SEM: Concepts and components: Types of variables

Observed and Latent

- "A variable is observed if it is a variable in your dataset"
- "A variable is **latent** if it is not observed. It is not in your dataset but you wish it were"
- Errors are a special case of latent variables

Exogenous and Endogenous

- "A variable, observed or latent, is **exogenous** (determined outside the system) if paths only originate from it (no path points to it)"
- "A variable, observed or latent, is **endogenous** (determined by the system) if any path points to it."

- L Structural Equation Models: Applications, Concepts and Components
 - Concepts and components

SEM: Concepts and components: Types of variables

Observed and Latent

- "A variable is observed if it is a variable in your dataset"
- "A variable is **latent** if it is not observed. It is not in your dataset but you wish it were"
- Errors are a special case of latent variables

Exogenous and Endogenous

- "A variable, observed or latent, is **exogenous** (determined outside the system) if paths only originate from it (no path points to it)"
- "A variable, observed or latent, is **endogenous** (determined by the system) if any path points to it."

- L Structural Equation Models: Applications, Concepts and Components
 - Concepts and components

SEM: Concepts and components: Types of variables

Observed and Latent

- "A variable is observed if it is a variable in your dataset"
- "A variable is **latent** if it is not observed. It is not in your dataset but you wish it were"
- Errors are a special case of latent variables

Exogenous and Endogenous

- "A variable, observed or latent, is **exogenous** (determined outside the system) if paths only originate from it (no path points to it)"
- "A variable, observed or latent, is **endogenous** (determined by the system) if any path points to it."

- Structural Equation Models: Applications, Concepts and Components
 - Concepts and components

SEM: Concepts and components: Path diagrams

- A Path diagram is a graphical representation of the model
 - Boxes contain observed variables
 - Ovals contain latent variables
 - Circles contain the equation errors
 - Straight arrows represent effects from one variable to another
 - Curved arrows indicate correlation between a pair of variables

- . sem (income lag_consumption -> consumption) ///
 > (income -> investment) ///
- > cov(e.investment*e.consumption)

- Structural Equation Models: Applications, Concepts and Components
 - Concepts and components

SEM: Concepts and components: Path diagrams

- A Path diagram is a graphical representation of the model
 - Boxes contain observed variables.
 - Ovals contain latent variables
 - Circles contain the equation errors
 - Straight arrows represent effects from one variable to another
 - Curved arrows indicate correlation between a pair of variables

- . sem (income lag_consumption -> consumption) 111 111
- (income -> investment). >
- cov(e.investment*e.consumption) >

Structural Equation Models: Applications, Concepts and Components

Concepts and components

```
. sem (income lag_consumption -> consumption) (income -> investment), ///
> cov(e.investment*e.consumption) nolog nodescribe
(1 observations with missing values excluded)
Structural equation model Number of obs = 91
Estimation method = ml
Log likelihood = -1932.0358
```

	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Interval]
Structural						
consumption <-	0444577	0444040	7 60	0 000	0540700	4000454
income	.3414577	.0444842	7.68	0.000	.2542703	.4286451
lag_consumption	.6026804	.0531652	11.34	0.000	.4984785	.7068823
_cons	13.01908	2.511575	5.18	0.000	8.096479	17.94167
investment <-						
income	.2959361	.0058258	50.80	0.000	.2845177	.3073544
_cons	71.16166	8.916877	7.98	0.000	53.6849	88.63842
var(e.consumption)	108.4106	16.07291			81.07234	144.9674
var(e.investment)	1480.696	219.512			1107.327	1979.957
cov(e.consumption.						
e.investment)	30.54975	42.37582	0.72	0.471	-52.50532	113.6048
LR test of model vs	. saturated:	chi2(1) =	: 1.	11, Prob	> chi2 = 0.29	25
G	istavo Sanchez (StataCorp)	November	13. 2014		9 / 33

