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1 Introduction
1.1 Goals
Goals

• Learn the basics of the frames feature in Stata 16

• See what is new in report generation, aka dynamic documents

Methods

• For frames, it will be easy to demonstrate commands and capture their output

• For the dynamic documents, demonstrating commands is fine, but the output are documents, so the presentation
will become much less definite

• We’ll be working in a series of folders which correspond to each of the topics

� If you copied the italy19_rising.zip folder and expanded the files
? Make the resulting folder your working directory

� The examples here will work relative to that directory



2 Frames
2.1 Basic Frames
Frames in Stata 16

• Frames were introduced in Stata 16

• At their simplest, they are a way to have multiple datasets open at once

• They are also something which acts like merge

� But they can save space

• Lastly, there are some things which get sped up because of frames

Basics of Frames

• Think of a frame as a place to hold data

� The data can be in a dataset or simply in the frame

• Each frame has an internal Stata name

� The first frame, which exists when you start Stata, is called default, by default

Starting Simple: Frames for Multiple Datasets

• First, go to the frames folder
. cd frames

• Open a dataset
. use visit_info

• Create a second frame
. frame create patients

• Open another dataset in that other frame
. frame patients: use patient_info

Glancing at the Datasets

• Open the data editor, to see the dataset
. edit

• Switch back and forth between frames via cwf

. cwf patients

• Or switch back and forth using frame change

. frame change default

• Or switch back and forth using the frames dialog
. db frames
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Changing Frame Names

• The default frame has a forgetable name in our case

� it forces us to remember which dataset has this special status

• We can change the name of the default frame name to something more informative

. frame rename default visits

• We can then look at what frames we have

. frame dir

patients 4 x 4; patient_info.dta
visits 9 x 5; visit_info.dta

� The numbers given are observations × variables
� Or if you prefer rows × columns

2.2 Linking Frames
Linking Datasets Using Frames

• It would make sense to combine the information in the visit_info and patient_info datasets

� This is normally a task for the merge command

• Instead of using merge, you can link together datasets in frames

� This can be good for very long datasets
� It has some other advantages (and disadvantages)

How to Link

• The possible link types are 1:1 and m:1

� There is fine; the 1:m really is not needed because all that need be done is to switch the active frame

• In this example there can be multiple visits per patient, so we need to have the visits frame active

. cwf visits

• Now we can link on patid

. frlink m:1 patid, frame(patients)

(3 observations in frame visits unmatched)
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Upshot of Linking

• A new variable gets created in the dataset in the active frame

� By default, this is named after the frame which was linked

• You can tell indirectly which observations matched up in the active frame

� Those which matched have non-missing values for the linking variable
� Those which did not match up with data in the linked dataset have missing variables for the linking variable

• You cannot tell which observations did not match in the linked frame

� This is similar to having _merge values of 1 and 2 only

Using Variables from a Linked Frame

• The frval() function allows you to use values from a variable in the linked frame without actually copying the
variable into the current frame

� Which saves space if the active frame is long

• We could list all the visits from the female patients

. list patid-doctor if frval(patients,gender)=="Female"

+-----------------------------------------------------+
| patid visitdt illness insura~e doctor |
|-----------------------------------------------------|

1. | 9 05oct2015 Cold HDHP |
3. | 1 20oct2015 Pneu . |
7. | 9 29dec2015 Flu . |
9. | 9 23feb2016 Sore Throat HMO Smith |

+-----------------------------------------------------+

• This function can be used in any exp anywhere

. gen ins_diff = insurance!=frval(patients,insurance)

� This shows where the insurance differs in the two datasets
. list patid visitdt insurance if ins_diff

+------------------------------+
| patid visitdt insura~e |
|------------------------------|

1. | 9 05oct2015 HDHP |
3. | 1 20oct2015 . |
4. | 25 12nov2015 PPO |
5. | 4 15nov2015 . |
6. | 25 30nov2015 PPO |

|------------------------------|
7. | 9 29dec2015 . |
8. | 616 18jan2016 HMO |

+------------------------------+
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Adding Variables from a Linked Frame

• You can bring over variables from a linked dataset
. frget birthdate, from(patients)

