SOCIAL NETWORK ANALYSIS USING STATA

Thomas Grund
University College Dublin
thomas.u.grund@gmail.com

http://nwcommands.org

ITUTORIALS AND SLIDES

B00K

Grund, T. and Hedström, P. (in preparation) Social Network Analysis Using Stata. StataPress.

GoogleGroup: nwcommands

Twitter: nwcommands

YouTuhe
Search "nwcommands" to find a channel with video tutorials.

SOCIAL NETWORKS

MANCHESTER UTD TOTTENHAM

SOCIAL NETWORKS

- Social
- Friendship, kinship, romantic relationships
- Government
- Political alliances, government agencies
- Markets
- Trade: flow of goods, supply chains, auctions
- Labor markets: vacancy chains, getting jobs
- Organizations and teams
- Interlocking directorates
- Within-team communication, email exchange

DEFINITION

- Mathematically, a (binary) network is defined as $G=(V, E)$ where $V=\{1,2, . ., n\}$ is a set of "vertices" (or "nodes") and $E \subseteq$ $\{\langle i, j\rangle \mid i, j \in V\}$ is a set of "edges" (or "ties", "arcs"). Edges are simply pairs of vertices, e.g. $E \subseteq\{(1,2),(2,5) \ldots\}$.
- We write $y_{i j}=1$ if actors i and j are related to each other (i.e., if $\langle i, j\rangle \in E)$, and $y_{i j}=0$ otherwise.
- In digraphs (or directed networks) it is possible that $y_{i j} \neq y_{j i}$.

ADJACENCY MATRIX

- We write $y_{i j}=1$ if actors i and j are related to each other (i.e., if $\langle i, j\rangle \in E$), and $y_{i j}=0$ otherwise
- The matrix y is called the adjacency matrix and is a convenient representation of a network.

$$
\boldsymbol{y}=\left[\begin{array}{ccc}
y_{11} & \cdots & y_{1 n} \\
\vdots & \ddots & \vdots \\
y_{n j} & \cdots & y_{n b}
\end{array}\right]
$$

ADJACENCY MATRIX

NETWORK ANALYSIS

- Simple description/characterization of networks
- Calculation of node-level characteristics (e.g. centrality)
- Components, blocks, cliques, equivalences...
- Visualization of networks
- Statistical modeling of networks, network dynamics

Purpose-built

ta UCINET

\Leftrightarrow Gephi
akes graphs handy

Excel/R extensions

C++/Python libraries

NWCOMANDS

STETE

NWCOMMANDS

- Software package for Stata. Almost 100 new Stata commands for handling, manipulating, plotting and analyzing networks.
- Ideal for existing Stata users. Corresponds to the R packages "network", "sna", "igraph", "networkDynamic".
- Designed for small to medium-sized networks (<10000).
- Almost all commands have menus. Can be used like Ucinet or Pajek. Ideal for beginners and teaching.
- Not just specialized commands, but whole infrastructure for handling/dealing with networks in Stata.
- Writing own network commands that build on the nwcommands is very easy.

LINES OF CODE

Type	Files	LoC
.ado	94	14548
.dlg	57	5707
.sthlp	97	9954

Downloads 4833 (since Jan 2015)

INSTALLATION

. findit nwcommands
=> (manually install the package "nwcommands-ado")

Or
. net from http://nwcommands.org
. net install "nwcommands-ado"
. nwinstall, all

INTUITION

- Software introduces netname and netlist.
- Networks are dealt with like normal variables.
- Many normal Stata commands have their network counterpart that accept a netname, e.g. nwdrop, nwkeep, nwclear, nwtabulate, nwcorrelate, nwcollapse, nwexpand, nwreplace, nwrecode, nwunab and more.
- Stata intuition just works.

NETWORK NAMES AND LISTS

Example	Description
mynet	Just one network
mynet1 mynet2	Two networks
mynet*	All networks starting with mynet
*net	All networks ending with net
my*t	All networks starting with my and ending with t
my t	One network starting with my and ending with t
my?t	All networks starting with my and ending with t and one character in between
mynet1-mynet66	mynet1, mynet2, ..., mynet6
_all	All networks in memory

OVERVIEW

Section	Description
$[N W-1]$	Introduction and concepts
[NW-2]	Topical list of network commands
[NW-3]	Alphabetical list of network commands
[NW-4]	Getting started
[NW-5]	Network programming
[NW-6]	Install Stata menus/dialogs
*! Date	$: 28$ Sep 2015
*! Version	$: 1.5 .2$
*! Authors	: Thomas U. Grund
*! Contact	: thomas.u.grund@gmail.com
*! Web	$:$ http://nwcommands.org

. help nwcommands

SETTING NETWORKS

- "Setting" a network creates a network quasi-object thathas a netname.
- After that you can refer to the network simply by its netname, just like when refer to a variable with its varname.

Syntax:

[^0]

LIST ALL NETWORKS

. nwds
network network_1
. nwset
(2 networks)
network network_1

These are the names of the networks in memory. You can refer to these networks by their name.

Check out the return vector. Both commands populate it as well.

LOAD NETWORK FROM THE INTERNET

. webnwuse florentine

Loading successful
(4 networks)
network
network_1
flobusiness
flomarriage

[NW-2.1] concepts

Exanple networks

The datasets listed are in Stata network file-format and
hosted on the nwcommands.org server.