L Structural Equation Models: Applications, Concepts and Components

Concepts and components

. estat gof

Fit statistic	Value	Description	
Likelihood ratio			
chi2_ms(1)	1.108	model vs. saturated	
p > chi2	0.293		
chi2_bs(5)	1042.569	baseline vs. saturated	
p > chi2	0.000		

. estat eqgof

Equation-level goodness of fit

depvars	fitted	Variance predicted	residual	R-squared	mc	mc2
observed consumption investment	342915.7 43467.46	342807.3 41986.77	108.4106 1480.696	.9996839 .9659355	.9998419 .9828202	.9996839 .9659355
overall				.999688		

mc = correlation between depvar and its prediction

mc2 = mc^2 is the Bentler-Raykov squared multiple correlation coefficient

- Examples
 - Mediation model

- The explanatory variables may have a direct effect on the outcome and also an indirect effect that is transmitted by a mediator variable
- The traditional mediation analysis was based on a series of linear regressions with no correlated errors (Baron and Kenny (1986))
- With SEM we can fit one simultaneous equation model and get estimates for the indirect and total effects
- The model can be incorporated as part of a larger model

- Examples
 - Mediation model

- The explanatory variables may have a direct effect on the outcome and also an indirect effect that is transmitted by a mediator variable
- The traditional mediation analysis was based on a series of linear regressions with no correlated errors (Baron and Kenny (1986))
- With SEM we can fit one simultaneous equation model and get estimates for the indirect and total effects
- The model can be incorporated as part of a larger model

- Examples
 - Mediation model

- The explanatory variables may have a direct effect on the outcome and also an indirect effect that is transmitted by a mediator variable
- The traditional mediation analysis was based on a series of linear regressions with no correlated errors (Baron and Kenny (1986))
- With SEM we can fit one simultaneous equation model and get estimates for the indirect and total effects
- The model can be incorporated as part of a larger model

- Examples
 - Mediation model

- The explanatory variables may have a direct effect on the outcome and also an indirect effect that is transmitted by a mediator variable
- The traditional mediation analysis was based on a series of linear regressions with no correlated errors (Baron and Kenny (1986))
- With SEM we can fit one simultaneous equation model and get estimates for the indirect and total effects
- The model can be incorporated as part of a larger model

- Examples
 - Mediation model

Example 1: Mediation models

- Example from Alan Acock (2013)
- The researcher wants to analyze whether children with better span skills at four have advantages in their academic development for math at a later age

Variables

- attention4: span of attention at 4
- math7: performance on math at 7
- read7: performance on reading at 7
- math21: performance on math at 21

sem (math7 <- attention4) (read7 <- attention4) (math21 <- attention4 math7 read7)

- Examples
 - Mediation model

Example 1: Mediation models

- Example from Alan Acock (2013)
- The researcher wants to analyze whether children with better span skills at four have advantages in their academic development for math at a later age

Variables

- attention4: span of attention at 4
- math7: performance on math at 7
- read7: performance on reading at 7
- math21: performance on math at 21

. sem (math7 <- attention4) (read7 <- attention4) (math21 <- attention4 math7 read7)

- Examples
 - └ Mediation model

. sem (math7 <- attention4) (read7 <- attention4) (math21 <- attention4 math7 read7), ///

> nolog noheader nodescribe

(92 observations with missing values excluded)

	Coef.	OIM Std. Err.	z	P> z	[95% Conf	. Interval]
Structural						
math7 <-						
attention4	.1129353	.0493128	2.29	0.022	.016284	.2095865
_cons	8.719295	.899051	9.70	0.000	6.957187	10.4814
read7 <-						
attention4	.3024263	.1441203	2.10	0.036	.0199556	.5848969
_cons	26.41214	2.627544	10.05	0.000	21.26225	31.56204
math21 <-						
math7	.2938502	.0475641	6.18	0.000	.2006263	.3870741
read7	.0825399	.0162747	5.07	0.000	.0506421	.1144378
attention4	.0813543	.0421041	1.93	0.053	0011683	.1638769
_cons	3.987873	.9165827	4.35	0.000	2.191404	5.784342
var(e.math7)	7.841701	.6032078			6.744244	9.117743
var(e.read7)	66.97947	5.152267			57.6056	77.87871
var(e.math21)	5.58987	.42999			4.80756	6.499482
LR test of mod	lel vs. satura	ated: chi2(1) =	23.72,	Prob > chi2 =	= 0.0000

