Multi-state survival analysis in Stata

Michael J. Crowther

Biostatistics Research Group Department of Health Sciences University of Leicester, UK michael.crowther@le.ac.uk

Italian Stata Users Group Meeting Bologna, Italy, 15th November 2018

- I will give a broad overview of multistate survival analysis
- I will focus on (flexible) parametric models
- All the way through I will show example Stata code using the multistate package [1]
- I'll discuss some recent extensions, and what I'm working on now

- In survival analysis, we often concentrate on the time to a single event of interest
- In practice, there are many clinical examples of where a patient may experience a variety of intermediate events
 - Cancer
 - Cardiovascular disease
- This can create complex disease pathways

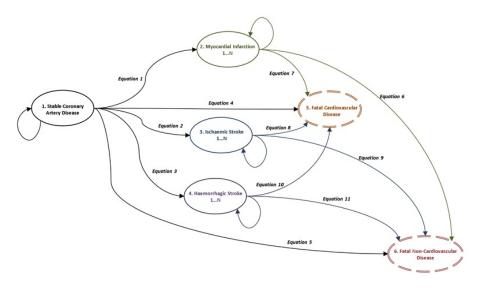


Figure 1: An example from stable coronary disease [2]

- Each transition between any two states is a survival model
- We want to investigate covariate effects for each specific transition between two states
- What if where I've been impacts where I might go?
- With the drive towards personalised medicine, and expanded availability of registry-based data sources, including data-linkage, there are substantial opportunities to gain greater understanding of disease processes, and how they change over time

- To illustrate, I use data from 2,982 patients with primary breast cancer, where we have information on the time to relapse and the time to death.
- All patients begin in the initial post-surgery state, which is defined as the time of primary surgery, and can then move to a relapse state, or a dead state, and can also die after relapse.

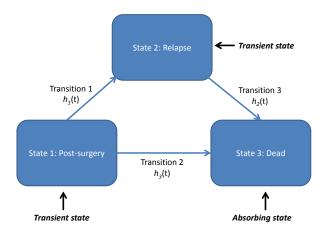


Figure 2: Illness-death model for primary breast cancer example.

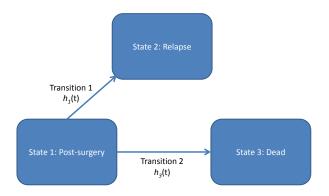


Figure 3: Illness-death model for primary breast cancer example.

- age at primary surgery
- tumour size (three classes; \leq 20mm, 20-50mm, > 50mm)
- number of positive nodes
- progesterone level (fmol/l) in all analyses we use a transformation of progesterone level (log(*pgr* + 1))
- whether patients were on hormonal therapy (binary, yes/no)

Consider a random process $\{Y(t), t \ge 0\}$ which takes the values in the finite state space $S = \{1, \ldots, S\}$. We define the history of the process until time s, to be $\mathcal{H}_s = \{Y(u); 0 \le u \le s\}$. The transition probability can then be defined as,

$$P(Y(t) = b|Y(s) = a, \mathcal{H}_{s-})$$

where $a, b \in S$. This is the probability of being in state b at time t, given that it was in state a at time s and conditional on the past trajectory until time s.

A Markov multi-state model makes the following assumption,

$$P(Y(t) = b|Y(s) = a, \mathcal{H}_{s-}) = P(Y(t) = b|Y(s) = a)$$

which implies that the future behaviour of the process is only dependent on the present.

- This simplifies things for us later
- It is an assumption! We can conduct an informal test by including time spent in previous states in our model for a transition

The transition intensity is then defined as,

$$h_{ab}(t) = \lim_{\delta t \to 0} \frac{P(Y(t + \delta t) = b | Y(t) = a)}{\delta t}$$

Or, for the *k*th transition from state a_k to state b_k , we have

$$h_k(t) = \lim_{\delta t \to 0} \frac{P(Y(t + \delta t) = b_k | Y(t) = a_k)}{\delta t}$$

which represents the instantaneous risk of moving from state a_k to state b_k . Our collection of transitions intensities governs the multi-state model.

This is simply a collection of survival models!

Estimating a multi-state models

- There are a variety of challenges in estimating transition probabilities in multi-state models, within both non-/semi-parametric and parametric frameworks [4], which I'm not going to go into today
- Essentially, a multi-state model can be specified by a combination of transition-specific survival models
- The most convenient way to do this is through the stacked data notation, where each patient has a row of data for each transition that they are at risk for, using start and stop notation (standard delayed entry setup)

