
Stata 16 — Under the Hood
Bill Rising

StataCorp LLC

2019 Italian Stata Users Group Meeting
26 September 2019

Firenze

Contents
1 Introduction1 Introduction 1

1.1 Goals1.1 Goals . 1

2 Frames2 Frames 2
2.1 Basic Frames2.1 Basic Frames . 2
2.2 Linking Frames2.2 Linking Frames . 3
2.3 Copying, Putting, and Posting2.3 Copying, Putting, and Posting . 10
2.4 Side Gains from Frames2.4 Side Gains from Frames . 11

3 Report Generation Additions3 Report Generation Additions 11
3.1 Report Generation Additions3.1 Report Generation Additions . 11

4 Conclusion4 Conclusion 15
4.1 Conclusion4.1 Conclusion . 15

1 Introduction
1.1 Goals
Goals

• Learn the basics of the frames feature in Stata 16

• See what is new in report generation, aka dynamic documents

Methods

• For frames, it will be easy to demonstrate commands and capture their output

• For the dynamic documents, demonstrating commands is fine, but the output are documents, so the presentation
will become much less definite

• We’ll be working in a series of folders which correspond to each of the topics

� If you copied the italy19_rising.zip folder and expanded the files
? Make the resulting folder your working directory

� The examples here will work relative to that directory

2 Frames
2.1 Basic Frames
Frames in Stata 16

• Frames were introduced in Stata 16

• At their simplest, they are a way to have multiple datasets open at once

• They are also something which acts like merge

� But they can save space

• Lastly, there are some things which get sped up because of frames

Basics of Frames

• Think of a frame as a place to hold data

� The data can be in a dataset or simply in the frame

• Each frame has an internal Stata name

� The first frame, which exists when you start Stata, is called default, by default

Starting Simple: Frames for Multiple Datasets

• First, go to the frames folder
. cd frames

• Open a dataset
. use visit_info

• Create a second frame
. frame create patients

• Open another dataset in that other frame
. frame patients: use patient_info

Glancing at the Datasets

• Open the data editor, to see the dataset
. edit

• Switch back and forth between frames via cwf

. cwf patients

• Or switch back and forth using frame change

. frame change default

• Or switch back and forth using the frames dialog
. db frames

Stata 16 — Under the Hood © StataCorp LLC Page 2 of 1616

Changing Frame Names

• The default frame has a forgetable name in our case

� it forces us to remember which dataset has this special status

• We can change the name of the default frame name to something more informative

. frame rename default visits

• We can then look at what frames we have

. frame dir

patients 4 x 4; patient_info.dta
visits 9 x 5; visit_info.dta

� The numbers given are observations × variables
� Or if you prefer rows × columns

2.2 Linking Frames
Linking Datasets Using Frames

• It would make sense to combine the information in the visit_info and patient_info datasets

� This is normally a task for the merge command

• Instead of using merge, you can link together datasets in frames

� This can be good for very long datasets
� It has some other advantages (and disadvantages)

How to Link

• The possible link types are 1:1 and m:1

� There is fine; the 1:m really is not needed because all that need be done is to switch the active frame

• In this example there can be multiple visits per patient, so we need to have the visits frame active

. cwf visits

• Now we can link on patid

. frlink m:1 patid, frame(patients)

(3 observations in frame visits unmatched)

Stata 16 — Under the Hood © StataCorp LLC Page 3 of 1616

Upshot of Linking

• A new variable gets created in the dataset in the active frame

� By default, this is named after the frame which was linked

• You can tell indirectly which observations matched up in the active frame

� Those which matched have non-missing values for the linking variable
� Those which did not match up with data in the linked dataset have missing variables for the linking variable

• You cannot tell which observations did not match in the linked frame

� This is similar to having _merge values of 1 and 2 only

Using Variables from a Linked Frame

• The frval() function allows you to use values from a variable in the linked frame without actually copying the
variable into the current frame

� Which saves space if the active frame is long

• We could list all the visits from the female patients

. list patid-doctor if frval(patients,gender)=="Female"

+---+
patid visitdt illness insura~e doctor

1. | 9 05oct2015 Cold HDHP |
3. | 1 20oct2015 Pneu . |
7. | 9 29dec2015 Flu . |
9. | 9 23feb2016 Sore Throat HMO Smith |

+---+

• This function can be used in any exp anywhere

. gen ins_diff = insurance!=frval(patients,insurance)

� This shows where the insurance differs in the two datasets
. list patid visitdt insurance if ins_diff

+------------------------------+
patid visitdt insura~e

1. | 9 05oct2015 HDHP |
3. | 1 20oct2015 . |
4. | 25 12nov2015 PPO |
5. | 4 15nov2015 . |
6. | 25 30nov2015 PPO |

|------------------------------|
7. | 9 29dec2015 . |
8. | 616 18jan2016 HMO |

+------------------------------+

Stata 16 — Under the Hood © StataCorp LLC Page 4 of 1616

Adding Variables from a Linked Frame

• You can bring over variables from a linked dataset
. frget birthdate, from(patients)