- L Examples
 - L Mediation model

. estat teffects, compact nodirect

Indirect effects

	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Interval]
Structural math21 <- attention4	.0581483	.0197686	2.94	0.003	.0194026	.096894

Total effects

	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Interval]
Structural						
math/ <- attention4	.1129353	.0493128	2.29	0.022	.016284	.2095865
read7 <-						
attention4	.3024263	.1441203	2.10	0.036	.0199556	.5848969
math21 <-						
math7	.2938502	.0475641	6.18	0.000	.2006263	.3870741
read7	.0825399	.0162747	5.07	0.000	.0506421	.1144378
attention4	.1395026	.045661	3.06	0.002	.0500086	.2289966
	Gustavo San	chez (StataCorp	Nov	ember 13, 2	2014	14

14 / 33

- Examples
 - └── Measurement models one factor

- The researcher is interested in a latent variable (e.g. Consumer satisfaction, verbal abilities, alienation)
- The model specifies the relation between latent variables and measured indicator variables
- Modification indices are normally used to refine the model
- The model can also be incorporated as part of a larger model

- Examples
 - └── Measurement models one factor

- The researcher is interested in a latent variable (e.g. Consumer satisfaction, verbal abilities, alienation)
- The model specifies the relation between latent variables and measured indicator variables
- Modification indices are normally used to refine the model
- The model can also be incorporated as part of a larger model

- Examples
 - └── Measurement models one factor

- The researcher is interested in a latent variable (e.g. Consumer satisfaction, verbal abilities, alienation)
- The model specifies the relation between latent variables and measured indicator variables
- Modification indices are normally used to refine the model
- The model can also be incorporated as part of a larger model

- Examples
 - └── Measurement models one factor

- The researcher is interested in a latent variable (e.g. Consumer satisfaction, verbal abilities, alienation)
- The model specifies the relation between latent variables and measured indicator variables
- Modification indices are normally used to refine the model
- The model can also be incorporated as part of a larger model

- Examples
 - └── Measurement models one factor

Example 2: Measurement model - one factor

• Example with Holzinger and Swineford (1939) Data

The researcher wants to analyze the verbal ability based on indices associated to tests on word classification, sentence completion and paragraph comprehension

Variables:

Verbal:	latent variable for verbal ability
wordc:	scores on word classification test
sentence:	scores on sentence completion test
paragraph:	scores on paragraph comprehension test
general:	scores on general information test

- L Examples
 - └── Measurement models one factor

. sem (Verbal -> wordc sentence paragraph general)

	Coof	UIM Std Err	-	DN 171	[Q5% Conf	Intorvall
		Stu. EII.	2	F / 21	[35% COIII.	Incervarj
Measurement						
wordc <-						
Verbal	1	(constraine	d)			
_cons	26.12625	.3265833	80.00	0.000	25.48615	26.76634
sentence <-						
Verbal	1.080072	.0698177	15.47	0.000	.9432322	1.216912
_cons	17.36213	.2970317	58.45	0.000	16.77995	17.9443
paragraph <-						
Verbal	.6603575	.0471812	14.00	0.000	.5678841	.7528309
_cons	9.182724	.200961	45.69	0.000	8.788848	9.576601
general <-						
Verbal	2.351367	.1645309	14.29	0.000	2.028892	2.673842
_cons	40.59136	.7124269	56.98	0.000	39.19503	41.98769
var(e.wordc)	13.8878	1.336773			11.50008	16.77127
var(e.sentence)	5.306741	.813477			3.92958	7.166542
var(e.paragr~h)	4.21255	.4386365			3.43489	5.166273
<pre>var(e.general)</pre>	52.05898	5.597825			42.16646	64.27234
var(Verbal)	18.21586	2.46415			13.97345	23.7463