Consider the breast cancer dataset, with recurrence-free and overall survival

- . use http://fmwww.bc.edu/repec/bocode/m/multistate_example,clear (Rotterdam breast cancer data, truncated at 10 years)
- . list pid rf rfi os osi age if pid==1 | pid==1371, sepby(pid) noobs

pid	rf	rfi	os	osi	age
1	59.1	0	59.1	alive	74
1371	16.6	1	24.3	deceased	79

We can restructure using msset

Title

msset - data preparation for multi-state and competing risks analysis

Syntax

msset [if] [in] , id(varname) states(varlist) times(varlist) [options]

options	Description					
id(varname)	identification variable					
states (varlist)	indicator variables for each state					
times (varlist)	time variables for each state					
transmatrix (matname)	transition matrix					
covariates (varlist)	variables to expand into transition specific covariates					

msset creates the following variables:

from	starting state
to	receiving state
trans	transition number
start	starting time for each transition
stop	stopping time for each transition
status	status variable, indicating a transition (coded 1) or censoring (coded 0)
flag	indicator variable to show observations where changes to the original data have been made

Saved results

msset returns the following in r():

Matrices:

r(Nnextstates)	number	of	possible	next	states	from	starting	state	(row	number)
r(transmatrix)	transi	tior	n matrix							
r(freqmatrix)	freque	ncie	s of trai	nsitio	ons					

. use http://fmwww.bc.edu/repec/bocode/m/multistate_example,clear (Rotterdam breast cancer data, truncated at 10 years)

. list pid rf rfi os osi age if pid==1 | pid==1371, sepby(pid) noobs

pid	rf	rfi	os	osi	age
1	59.1	0	59.1	alive	74
1371	16.6	1	24.3	deceased	79

. msset, id(pid) states(rfi osi) times(rf os) covariates(age) variables age_trans1 to age_trans3 created

- . //wide (before msset)
- . list pid rf rfi os osi age if pid==1 | pid==1371, sepby(pid)

pid	rf	rfi	os	osi	age
1	59.1	0	59.1	alive	74
1371	16.6	1	24.3	deceased	79

. //long (after msset)

. list pid _from _to _start _stop _status _trans if pid==1 | pid==1371, noobs

pid	_from	_to	_start	_stop	_status	_trans
1	1	2	0	59.104721	0	1
1	1	3	0	59.104721	0	2
1371	1	2	0	16.558521	1	1
1371	1	3	0	16.558521	0	2
1371	2	3	16.558521	24.344969	1	3

```
. use http://fmwww.bc.edu/repec/bocode/m/multistate_example,clear (Rotterdam breast cancer data, truncated at 10 years)
```

. msset, id(pid) states(rfi osi) times(rf os) covariates(age) variables age_trans1 to age_trans3 created

```
. mat tmat = r(transmatrix)
```

```
. stset _stop, enter(_start) failure(_status=1) scale(12)
```

failure event: _status == 1
obs. time interval: (0, _stop]
enter on or after: time _start
exit on or before: failure
t for analysis: time/12

7,482 total observations 0 exclusions

- Now our data is restructured and declared as survival data, we can use any standard survival model available within Stata
 - Proportional baselines across transitions
 - Stratified baselines
 - Shared or separate covariate effects across transitions
- This is all easy to do in Stata; however, calculating transition probabilities (what we are generally most interested in!) is not so easy. We'll come back to this later...

Examples

Proportional Weibull baseline hazards

failu analysis ti enter on or	ns2 _trans3, c nre _d: _stat ime _t: _stop after: time	tus == 1 p/12	.) nohr no	olog			
Weibull PH reg	gression						
No. of subject No. of failure		,482 ,790		Number	of obs	=	7,482
Time at risk	= 38474.53	3852					
				LR chi2	(2)	=	2701.63
Log likelihood	a = -5725.8	5272		Prob >	chi2	=	0.0000
_t	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
_trans2	-2.052149	.0760721	-26.98	0.000	-2.20	1248	-1.903051
_trans3	1.17378	.0416742	28.17	0.000	1.	0921	1.25546
_cons	-2.19644	.0425356	-51.64	0.000	-2.27	9808	-2.113072
/ln_p	1248857	.0197188	-6.33	0.000	163	5337	0862376
р	.8825978	.0174037			.849	1379	.9173763
1/p	1.133019	.0223417			1.09	0065	1.177665

Examples

Separate (stratified) Weibull baselines

fail analysis t enter on or	ns2 _trans3, d ure _d: _stat ime _t: _stop after: time	tus == 1 p/12	l) anc(_tı	rans2 _tr	ans3) n	ohr no	log
Weibull PH reg	-						
No. of subject		•		Number	of obs	=	7,482
No. of failur		,790					
Time at risk	= 38474.53	3852			$\langle \alpha \rangle$		005 00
				LR chi2		=	935.32
Log likelihood	d = -5656.2	1627		Prob >	ch12	=	0.0000
t	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
_t							
_trans2	-3.168605	.2013437	-15.74	0.000	-3.56	3232	-2.773979
_trans3	2.352642	.1522638	15.45	0.000	2.0	5421	2.651073
_cons	-2.256615	.0477455	-47.26	0.000	-2.35	0194	-2.163035
ln_p							
_trans2	.4686402	.063075	7.43	0.000	.345	0155	.592265
_trans3	6043193	.087695	-6.89	0.000	776	1984	4324403
_cons	0906001	.0224852	-4.03	0.000	134	6702	0465299