(3 missing values generated)
(1 variable copied from linked frame)

• frget copies the data as well as all metadata from the linked variable

• This is similar to
. merge m:1 patid using patient_info, keepusing(birthdate)

� As it turns out, linking has better behavior for value labels, as we will see

• This is good for computing age
. do genage

. gen age = year(visitdt) - year(birthdate) ///
> - (31*month(visitdt)+day(visitdt) ///
> < 31*month(birthdate)+day(birthdate))
(3 missing values generated)

.
end of do-file

• Here are the ages
. list patid visitdt birthdate age

+-------------------------------------+
patid visitdt birthdate age

1. | 9 05oct2015 15jun1987 28 |
2. | 4 19oct2015 28may1998 17 |
3. | 1 20oct2015 18nov2003 11 |
4. | 25 12nov2015 . . |
5. | 4 15nov2015 28may1998 17 |

|-------------------------------------|
6. | 25 30nov2015 . . |
7. | 9 29dec2015 15jun1987 28 |
8. | 616 18jan2016 . . |
9. | 9 23feb2016 15jun1987 28 |

+-------------------------------------+

Adding a Variable Whose Name Exists

• If you want to bring over a variable whose name matches one of the variable names in the active frame

� You can generate a new variable with a different name
. frget pat_insurance = insurance, from(patients)

(3 missing values generated)
(1 variable copied from linked frame)

� You can use a prefix or a suffix
. frget insurance, from(patients) prefix(another_)

(3 missing values generated)
(1 variable copied from linked frame)

� If you don’t try to change the conflicting name, you will get an error

Stata 16 — Under the Hood © StataCorp LLC Page 5 of 1616

Good Value Label Behavior

• If the variable you bring over has a value label

� If the value label does not exist in the active frame, the value label comes over
� If the value label exists in the activer frame and the definitions match, then nothing need be done
� If the value label exists in the activer frame and the definitions do not match, then the brought-over value
label gets renamed

? This is better behavior than with merge, which simply issues a warning

Running Commands in Another Frame

• In this example, the value label instype exists in both datasets

• It would be good to look at the definitions

• We would like to do this without having to switch back and forth between frames

� In the visits frame, which is active
. label list instype

instype:
1 HDHP
2 HMO
3 PPO

� In the patients dataset
. frame patients: label list instype

instype:
1 HDHP
2 HMO
3 PPO

� Ignoring that the visits frame is active
. frame visits: label list instype

instype:
1 HDHP
2 HMO
3 PPO

• In any case, we can see that the value labels are all defined well

Opening a Dataset with Conflicts

• Suppose our patient_info dataset were not quite so nice

• The patient_ohno dataset fits this bill

� We will want to link to this

• Let’s look at it the frames way

• First create a frame

. frame create ohno

• Now open up the dataset in that frame

Stata 16 — Under the Hood © StataCorp LLC Page 6 of 1616

. frame ohno: use patient_ohno

• And look at it

. frame ohno: codebook

--
id Personal ID
--

type: numeric (byte)

range: [1,16] units: 1
unique values: 4 missing .: 0/4

tabulation: Freq. Value
1 1
1 4
1 9
1 16

--
birthdate Patient Birth Date
--

type: numeric daily date (int)

range: [8028,16027] units: 1
or equivalently: [24dec1981,18nov2003] units: days

unique values: 4 missing .: 0/4

tabulation: Freq. Value
1 8028 24dec1981
1 10027 15jun1987
1 14027 28may1998
1 16027 18nov2003

--
gender Patient Gender
--

type: string (str6)

unique values: 2 missing "": 0/4

tabulation: Freq. Value
2 "Female"
2 "Male"

--
insurance Insurance Type
--

type: numeric (long)
label: instype

range: [1,2] units: 1
unique values: 2 missing .: 0/4

tabulation: Freq. Numeric Label

Stata 16 — Under the Hood © StataCorp LLC Page 7 of 1616

2 1 HMO
2 2 PPO

Things to Note

• The patid is now called just id

• The insurance variable is encoded differently, but still has the instype value label

� This would be a big problem when using merge, update

Linking to Dataset with Differing Key Names

• We can still use frlink to link to a dataset where the key variables have different names

� Key: variable list which identifies individual variables in one dataset

• To do this, we must specify the keyvarlist in the frame() option

. frlink m:1 patid, frame(ohno id)

(3 observations in frame visits unmatched)

Avoiding A Dangerous Data Error

• Just to drive home the point, check that the instype value labels differ

� First in the active frame
. label list instype

instype:
1 HDHP
2 HMO
3 PPO

� Now in the linked dataset
. frame ohno: label list instype

instype:
1 HMO
2 PPO
3 HDHP

• Try to bring in the insurance variable from the ohno frame

. frget insurance, from(ohno) prefix(ohno_)

(3 missing values generated)
(1 variable copied from linked frame)

• Look at the value labels

. label list

Stata 16 — Under the Hood © StataCorp LLC Page 8 of 1616

instype1:
1 HMO
2 PPO
3 HDHP

instype:
1 HDHP
2 HMO
3 PPO

• Stata renamed the value label from frget to avoid a data error!