(3 missing values generated)
(1 variable copied from linked frame)

• frget copies the data as well as all metadata from the linked variable

• This is similar to
. merge m:1 patid using patient_info, keepusing(birthdate)

� As it turns out, linking has better behavior for value labels, as we will see

• This is good for computing age
. do genage

. gen age = year(visitdt) - year(birthdate) ///
> - (31*month(visitdt)+day(visitdt) ///
> < 31*month(birthdate)+day(birthdate))
(3 missing values generated)

.
end of do-file

• Here are the ages
. list patid visitdt birthdate age

+-------------------------------------+
| patid visitdt birthdate age |
|-------------------------------------|

1. | 9 05oct2015 15jun1987 28 |
2. | 4 19oct2015 28may1998 17 |
3. | 1 20oct2015 18nov2003 11 |
4. | 25 12nov2015 . . |
5. | 4 15nov2015 28may1998 17 |

|-------------------------------------|
6. | 25 30nov2015 . . |
7. | 9 29dec2015 15jun1987 28 |
8. | 616 18jan2016 . . |
9. | 9 23feb2016 15jun1987 28 |

+-------------------------------------+

Adding a Variable Whose Name Exists

• If you want to bring over a variable whose name matches one of the variable names in the active frame

� You can generate a new variable with a different name
. frget pat_insurance = insurance, from(patients)

(3 missing values generated)
(1 variable copied from linked frame)

� You can use a prefix or a suffix
. frget insurance, from(patients) prefix(another_)

(3 missing values generated)
(1 variable copied from linked frame)

� If you don’t try to change the conflicting name, you will get an error

Stata 16 — Under the Hood © StataCorp LLC Page 5 of 1616



Good Value Label Behavior

• If the variable you bring over has a value label

� If the value label does not exist in the active frame, the value label comes over
� If the value label exists in the activer frame and the definitions match, then nothing need be done
� If the value label exists in the activer frame and the definitions do not match, then the brought-over value
label gets renamed

? This is better behavior than with merge, which simply issues a warning

Running Commands in Another Frame

• In this example, the value label instype exists in both datasets

• It would be good to look at the definitions

• We would like to do this without having to switch back and forth between frames

� In the visits frame, which is active
. label list instype

instype:
1 HDHP
2 HMO
3 PPO

� In the patients dataset
. frame patients: label list instype

instype:
1 HDHP
2 HMO
3 PPO

� Ignoring that the visits frame is active
. frame visits: label list instype

instype:
1 HDHP
2 HMO
3 PPO

• In any case, we can see that the value labels are all defined well

Opening a Dataset with Conflicts

• Suppose our patient_info dataset were not quite so nice

• The patient_ohno dataset fits this bill

� We will want to link to this

• Let’s look at it the frames way

• First create a frame

. frame create ohno

• Now open up the dataset in that frame
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. frame ohno: use patient_ohno

• And look at it

. frame ohno: codebook

------------------------------------------------------------------------------------------
id Personal ID
------------------------------------------------------------------------------------------

type: numeric (byte)

range: [1,16] units: 1
unique values: 4 missing .: 0/4

tabulation: Freq. Value
1 1
1 4
1 9
1 16

------------------------------------------------------------------------------------------
birthdate Patient Birth Date
------------------------------------------------------------------------------------------

type: numeric daily date (int)

range: [8028,16027] units: 1
or equivalently: [24dec1981,18nov2003] units: days

unique values: 4 missing .: 0/4

tabulation: Freq. Value
1 8028 24dec1981
1 10027 15jun1987
1 14027 28may1998
1 16027 18nov2003

------------------------------------------------------------------------------------------
gender Patient Gender
------------------------------------------------------------------------------------------

type: string (str6)

unique values: 2 missing "": 0/4

tabulation: Freq. Value
2 "Female"
2 "Male"

------------------------------------------------------------------------------------------
insurance Insurance Type
------------------------------------------------------------------------------------------

type: numeric (long)
label: instype

range: [1,2] units: 1
unique values: 2 missing .: 0/4

tabulation: Freq. Numeric Label
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2 1 HMO
2 2 PPO

Things to Note

• The patid is now called just id

• The insurance variable is encoded differently, but still has the instype value label