Examples

Separate (stratified) Weibull baselines and age

<pre>. streg age _trans2 _trans3, dist(weibull) anc(_trans2 _trans3) nohr nolog failure _d: _status == 1 analysis time _t: _stop/12 enter on or after: time _start</pre>									
Weibull PH reg	gression								
	No. of subjects = 7,482 Number of obs = 7,482 No. of failures = 2,790								
				LR chi2	(3)	=	968.10		
Log likelihood	d = -5639.7	7693		Prob >	chi2	=	0.0000		
t	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]		
_t									
age	.0085662	.0014941	5.73	0.000	.0056	379	.0114946		
_trans2	-3.173808	.2017164	-15.73	0.000	-3.569	165	-2.778451		
_trans3	2.324363	.1505177	15.44	0.000	2.029	354	2.619373		
_cons	-2.7353	.0971366	-28.16	0.000	-2.925	684	-2.544916		
ln_p									
_trans2	.4697586	.0630304	7.45	0.000	.3462	214	.5932959		
_trans3	5827026	.0858211	-6.79	0.000	7509	089	4144963		
_cons	0873818	.0224793	-3.89	0.000	1314	404	0433231		

Separate (stratified) Weibull baselines and age

	gression					
o. of subjec		,482		Number o	of obs	= 7,482
o. of failur		,790				
ime at risk	= 38474.53	3852		ID abio	(5)	- 1214 01
	5			LR chi2		= 1314.91
og likelihoo	d = -5466.3	3633		Prob > 0	chi2	= 0.0000
_t	Coef.	Std. Err.	z	P> z	[95% Co	onf. Interval]
t						
age_trans1	0021734	.002071	-1.05	0.294	006232	.0018857
age_trans2	.1289129	.0078069	16.51	0.000	.113611	.1442142
age_trans3	.0063063	.0023447	2.69	0.007	.001710	.0109019
_trans2	-11.78602	.623599	-18.90	0.000	-13.0082	.5 -10.56379
_trans3	1.861322	.2348573	7.93	0.000	1.4010	2.321634
_cons	-2.13714	.1230997	-17.36	0.000	-2.37841	1 -1.895869
n_p						
trans2	.5773103	.0617153	9.35	0.000	.456350	.6982701
_trans3	585393	.0865301	-6.77	0.000	754988	415797
_cons	0913214	.0224979	-4.06	0.000	135416	50472262

Fitting one model to the stacked data

- The previous examples all fit 'one' model to the full stacked dataset
- This is convenient
 - Data setup is nice and clean
 - We can share effects across transitions
- This is not convenient
 - Syntax can get tricky with lots of interactions
 - We are restricted to the same distributional form for all transition models

Before we had:

Separate (stratified) Weibull baselines and age

streg age_* _trans2 _trans3, dist(weibull) anc(_trans2 _trans3)

We can fit the same model with:

Separate (stratified) Weibull baselines and age

streg age if _trans1==1, dist(weibull)

streg age if _trans2==1, dist(weibull)

streg age if _trans3==1, dist(weibull)

Fitting transition-specific models to the stacked data

- We gain substantially more flexibility
- No longer restricted to one distribution
- Much easier in terms of model specification/syntax
- Transition models could come from different datasets!

Returning to the breast cancer dataset

- Choose the best fitting parametric survival model, using AIC and BIC
- Comparing:
 - exponential
 - Weibull
 - Gompertz
 - Royston-Parmar
 - Splines on the log hazard scale
 - ...

Building our transition models

We find...

• Transition 1 - RP model with 3 degrees of freedom

stpm2 if _trans1==1, scale(h) df(3)

• Transition 2 - Weibull

streg if _trans2==1, distribution(weibull)

• Transition 3 - RP model with 3 degrees of freedom

stpm2 if _trans3==1, scale(h) df(3)

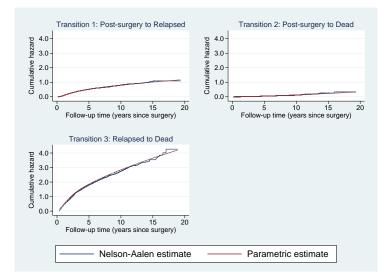


Figure 4: Best fitting parametric cumulative hazard curves overlaid on the Nelson-Aalen estimate for each transition.

Next:

- Adjust for important covariates; age, tumour size, number of nodes, progesterone level
- Check proportional hazards assumption

Final models

• Transition 1: Royston-Parmar baseline with df=3. Non-PH in tumour size (both levels) and progesterone level, modelled with interaction with log time.