� This is better behavior than in merge

Notes about Linking

• You can use frget to grab many variables from the linked dataset

frget varlist . . .

• You could grab all but some variables by using the exclude() option

frget _all, exclude(notthisvarlist)

• This is like using the keepusing() option in merge except that it allows excluding instead of just including variables

Static Linking Requires Care

• Changing the key in the active frame is dangerous!

• Here is such a dangerous change

. replace patid = 9 if patid == 4 & visitdt==mdy(10,19,2015)

(1 real change made)

• Now go and get the gender variable

. frget gender, from(patients)

(3 missing values generated)
(1 variable copied from linked frame)

• Because the linking is static, you can get odd results

. tabulate patid gender

Personal | Patient Gender
ID | Female Male | Total

-----------+----------------------+----------
1 | 1 0 | 1
4 | 0 1 | 1
9 | 3 1 | 4

-----------+----------------------+----------
Total | 4 2 | 6

Stata 16 — Under the Hood © StataCorp LLC Page 9 of 1616

Rebuilding Links

• If you are unsure of the state of the links, you should rebuild them

. frlink rebuild patients

rebuilding variable patients; executing
--
-> frlink m:1 patid, frame(patients)

(3 observations in frame visits unmatched)
--
variable patients successfully rebuilt

• Now go and grab the gender variable again

. drop gender

. frget gender, from(patients)

(3 missing values generated)
(1 variable copied from linked frame)

• Now there are no problems

. tabulate patid gender

Personal | Patient Gender
ID | Female Male | Total

-----------+----------------------+----------
1 | 1 0 | 1
4 | 0 1 | 1
9 | 4 0 | 4

-----------+----------------------+----------
Total | 5 1 | 6

Clearing out

• The equivalent to clear for frames is

. clear frames

� This gets rid all data and frames and changes the active frame name to default:
. frames dir

default 0 x 0

� frames reset is a synonym

• In case you wondered, clear all runs a clear frames

2.3 Copying, Putting, and Posting
Frames as Holding Areas

• You can also use frames for holding data

� In this case, they are something of a substitute for temporary files
� They are also faster, especially in networked environments

• frput will copy data to another frame

Stata 16 — Under the Hood © StataCorp LLC Page 10 of 1616

� The opposite of frget

• frcopy will copy an entire frame to another frame

� It will also create the frame to use the copy, making it a nice manual preserve

• frame post can be used to post observations

� Similar to post, but without tmp files

2.4 Side Gains from Frames
preserve and Frames

• The preserve command now uses frames for preserving in Stata/MP

� This happens for files under 1GB by default
� The maximum size can be changed using set max_preservemem

• This speeds up commands which use preserve heavily

� grexample for looking at graph examples

• This is especially useful when on a network where temporary files end up being stored on a server, instead of locally

Linking Many Datasets

• You can have up to 100 frames at once

• This means you can link together 100 datasets if need be

• This could be useful in very wide datasets

3 Report Generation Additions
3.1 Report Generation Additions
Report Generation Additions

• The report generation (aka dynamic document) tools have been extended

• dyndoc now has a docx option which produces a docx document directly from markdown

• putdocx has many additions for headers and footers, as well as a way to make narrative easier to use

• html2docx converts web pages (html) to Microsoft Word compatible documents (docx)

• docx2pdf converts docx files to pdf files

• There are a few other additions; these are the ones we’ll look at

Stata 16 — Under the Hood © StataCorp LLC Page 11 of 1616

Getting Started

• We’ll start with the docx option for dyndocx

• Let’s move to the proper location
. cd ../dyndoc

Looking at a dyndoc file

• Take a look at the paper.md file
. doedit paper.md

• This is an example markdown file using Stata’s dynamic tags

� You can see that Stata 16 now has syntax highlighting for markdown
� The md extension is what alerted the Do-file Editor to use this highlighting
� You can change the language being highlighted

• Note that the dyndoc version has changed to 2

Making an html file

• As in Stata 15, this can be turned into a webpage
. dyndoc paper.md

� The output is not shown, because it would include all the output needed to make the html file

• We can click on the link to open the page

Converting to docx

• We could then convert this to a docx file
. html2docx paper.html, saving(paper_conv.docx)