November 13, 2014

Gustavo Sanchez (StataCorp)

- L Examples
 - └── Measurement models one factor

•	sem	(Verbal	->	wordc	sentence	paragraph	general)	,	standardize
---	-----	---------	----	-------	----------	-----------	----------	---	-------------

Standardized	Coef.	OIM Std. Err.	Z	P> z	[95% Conf.	Interval]
Measurement						
wordc <-						
Verbal	.7532647	.0289445	26.02	0.000	.6965345	.8099949
_cons	4.611049	.1965727	23.46	0.000	4.225774	4.996324
sentence <-						
Verbal	.8945235	.0185182	48.31	0.000	.8582284	.9308185
_cons	3.369123	.1489219	22.62	0.000	3.077242	3.661005
paragraph <-						
Verbal	.8083679	.0243277	33.23	0.000	.7606865	.8560492
_cons	2.633762	.1218401	21.62	0.000	2.39496	2.872565
general <-						
Verbal	.811936	.0245424	33.08	0.000	.7638338	.8600382
_cons	3.284053	.1457311	22.54	0.000	2.998425	3.56968
var(e.wordc)	.4325923	.0436058			.3550395	.5270852
var(e.sentence)	.1998278	.03313			.1443886	.2765533
var(e.paragr~h)	.3465414	.0393314			.2774255	.4328764
var(e.general)	.34076	.0398537			.2709543	.4285496
var(Verbal)	1					•

- L Examples
 - └─ Measurement models one factor

. sem (Verbal -> wordc sentence paragraph general), standardize nomeans

Standardized	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Interval]
Measurement wordc <- Verbal	7532647	0289445	26.02	0.000	6965345	8099949
Verbai	.1002041	.0209440	20.02	0.000	.0303343	.0033343
sentence <-						
Verbal	.8945235	.0185182	48.31	0.000	.8582284	.9308185
naragraph <-						
Verbal	.8083679	.0243277	33.23	0.000	.7606865	.8560492
general <-						
Verbal	.811936	.0245424	33.08	0.000	.7638338	.8600382
var(e.wordc)	.4325923	.0436058			.3550395	.5270852
var(e.sentence)	.1998278	.03313			.1443886	.2765533
var(e.paragr~h)	.3465414	.0393314			.2774255	.4328764
var(e.general)	.34076	.0398537			.2709543	.4285496
var(Verbal)	1	•			•	

- Examples
 - └── Measurement models two factors

- Holzinger and Swineford (1939) Data
- Variables
 - Verbal: latent variable for verbal ability
 - wordc: scores on word classification test
 - sentence: scores on sentence completion test
 - paragraph: scores on paragraph comprehension test
 - general: scores on general information test
 - **Memory**: latent variable for Memory condition
 - wordr: scores on word recognition test
 - number: scores on number recognition test
 - figurer: scores on figurer recognition test
 - **object**: scores on object-number test

- Examples
 - └── Measurement models two factors

- Holzinger and Swineford (1939) Data
- Variables
 - Verbal: latent variable for verbal ability
 - wordc: scores on word classification test
 - sentence: scores on sentence completion test
 - paragraph: scores on paragraph comprehension test
 - general: scores on general information test
 - Memory: latent variable for Memory condition
 - wordr: scores on word recognition test
 - number: scores on number recognition test
 - figurer: scores on figurer recognition test
 - object: scores on object-number test

. sem (Verbal	-> wordc sentence paragraph general)	///	
> (Memory	-> wordr numberr figurer objectn), standardize	///	
> cov(Mem	ory*Verbal) nomeans noheader nocnsreport nolog		
Endogenous var	riables		
Measurement:	wordc sentence paragraph general wordr numberr i	figurer	objectn
Exogenous vari	ables		
Latent:	Verbal Memory		