. stpm2 age sz2 sz3 nodes hormon pr_1 if _trans1==1, scale(h) df(3) /// > tvc(sz2 sz3 pr_1) dftvc(1) nolog

Log likelihood = -3476.6455					of obs =	2,982
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
xb						
age	0062709	.0021004	-2.99	0.003	0103875	0021543
sz2	.4777289	.0634816	7.53	0.000	.3533073	.6021505
sz3	.744544	.0904352	8.23	0.000	.5672943	.9217937
nodes	.0784025	.0045454	17.25	0.000	.0694937	.0873113
hormon	0797426	.0824504	-0.97	0.333	2413424	.0818572
pr_1	0783066	.0122404	-6.40	0.000	1022973	0543159
_rcs1	.9703563	.0472652	20.53	0.000	.8777182	1.062994
_rcs2	.3104222	.0218912	14.18	0.000	.2675162	.3533282
_rcs3	0176099	.0114839	-1.53	0.125	0401179	.0048982
_rcs_sz21	1740546	.0446893	-3.89	0.000	261644	0864652
_rcs_sz31	2669255	.0616161	-4.33	0.000	3876909	1461601
_rcs_pr_11	.072824	.0086399	8.43	0.000	.0558901	.0897578
_cons	9480559	.1266088	-7.49	0.000	-1.196205	6999071

• Transition 2: Weibull baseline.

. streg age sz2 sz3 nodes hormon pr_1 if _trans2==1, distribution(weibull) /// > nolog noshow noheader

[Interval]	[95% Conf.	P> z	z	Std. Err.	Haz. Ratio	_t
1.151073	1.115668	0.000	15.69	.0090317	1.133232	age
1.61282	.8565166	0.317	1.00	.1897555	1.175333	sz2
2.392919	.9589683	0.075	1.78	.3533698	1.514838	sz3
1.082984	1.008197	0.016	2.41	.0190746	1.044921	nodes
1.362462	.5548194	0.542	-0.61	.1992656	.8694367	hormon
1.091835	.9577593	0.504	0.67	.0341792	1.022602	pr_1
2.75e-06	2.40e-07	0.000	-22.55	5.06e-07	8.13e-07	_cons
.622862	.3984416	0.000	8.92	.0572511	.5106518	/ln_p
1.864256	1.489502			.095402	1.666377	р
.6713655	.5364071			.0343567	.6001043	1/p

Note: Estimates are transformed only in the first equation. Note: _cons estimates baseline hazard.

Final models

• Transition 3: Royston-Parmar with df=3. Non-PH found in progesterone level, modelled with interaction with log time.

. stpm2 age sz2 sz3 nodes hormon pr_1 if _tran	s3==1, scale(h) d	df(3) ///	,
<pre>> tvc(pr_1) dftvc(1) nolog</pre>			
note: delayed entry models are being fitted			
Log likelihood = -929.11658	Number of obs	=	1,518

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
xb						
age	.0049441	.0024217	2.04	0.041	.0001977	.0096906
sz2	.1653563	.0712326	2.32	0.020	.025743	.3049696
sz3	.3243048	.0992351	3.27	0.001	.1298075	.5188021
nodes	.0297031	.0057735	5.14	0.000	.0183873	.0410189
hormon	.0315634	.0976384	0.32	0.746	1598045	.2229312
pr_1	1843876	.0211383	-8.72	0.000	225818	1429572
_rcs1	.5057489	.0581187	8.70	0.000	.3918383	.6196595
_rcs2	.1035699	.03143	3.30	0.001	.0419681	.1651716
_rcs3	0100584	.0117741	-0.85	0.393	0331352	.0130185
_rcs_pr_11	.0636225	.0121503	5.24	0.000	.0398085	.0874366
cons	.391217	.1659763	2.36	0.018	.0659094	.7165246

Calculating transition probabilities

Transition probabilities

$$P(Y(t) = b|Y(s) = a)$$

Or even simpler, we define state occupation probabilities as

$$P(Y(t) = b) = \sum_{a} P(Y(0) = a)P(Y(t) = b|Y(0) = a)$$

which is the probability of being in state b at time t [5].

When s = 0 and everyone starts in state *a*, transition probabilities are the same as state occupation probabilities.

Calculating transition probabilities

$$P(Y(t) = b|Y(s) = a)$$

There are a variety of approaches within a parametric framework

- Exponential distribution is convenient [6]
- Numerical integration [7, 8] computationally intensive, dimension of the integration grows exponentially
- Ordinary differential equations [9] appealing but difficult to generalise
- Simulation [10, 11, 12] my favoured approach!

- Given our estimated transition intensities, we simulate *n* patients through the transition matrix
- At specified time points, we simply count how many people are in each state, and divide by the total to get our transition probabilities
- To get confidence intervals, we draw from a multivariate normal distribution, with mean vector the estimated coefficients from the intensity models, and associated variance-covariance matrix, and repeated *M* times
- Some details come next...remember that the software does it all for you!