• Clicking the link will open the docx file in Microsoft Word

• The resulting file needs some fixing up, but we’ll do this later

Going Directly from Markdown to docx

• We could get the same result by using the new docx option for dyndoc
. dyndoc paper.md, docx

� Again, the output is not shown

• This will look exactly like the preceding example, because in the background, Stata is running plain dyndoc then
running html2docx

• Generally, this worked well

� There is some wrapping of Stata output, however
� This is not present here, but there are other html-only things, like special characters, which might need cleaning
up

Stata 16 — Under the Hood © StataCorp LLC Page 12 of 1616

Tidying Up Wrapping

• Doing this conversion is nice, but it sometimes needs some tidying up due to wrapping

� The font size of 10pt for the fixed-width font allows 77 characters per line for letter size paper with standard
one-inch margins

� If your Stata window is wide, commands like describe and codebook will draw dashed line the entire width
of the your window

• There are a few things which can help

� Use a set linesize command to set the linesize to 90 or less
� Change the margins in the resulting docx document
� Make a style sheet (css) for the document and «dd_include» the style sheet

? See the first example in the dyndoc PDF documentation

Working With putdocx

• The files for putdocx are in the putdocx folder
. cd ../putdocx

• First take a look at how putdocx looked in Stata 15
. doedit putdocx15.do

• You can see here that there is no narrative mode

� Everything is a Stata command

• You also cannot put Stata code into the document without repeating it

� Once as simple text in a fixed-width font
� Once as code that gets run

Making the docx Document

• Doing the do-file will make a docx document
. do putdocx15.do

• On the Mac, you can open the resulting file from the Command window
. ! open putdocx15.docx

New putdocx Features in Stata 16

• Stata 16 allows headers and footers

• Headers and footers can change through the document with sections

• Headers and footers can work across appending files

• There is now something like a narrative mode

• Open up putdocx16.do to see these
. doedit putdocx16.do

Stata 16 — Under the Hood © StataCorp LLC Page 13 of 1616

Headers and Footers to Start

• They get constructed in a couple of steps

• Here are the steps for a footer

� Use putdocx begin, footer(name) to name the footer
� Use putdocx paragraph, tofooter(name)
� Then add to the paragraph

? Using tables is good for multi-piece footers

• For headers, simply use header in place of footer above

Headers and Footer Changes

• When sections change, you can change the header and/or footer

• Simply use putdocx sectionbreak in place of putdocx begin from above

Narrative Mode

• While putdocx is mostly all Stata command as before, there are now text blocks:

� putdocx textblock begin starts a new paragraph which is simply text
� putdocx textblock append appends to the current paragraph
� putdocx textblock end ends a text block
� putdocx textfile allows inserting a file as a text block

• These should make documents with a lot of plain narrative (i.e. most documents) much easier to work with

Making the docx Document

• Doing the do-file will make a docx document

. do putdocx16.do

• Open the resulting file from the Command window

. ! open putdocx16.docx

Other Changes

• While these are most of the changes, there have also been a few changes to

� markdown, which goes from markdown to html without processing Stata code
� putexcel had 2 syntax changes

? putexcel close has become putexcel save
? putexcel has changed picture() to image()
? Of course, version conrol will protect your Stata 15.1 and earlier do-files!

Stata 16 — Under the Hood © StataCorp LLC Page 14 of 1616

4 Conclusion
4.1 Conclusion
Conclusion

• Frames are something brand new in Stata 16

• The dynamic document (aka report) generation has had some nice additions

Stata 16 — Under the Hood © StataCorp LLC Page 15 of 1616

Index
C
clear frames command, see frames reset command
codebook command, 66
computing ages, 44
cwf command, see frame change command

D
dynamic documents, see report generation
dyndoc command, 1111–1313

F
frame change command, 22
frame create command, 22
frame dir command, 22
frame post command, 1010
frame rename command, 22
frames, 11–1111

commands in non-active frames, 22, 66
differing value label definitions, 88
linking, 33–1010
different key variables, 88
rebuilding links, 99, 1010

preserve command behavior, 1111
frames dir command, 1010
frames reset command, 1010
frcopy command, 1010
frget command, 44, 55, 88, 99
frlink command, 33, 88
frput command, 1010
frval() function, 44

H
html2docx command, 1212

M
merge command, 44

P
preserve command, 1111
putdocx command, 1313

headers and footers, 1414
putdocx narrative mode, see putdocx textblock com-

mand
putdocx sectionbreak command, 1414
putdocx textblock command, 1414

R
report generation, 1111–1414

V
value labels, 55

	Introduction
	Goals

	Frames
	Basic Frames
	Linking Frames
	Copying, Putting, and Posting
	Side Gains from Frames

	Report Generation Additions
	Report Generation Additions

	Conclusion
	Conclusion