Standardized	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Interval]
Measurement wordc <-						
Verbal	.7558212	.0287657	26.28	0.000	.6994414	.812201
sentence <- Verbal	. 890738	.0186103	47.86	0.000	.8542625	.9272136
paragraph <- Verbal	.8118064	.0241118	33.67	0.000	.7645481	.8590646
general <- Verbal	.8114395	.02443	33.21	0.000	.7635576	.8593214
	1					

wordr <-	697023	0530879	13 13	0.000	5929727	8010734
	.001020	.0000010	10.10	0.000	.0525121	.0010754
numberr <-						
Memory	.5658826	.0555916	10.18	0.000	.456925	.6748401
figurer <-						
Memory	.5741969	.0559689	10.26	0.000	.4645	.6838939
objectn <-						
Memory	.4994731	.0575943	8.67	0.000	.3865904	.6123558
var(e.wordc)	.4287343	.0434835			.3514445	.5230216
<pre>var(e.sentence)</pre>	.2065857	.0331538			.1508327	.282947
var(e.paragraph)	.3409704	.0391482			.2722618	.4270185
var(e.general)	.3415659	.0396469			.2720646	.4288219
<pre>var(e.wordr)</pre>	.5141589	.074007			.3877726	.681738
<pre>var(e.numberr)</pre>	.6797769	.0629166			.5670007	.8149843
<pre>var(e.figurer)</pre>	.6702979	.0642743			.5554524	.8088889
<pre>var(e.objectn)</pre>	.7505266	.0575336			.6458253	.8722022
var(Verbal)	1					
var(Memory)	1	•				
ov(Verbal,Memory)	.2579165	.0705776	3.65	0.000	.1195869	.3962461

Gustavo Sanchez (StataCorp)

. estat mindices

Modification indices

	мі	df	P>MI	EPC	Standard EPC
Measurement					
sentence <-					
Memory	5.272	1	0.02	064809	1007062
paragraph <-					
Memory	6.152	1	0.01	.0518729	.1191386
numberr <-					
Verbal	8.098	1	0.00	3086542	1712958
figurer <-					
Verbal	5.759	1	0.02	.2570111	.144435
cov(e.wordc,e.paragraph)	4.056	1	0.04	-1.228282	1626198
cov(e.wordc.e.figurer)	9.964	1	0.00	4.905813	.2119483
cov(e.sentence,e.numberr)	4.560	1	0.03	-2.528942	1697062

EPC = expected parameter change

Examples

 Based on estat mindices, let's add figurer and numberr to the equation for verbal, and also cov(e.wordc*e.paragraph): (but we should first check the theoretical framework)

sem (Verbal -> wordc sentence paragraph general figurer numberr) ///
 (Memory -> wordr numberr figurer objectn), standardize nocnsreport ///
 nolog nomeans cov(Memory*Verbal) noheader cov(e.wordc*e.paragraph)

 Compare the chi2_ms before and after adding the suggestions from estat mindices:

. estat gof /* Before adding suggestions from estat mindices */

Fit statistic	Value	Description
Likelihood ratio chi2_ms(19) p > chi2		model vs. saturated

. estat gof /* After adding suggestions from estat mindices */

Fit statistic	Value	Description
Likelihood ratio chi2_ms(16) p > chi2		model vs. saturated

Examples

 Based on estat mindices, let's add figurer and numberr to the equation for verbal, and also cov(e.wordc*e.paragraph): (but we should first check the theoretical framework)

sem (Verbal -> wordc sentence paragraph general figurer numberr) ///
 (Memory -> wordr numberr figurer objectn), standardize nocnsreport ///
 nolog nomeans cov(Memory*Verbal) noheader cov(e.wordc*e.paragraph)

 Compare the chi2_ms before and after adding the suggestions from estat mindices:

Fit statistic	Value	Description
Likelihood ratio chi2_ms(19) p > chi2	41.132 0.002	model vs. saturated

. estat gof /* Before adding suggestions from estat mindices */

. estat gof /* After adding suggestions from estat mindices */

Fit statistic	Value	Description
Likelihood ratio chi2_ms(16) p > chi2		model vs. saturated