Simulating survival times

Under a general hazard model

$$h(t) = h_0(t) \exp(X(t)\beta(t))$$

$$H(t) = \int_0^t h(u) \, \mathrm{d}u, \quad S(t) = \exp[-H(t)]$$

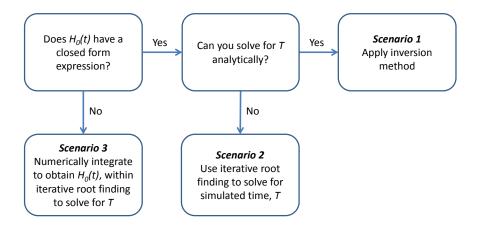
$$F(t) = 1 - \exp[-H(t)]$$

$$U = \exp[-H(t)] \sim \mathsf{U}(0,1)$$

Solve for t... Under a standard parametric PH model,

$$T = H_0^{-1}[-\log(U)\exp(-X\beta)]$$

Simulation methods [13]



- Standard parametric models (Weibull, Gompertz, etc.) closed form H(t) and can invert -> extremely efficient
- Royston-Parmar model closed form H(t) but can't invert -> Brent's univariate root finder
- Splines on the log hazard scale intractable *H*(*t*) and can't invert -> numerical integration and root finding

The last two are not as computationally intensive as you would expect...

<u>Title</u>

predictms — predictions from a multi-state survival model

<u>Syntax</u>

predictms , transmatrix(varname) [options]

0			

-

Description

<u>transm</u> atrix(<i>matname</i>)	transition matrix
<pre>models(namelist)</pre>	list of estimates stored for # transition
reset	use clock-reset approach
<pre>from(numlist)</pre>	starting state(s) for predictions
obs(#)	<pre>number of time points to calculate predictions at between mint() and maxt()</pre>
mint(#)	minimum time at which to calculate predictions
maxt(#)	maximum time at which to calculate predictions
<u>time</u> var(<i>varname</i>)	time points at which to calculate predictions
enter(#)	<pre>time that observations enter model, default 0, for forward predictions</pre>
exit(#)	time that observations exit the model, for fixed horizon predictions

Many more options...

Computation time in Stata with predictms

- Predicting transition probabilities at 20 evenly spaced points in time across follow-up
- Starting in state 1 at time 0
- Times are in seconds
- Tolerance of <1E-08

п	Weibulls	Royston-Parmar (df=1,5,5)	Log-hazard splines $(df=1,5,5)$
10,000	0.05	0.31	3.23
100,000	0.30	2.60	32.10
1,000,000	2.50	29.70	302.04
10,000,000	22.35	300.46	3010.30

Baseline only models fit to ebmt3 data

Examples

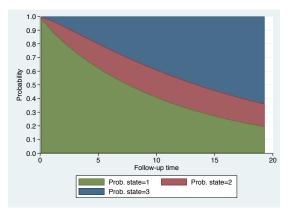
Separate baselines, transition specific age effects

- . quietly streg age_trans1 age_trans2 age_trans3 _trans2 _trans3, ///
- > dist(weibull) anc(_trans2 _trans3)
 - . predictms , transmat(tmat) at1(age 45)
 - . list _prob* _time in 1/10, noobs ab(15)

_time	_prob_at1_1_3	_prob_at1_1_2	_prob_at1_1_1
.09856263	.00143	.01179	.98678
1.1082532	.03363	.07766	.88871
2.1179437	.07429	.11835	.80736
3.1276343	.11849	.14444	.73707
4.1373248	.16143	.16351	.67506
5.1470154	. 20294	. 17816	.6189
6.1567059	.24457	.1882	.56723
7.1663965	.285	.1943	.5207
8.176087	.32264	.19847	.47889
9.1857776	.35875	.20048	.44077

predictms

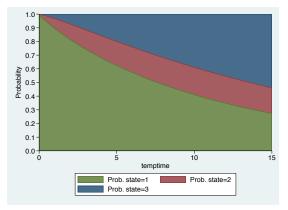
. predictms , transmat(tmat) at1(age 45) graph



We can tidy it up a bit...

predictms

```
. range temptime 0 15 100
(7,382 missing values generated)
. predictms , transmat(tmat) at1(age 45) graph timevar(temptime)
```



Uncertainty...