� This would be a big problem when using merge, update

Linking to Dataset with Differing Key Names

• We can still use frlink to link to a dataset where the key variables have different names

� Key: variable list which identifies individual variables in one dataset

• To do this, we must specify the keyvarlist in the frame() option

. frlink m:1 patid, frame(ohno id)

(3 observations in frame visits unmatched)

Avoiding A Dangerous Data Error

• Just to drive home the point, check that the instype value labels differ

� First in the active frame
. label list instype

instype:
1 HDHP
2 HMO
3 PPO

� Now in the linked dataset
. frame ohno: label list instype

instype:
1 HMO
2 PPO
3 HDHP

• Try to bring in the insurance variable from the ohno frame

. frget insurance, from(ohno) prefix(ohno_)

(3 missing values generated)
(1 variable copied from linked frame)

• Look at the value labels

. label list
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instype1:
1 HMO
2 PPO
3 HDHP

instype:
1 HDHP
2 HMO
3 PPO

• Stata renamed the value label from frget to avoid a data error!

� This is better behavior than in merge

Notes about Linking

• You can use frget to grab many variables from the linked dataset

frget varlist . . .

• You could grab all but some variables by using the exclude() option

frget _all, exclude(notthisvarlist)

• This is like using the keepusing() option in merge except that it allows excluding instead of just including variables

Static Linking Requires Care

• Changing the key in the active frame is dangerous!

• Here is such a dangerous change

. replace patid = 9 if patid == 4 & visitdt==mdy(10,19,2015)

(1 real change made)

• Now go and get the gender variable

. frget gender, from(patients)

(3 missing values generated)
(1 variable copied from linked frame)

• Because the linking is static, you can get odd results

. tabulate patid gender

Personal | Patient Gender
ID | Female Male | Total

-----------+----------------------+----------
1 | 1 0 | 1
4 | 0 1 | 1
9 | 3 1 | 4

-----------+----------------------+----------
Total | 4 2 | 6
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Rebuilding Links

• If you are unsure of the state of the links, you should rebuild them

. frlink rebuild patients

rebuilding variable patients; executing
------------------------------------------------------------------------------------------
-> frlink m:1 patid, frame(patients)

(3 observations in frame visits unmatched)
------------------------------------------------------------------------------------------
variable patients successfully rebuilt

• Now go and grab the gender variable again

. drop gender

. frget gender, from(patients)

(3 missing values generated)
(1 variable copied from linked frame)

• Now there are no problems

. tabulate patid gender

Personal | Patient Gender
ID | Female Male | Total

-----------+----------------------+----------
1 | 1 0 | 1
4 | 0 1 | 1
9 | 4 0 | 4

-----------+----------------------+----------
Total | 5 1 | 6

Clearing out

• The equivalent to clear for frames is

. clear frames

� This gets rid all data and frames and changes the active frame name to default:
. frames dir

default 0 x 0

� frames reset is a synonym

• In case you wondered, clear all runs a clear frames

2.3 Copying, Putting, and Posting
Frames as Holding Areas

• You can also use frames for holding data

� In this case, they are something of a substitute for temporary files
� They are also faster, especially in networked environments

• frput will copy data to another frame
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� The opposite of frget

• frcopy will copy an entire frame to another frame

� It will also create the frame to use the copy, making it a nice manual preserve

• frame post can be used to post observations

� Similar to post, but without tmp files

2.4 Side Gains from Frames
preserve and Frames

• The preserve command now uses frames for preserving in Stata/MP

� This happens for files under 1GB by default
� The maximum size can be changed using set max_preservemem

• This speeds up commands which use preserve heavily

� grexample for looking at graph examples

• This is especially useful when on a network where temporary files end up being stored on a server, instead of locally

Linking Many Datasets

• You can have up to 100 frames at once

• This means you can link together 100 datasets if need be

• This could be useful in very wide datasets

3 Report Generation Additions
3.1 Report Generation Additions
Report Generation Additions

• The report generation (aka dynamic document) tools have been extended

• dyndoc now has a docx option which produces a docx document directly from markdown

• putdocx has many additions for headers and footers, as well as a way to make narrative easier to use