Examples

 Based on estat mindices, let's add figurer and numberr to the equation for verbal, and also cov(e.wordc*e.paragraph): (but we should first check the theoretical framework)

sem (Verbal -> wordc sentence paragraph general figurer numberr) ///
 (Memory -> wordr numberr figurer objectn), standardize nocnsreport ///
 nolog nomeans cov(Memory*Verbal) noheader cov(e.wordc*e.paragraph)

 Compare the chi2_ms before and after adding the suggestions from estat mindices:

. es	stat	gof /	*	Before	adding	suggestions	from	estat	mindices	*/	
------	------	-------	---	--------	--------	-------------	------	-------	----------	----	--

Fit statistic	Value	Description
Likelihood ratio chi2_ms(19) p > chi2	41.132 0.002	model vs. saturated

. estat gof /* After adding suggestions from estat mindices */

Fit statistic	Value	Description		
Likelihood ratio chi2_ms(16) p > chi2	25.107 0.068	model vs. saturated		

- Examples
 - └── Structural equation model

Example 3: Structural equation model

- The model Integrates two components
 - A structural component that specifies the relationship among the latent variables
 - A measurement component that specifies the relationship between the latent variables and the corresponding indicators
- Modification indices are normally used to refine the model
- The model can incorporate causal relationships among the latent variables

- Examples
 - └── Structural equation model

Example 3: Structural equation model

- The model Integrates two components
 - A structural component that specifies the relationship among the latent variables
 - A measurement component that specifies the relationship between the latent variables and the corresponding indicators
- Modification indices are normally used to refine the model
- The model can incorporate causal relationships among the latent variables

- Examples
 - L Structural equation model

Introduction to structural equation modeling using the sem command

- Examples
 - └─ Structural equation model

Example 3: Structural equation model (Fictitious data)

- Examples
 - └ Other models

Example 4: Dynamic Factor

• Unobserved (factor) effect on unemployment in four different regions

use http://www.stata-press.com/data/r13/urate,clear dfactor (D.(west south ne midwest) = ,) (Unemp_factor =) sem (D.(west south ne midwest) <- Unemp_factor),var(Unemp_factor@1)</pre>

- Examples
 - └ Other models

Example 5: VAR model

VAR model for consumption and investment with income as an exogenous variable

cov(e.dlinvestment*e.dlconsumption)

Summary

Summary

- Applications, Concepts and components
- Examples
 - Mediation Model
 - Measurement Model
 - SEM Model
 - Other Models
- What is next?
 - Generalization (gsem)
 - Extensions for nonlinear models
 - Multilevel models and more

Summary

Summary

- Applications, Concepts and components
- Examples
 - Mediation Model
 - Measurement Model
 - SEM Model
 - Other Models
- What is next?
 - Generalization (gsem)
 - Extensions for nonlinear models
 - Multilevel models and more

References

References

Acock, Alan 2013. Discovering structural equation modeling using Stata. Stata Press

Holzinger, K. J. and F. Swineford, 1939. A study in factor analysis: The stability of a bi-factor solution. Supplementary Education Monographs, 48. Chicago, IL: University of Chicago.

Haavelmo, T. 1943. The statistical implications of a system of simultaneous equations. Econometrica 11 (1), 1—12.

Koopmans, T. C. 1950. When is an Equation System Complete for Statistical Purposes? (in Statistical Inference in Dynamic Economic Models, T. C. Koopmans (ed.), Cowles Commission Monograph 10, Wiley, New York, 1950, pp. 393—409) pp. 527—537

Koopmans, T.C. 1953 Identification Problems in Economic Model Construction (in Studies in Econometric Method, Cowles Commission Monograph 14), New Haven, Yale University Press

Pearl J. 2000 Causality: Models, Reasoning, and Inference. Cambridge University Press.

Wright, Sewall S. 1921. Correlation and causation. Journal of Agricultural Research 20: 557—85.

L References

Questions - Comments