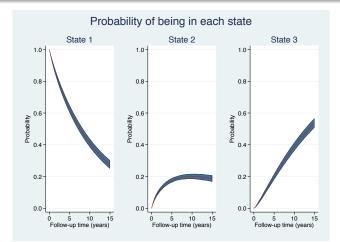
- . predictms , transmat(tmat) at1(age 45) timevar(temptime) ci
- . list _prob_at1_1_1* temptime in 1/10, noobs ab(15)

temptime	_prob_at1~1_uci	_prob_at1~1_lci	_prob_at1_1_1
0	1	1	1
.1515152	.98464194	.97647768	.98098483
.3030303	.97043065	.95788723	.96469169
.4545455	.95643615	.94101558	.94927773
.6060606	.94254704	.92525291	.93442814
.7575758	.92924175	.91009883	.92019291
.9090909	.91636675	.89544508	.90642898
1.060606	.90382663	.88136687	.89311497
1.212121	.89160327	.86774232	.88018498
1.363636	.87941482	.85438362	.86739877

predictms

Uncertainty...

. predictms , transmat(tmat) at1(age 45) timevar(temptime) ci



Getting predictions for multiple covariate patterns

- . predictms , transmat(tmat) timevar(temptime) ///
- > at1(age 45) at2(age 80)
- . list _prob_at1_1_3 _prob_at2_1_3 temptime in 1/10, noobs ab(15)

_prob_at2_1_3	temptime
0	0
.01048	.3030303
.0192	.4545455 .6060606
.03961	.7575758
.05084 .06292	.9090909 1.060606
.07552 .08852	1.212121 1.363636
	0 .00387 .01048 .0192 .02904 .03961 .05084 .06292 .07552

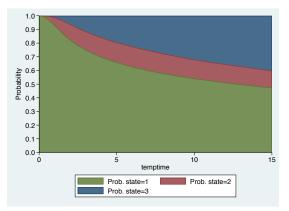
Now let's go back to our final models that we had before

Getting predictions from separate models

predictms

Getting predictions from separate models

. predictms , transmat(tmat) at1(age 45) timevar(temptime) graph /// > models(m1 m2 m3)



- Everything available within predictms works on either the stacked or separate modelling format
- We tend to favour the separate modelling approach
- This gives us a very powerful tool to model each transition as simply or as complex as needed...yet still get easily interpreted probabilities (and more...) with a single line of code!

predictms, transmat(tmat) at(age 54 pr_1 3 sz2 1) models(m1 m2 m3)

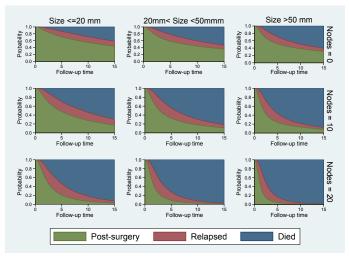


Figure 5: Probability of being in each state for a patient aged 54, with progesterone level (transformed scale) of 3.

predictms, transmat(tmat) at(age 54 pr_1 3 sz2 1)
 models(m1 m2 m3) ci

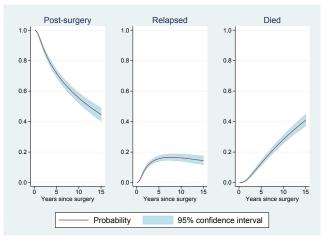


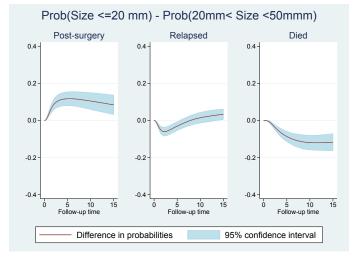
Figure 6: Probability of being in each state for a patient aged 54, 50> size \geq 20 mm, with progesterone level (transformed scale) of 3, and associated confidence intervals.

- It's easy to show predictions for a particular covariate pattern, but what about showing the impact of differences in covariate patterns?
- How does treatment change the probability if being in each state?
- How does tumour size at diagnosis influence these probabilities?
- We can use contrasts differences and ratios

$$P(Y(t) = b|Y(s) = a, X = 1) - P(Y(t) = b|Y(s) = a, X = 0)$$

The difference in transition probabilities for X = 1 compared to X = 0

Differences in transition probabilities

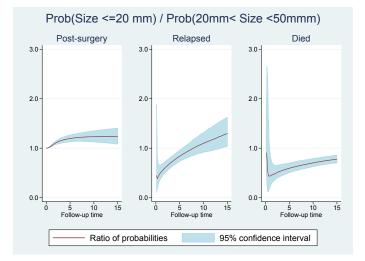


. predictms, transmat(tmat) models(m1 m2 m3) ///
. at1(age 54 pgr 3 size1 1) at2(age 54 pgr 3 size2 1) difference ci

$$\frac{P(Y(t) = b | Y(s) = a, X = 1)}{P(Y(t) = b | Y(s) = a, X = 0)}$$

The ratio of transition probabilities for X = 1 compared to X = 0

Ratios of transition probabilities



. predictms, transmat(tmat) models(m1 m2 m3) ///
. at1(age 54 pgr 3 size1 1) at2(age 54 pgr 3 size2 1) ci ratio