• html2docx converts web pages (html) to Microsoft Word compatible documents (docx)

• docx2pdf converts docx files to pdf files

• There are a few other additions; these are the ones we’ll look at
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Getting Started

• We’ll start with the docx option for dyndocx

• Let’s move to the proper location
. cd ../dyndoc

Looking at a dyndoc file

• Take a look at the paper.md file
. doedit paper.md

• This is an example markdown file using Stata’s dynamic tags

� You can see that Stata 16 now has syntax highlighting for markdown
� The md extension is what alerted the Do-file Editor to use this highlighting
� You can change the language being highlighted

• Note that the dyndoc version has changed to 2

Making an html file

• As in Stata 15, this can be turned into a webpage
. dyndoc paper.md

� The output is not shown, because it would include all the output needed to make the html file

• We can click on the link to open the page

Converting to docx

• We could then convert this to a docx file
. html2docx paper.html, saving(paper_conv.docx)

• Clicking the link will open the docx file in Microsoft Word

• The resulting file needs some fixing up, but we’ll do this later

Going Directly from Markdown to docx

• We could get the same result by using the new docx option for dyndoc
. dyndoc paper.md, docx

� Again, the output is not shown

• This will look exactly like the preceding example, because in the background, Stata is running plain dyndoc then
running html2docx

• Generally, this worked well

� There is some wrapping of Stata output, however
� This is not present here, but there are other html-only things, like special characters, which might need cleaning
up
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Tidying Up Wrapping

• Doing this conversion is nice, but it sometimes needs some tidying up due to wrapping

� The font size of 10pt for the fixed-width font allows 77 characters per line for letter size paper with standard
one-inch margins

� If your Stata window is wide, commands like describe and codebook will draw dashed line the entire width
of the your window

• There are a few things which can help

� Use a set linesize command to set the linesize to 90 or less
� Change the margins in the resulting docx document
� Make a style sheet (css) for the document and «dd_include» the style sheet

? See the first example in the dyndoc PDF documentation

Working With putdocx

• The files for putdocx are in the putdocx folder
. cd ../putdocx

• First take a look at how putdocx looked in Stata 15
. doedit putdocx15.do

• You can see here that there is no narrative mode

� Everything is a Stata command

• You also cannot put Stata code into the document without repeating it

� Once as simple text in a fixed-width font
� Once as code that gets run

Making the docx Document

• Doing the do-file will make a docx document
. do putdocx15.do

• On the Mac, you can open the resulting file from the Command window
. ! open putdocx15.docx

New putdocx Features in Stata 16

• Stata 16 allows headers and footers

• Headers and footers can change through the document with sections

• Headers and footers can work across appending files

• There is now something like a narrative mode

• Open up putdocx16.do to see these
. doedit putdocx16.do
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Headers and Footers to Start

• They get constructed in a couple of steps

• Here are the steps for a footer

� Use putdocx begin, footer(name) to name the footer
� Use putdocx paragraph, tofooter(name)
� Then add to the paragraph

? Using tables is good for multi-piece footers

• For headers, simply use header in place of footer above

Headers and Footer Changes

• When sections change, you can change the header and/or footer

• Simply use putdocx sectionbreak in place of putdocx begin from above

Narrative Mode

• While putdocx is mostly all Stata command as before, there are now text blocks:

� putdocx textblock begin starts a new paragraph which is simply text
� putdocx textblock append appends to the current paragraph
� putdocx textblock end ends a text block
� putdocx textfile allows inserting a file as a text block

• These should make documents with a lot of plain narrative (i.e. most documents) much easier to work with

Making the docx Document

• Doing the do-file will make a docx document

. do putdocx16.do

• Open the resulting file from the Command window

. ! open putdocx16.docx

Other Changes

• While these are most of the changes, there have also been a few changes to

� markdown, which goes from markdown to html without processing Stata code
� putexcel had 2 syntax changes

? putexcel close has become putexcel save
? putexcel has changed picture() to image()
? Of course, version conrol will protect your Stata 15.1 and earlier do-files!
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4 Conclusion
4.1 Conclusion
Conclusion

• Frames are something brand new in Stata 16

• The dynamic document (aka report) generation has had some nice additions
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