- predictms gives you the transition probabilities for each at#() pattern, in variables called _prob_at#*
- predictms gives you the difference between transition probabilities for each at#() pattern compared to the reference atref(1), in variables called _diff_prob_at#*
- predictms gives you the ratio between transition probabilities for each at#() pattern compared to the reference atref(1), in variables called _ratio_prob_at#*
- You can all these predictions in one call to predictms

```
. predictms, transmat(tmat) models(m1 m2 m3) ///
```

```
. at1(age 54 pgr 3 size1 1) at2(age 54 pgr 3 size2 1)
```

```
. difference ratio ci
```

A clinically useful measure is called length of stay, which defines the amount of time spent in a particular state. This is the restricted mean survival equivalent in a multi-state model.

$$\int_{s}^{t} P(Y(u) = b | Y(s) = a) du$$

This is the multi-state equivalent of restricted mean survival time [11]

Such a quantity allows us to ask questions such as

- How much time would you spend in hospital over a ten year period?
- How much time would you spend relapse-free?
- Does treatment influence the time spent in hospital?
- What is my life expectancy?

Thanks to the simulation approach, we can calculate such things extremely easily.

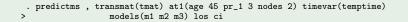
In our breast cancer example, we may be interested in

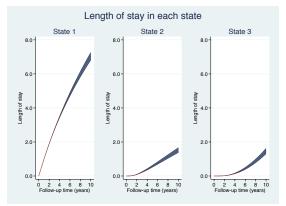
- the amount of time a patient spends relapse-free
- how does tumour size influence length of stay?

predictms

```
. range temptime 0 10 101
(7,381 missing values generated)
. predictms , transmat(tmat) at1(age 45 pr_1 3 nodes 2) timevar(temptime)
                                                                               111
                 models(m1 m2 m3) los
>
. list _los_at1_1_* temptime if _n==51 | _n==101, noobs ab(15)
   _los_at1_1_1 _los_at1_1_2 _los_at1_1_3 temptime
       4.157891
                     56545628
                                   27665273
                                                      5
      7.0421219
                     1.5039284
                                   1.4539497
                                                     10
```

Example - breast cancer





111

So after 10 years, a patient aged 45 with progesterone of 3 and 2 positive nodes, spends

- 7 years alive and relapse-free
- 1.5 years alive post-relapse
- 1.5 years dead...does that make sense?

Length of stay should only be reported for transient states

How about restricted mean survival? This is the total time spent in the initial state and the relapse state

(7	. gen rmst = _los_at1_1_1 + _los_at1_1_2 (7,381 missing values generated) . list _los_at1_1_1 _los_at1_1_2 rmst temptime if _n==51 _n==101, noobs ab(15)						
	_los_at1_1_1	_los_at1_1_2	rmst	temptime		l	
	4.1537604	.56775277	4.721513	5		l	
	7.0281965	1.5145309	8.542727	10		l	

What about confidence intervals?

We can use the userfunction() ability of predictms, which let's us pass our own function of transition probabilities and/or length of stays, to calculate bespoke predictions

predictms

userfunction()

	mata:			(+ + + + + +			
> · > · > ·	los1 los2 retu	ufunc(M) = ms_user_los(M 2 = ms_user_los(M urn(los1:+los2)		— mata (type end t	o exit) —		
>	. predictms , transmat(tmat) at1(age 45 pr_1 3 nodes 2) timevar(temptime) /// > models(m1 m2 m3) los ci userfunction(ufunc) . list rmst _user_at1_1* temptime if _n==51 _n==101, noobs ab(15)						
	rmst	_user_at1_1_1	_user_at1_1~lci	_user_at1_1~uci	temptime		
	4.721513 8.542727	4.7231721 8.5454766	4.6753368 8.3664569	4.7710075 8.7244962	5 10		

All of our contrasts are available as well, so we can easily assess the impact of covariates, through differences,

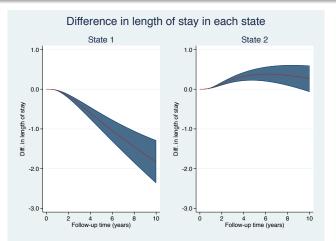
$$LoS(t|X=1) - LoS(t|X=0)$$

or ratios,

$$\frac{LoS(t|X=1)}{LoS(t|X=0)}$$

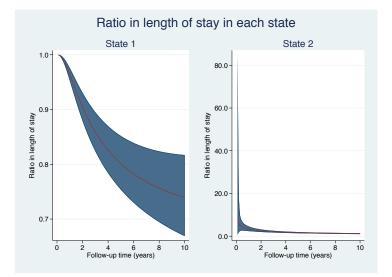
Example - breast cancer

. predictms , transmat(tmat) at1(age 45 pr_1 3 nodes 2) timevar(temptime)
> at2(age 45 pr_1 3 nodes 2 sz3 1) models(m1 m2 m3) los ci
> difference ratio



111

Example - breast cancer



- All the multistate models we have discussed so far have been Markov models
- Remember, this means that where you are going is not influenced by where you have been
- We can relax this assumption in a number of ways

- The Markov assumption can be considered restrictive
- We can relax it by allowing the transition intensities to depend on the time at which earlier states were entered - multiple timescales [10]
- This is commonly simplified further, by defining the transition hazards/intensities to be dependent only on the time spent in the current state clock-reset approach [4]

Figure 7: The impact of timescale.

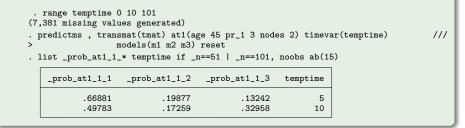
- If the Markov assumption does not hold we may consider the clock-reset approach
- The transition from relapse to death may be a function of time since entry into the relapse state
- Timescale is set to zero after each new state entry

- Just as easy as the clock forward approach
 - . gen _newt = _stop _start
 - . stset _newt , failure(_status=1)
- Before we had
 - . stset _stop , enter(_start) failure(_status=1)
- Given we've stset our data, we can now fit any models we like!

predictms with clock-reset models

- We've seen that the only thing you have to change is how you stset your data
- It's equally simple to use predictms after fitting a clock-reset model
- Add the reset option...yes that's it!

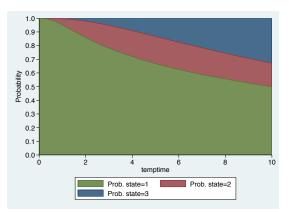
predictms and reset



A clock reset model

predictms and reset

. predictms , transmat(tmat) at1(age 45 pr_1 3 nodes 2) timevar(temptime) ///
> models(m1 m2 m3) reset graph



- It's setting specific
- Clock reset models would generally be more appropriate when an intermediate event is 'substantial', for example a heart attack
- A useful property of state occupation probabilities is that they are robust to deviations of the Markov assumption

Current and future plans

- The multistate package is actively being developed
- Some future projects will include:
 - Reversible transitions
 - There's no restriction on the transition matrix
 - Frailties for clustered data
 - I've begun syncing predictms with merlin
 - Find out more on mjcrowther.co.uk/software/merlin
 - Multiple timescales
 - Fitting survival models with multiple timescales is challenging
 - merlin can do this simply and flexibly, e.g.:

merlin

References

- [1] Crowther MJ, Lambert PC. Parametric multistate survival models: Flexible modelling allowing transition-specific distributions with application to estimating clinically useful measures of effect differences. *Statistics in medicine* 2017;**36**:4719–4742.
- [2] Asaria M, Walker S, Palmer S, Gale CP, Shah AD, Abrams KR, et al.. Using electronic health records to predict costs and outcomes in stable coronary artery disease. *Heart* 2016;**102**:755–762.
- [3] Sauerbrei W, Royston P, Look M. A new proposal for multivariable modelling of time-varying effects in survival data based on fractional polynomial time-transformation. *Biometrical Journal* 2007;**49**:453–473.
- [4] Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. *Stat Med* 2007;**26**:2389–2430.
- [5] Andersen PK, Perme MP. Inference for outcome probabilities in multi-state models. *Lifetime data analysis* 2008;14:405.

References 2

- [6] Jackson CH. Multi-state models for panel data: the msm package for r. *Journal of Statistical Software* 2011;**38**:1–29.
- [7] Hsieh HJ, Chen THH, Chang SH. Assessing chronic disease progression using non-homogeneous exponential regression markov models: an illustration using a selective breast cancer screening in taiwan. *Statistics in medicine* 2002;**21**:3369–3382.
- [8] Hinchliffe SR, Abrams KR, Lambert PC. The impact of under and over-recording of cancer on death certificates in a competing risks analysis: a simulation study. *Cancer Epidemiol* 2013;**37**:11–19.
- [9] Titman AC. Flexible nonhomogeneous markov models for panel observed data. *Biometrics* 2011;**67**:780–787.
- [10] Iacobelli S, Carstensen B. Multiple time scales in multi-state models. *Statistics in Medicine* 2013;**32**:5315–5327.

- [11] Touraine C, Helmer C, Joly P. Predictions in an illness-death model. *Statistical methods in medical research* 2013;.
- [12] Jackson C. flexsurv: A platform for parametric survival modeling in r. *Journal of Statistical Software* 2016;**70**:1–33.
- [13] Crowther MJ, Lambert PC. Simulating biologically plausible complex survival data. *Stat Med* 2013;**32**:4118–4134.
- [14] Sjölander A. Regression standardization with the r package stdreg. European Journal of Epidemiology 2016;31:563-574.
- [15] Gran JM, Lie SA, Ã[~]yeflaten I, Borgan Ã, Aalen OO. Causal inference in multi-state models-sickness absence and work for 1145 participants after work rehabilitation. *BMC Public Health* 2015;**15**:1082.