. help netexample

IMPORT NETWORK

- A wide array of popular network file-formats are supported, e.g. Pajek, Ucinet, by nwimport.
- Files can be imported directly from the internet as well.
- Similarly, networks can be exported to other formats with nwexport.
. nwimport http://vlado.fmf.uni-lj.si/pub/networks/data/ucinet/zachary.dat, type(ucinet)

Importing successful
(6 networks)
network
network_1
flobusiness
flomarriage
ZACHE
ZACHC

SAVE/USE NETWORKS

- You can save network data (networks plus all normal Stata variables in your dataset) in almost exactly the same way as normal data.
- Instead of save, the relevant command is nwsave.
- Instead of use, the relevant command is nwuse.

DROP/KEEP NETWORKS

- Dropping and keeping networks works almost exactly like dropping and keeping variables.

DROP/KEEP NODES

You can also drop/keep nodes of a specific network.
. nwdrop flomarriage if _nodevar == "strozzi"
. nwdrop flomarriage if _n == 1

EXAMINE NETWORK

SUMMARIZE

. nwsummarize network_1

Network name: network_1
Network id: 1
Directed: true
Nodes: 5
Arcs: 4
Minimum value: 0
Maximum value: 1
Density: . 2

OBTAIN TIE VALUES

. nwload network_1
. edit

TABULATE NETWORK

. webnwuse florentine, nwclear
Loading successful
(2 networks)
flomarriage
flomarriage
. nwtabulate flomarriage

Network: flomarriage Directed: false

flomarriage	Freq.	Percent	Cum.
0	100	83.33	83.33
1	20	16.67	100.00
Total	120	100.00	

TABULATE TWO NETWORKS

. nwtabulate flomarriage flobusiness

DYAD CENSUS

- webnwuse glasgow

Loading successful
(3 networks)
glasgow1
glasgow2
glasgow3

M: mutual
A: asymmetric
N : null
. nwdyads glasgow1
Dyad census: glasgow1

Mutual	Asym	Null
39	35	$\mathbf{1 1 5 1}$

Reciprocity: . 527027027027027
. nwtriads glasgow1

Triad census: glasgow1

003	012	021 D	021 U
16243	1470	5	18

021 C	030 T	030 C	102
21	5	0	1724

120 D	120 U	120 C	111 D
6	5	2	42

$111 U$	201	210	300
30	15	9	5

Transitivity: .3870967741935484

CHANGE NETWORK

TABULATE NETWORK

. webnwuse gang, nwclear
. nwtabulate gang_valued

Network: gang_valued		Directed: false	
gang_valued	Freq.	Percent	Cum.
0	1,116	77.99	77.99
1	182	12.72	90.71
2	92	6.43	97.13
3	25	1.75	98.88
4	16	1.12	100.00
Total	1,431	100.00	

RECODE TIE VALUES

. nwrecode gang_valued (2/4 = 99)
(gang_valued: 266 changes made)
. nwtabulate gang_valued

Network: gang_valued Directed: false

gang_valued	Freq.	Percent	Cum.
0	1,116	$\mathbf{7 7 . 9 9}$	$\mathbf{7 7 . 9 9}$
1	182	$\mathbf{1 2 . 7 2}$	$\mathbf{9 0 . 7 1}$
99	133	9.29	$\mathbf{1 0 0 . 0 0}$
Total	$\mathbf{1 , 4 3 1}$	$\mathbf{1 0 0 . 0 0}$	

FLORENTINE FAMILIES

webnwuse florentine, nwclear

Loading successful
(2 networks)
flobusiness
flomarriage

Marriage ties

Business ties

REPLACE TIE VALUES

Title
nwreplace - Replace network

Syntax
nwreplace netname[subnet] =netexp [ifegol [ifalter] [if]
[in]

Description
Replaces whole networks, subnetworks or specific dyads.
imitar in usae to replace. A network expression is very
but also accepts
tnames.
One can also replace dyads in networks by 1) Loading a
etwork as Stata variables (see nwload), 2) changing the
stata variables (see replace) and 3) syncing Stata variable
and network afterwards (see nwsync). However, replacing the
. help nwreplace

DISTANCE AND PATH

http://oracleofbacon.org/

Paul Erdős

http://academic.research.micros
oft.com/VisualExplorer

DISTANCE

Length of a shortest connecting path defines the (geodesic) distance between two nodes.

DISTANCE

How can we calculate the distance?

- Matrix y indicates which
 row actor is directly connected to which column actor.
- The squared matrix y^{2} indicates which row actor
 can reach which column actor in two steps.
- The matrix y^{l} indicates who reaches whom in l steps.

DISTANCE

When we take the average of the shortest paths between all nodes (if all are connected) we get the "average shortest path length" ℓ of the network.

Intuition: If we were to select two nodes at random, how many steps would it take 'on average' to connect them?

For a random graph one can show that:

$$
\ell \approx \frac{\ln (n)}{\ln (k)}
$$

$n=$ number of nodes
$k=$ average degree of nodes

DISTANCE

distances $=\left[\begin{array}{lllll}0 & 1 & 1 & 2 & 2 \\ 1 & 0 & 2 & 1 & 1 \\ 1 & 2 & 0 & 3 & 3 \\ 1 & 2 & 2 & 0 & 3 \\ 2 & 1 & 3 & 1 & 0\end{array}\right]$
avgerage shortest path length $=$

DISTANCE DISTRIBUTION

- Networks can have the same "average shortest path length", but still be vastly different from each other.
- Better, look at the "distribution of shortest paths" instead of the average.
- Calculate how often each distance occurs.
$\left[\begin{array}{lllll}0 & 1 & 1 & 2 & 2 \\ 1 & 0 & 2 & 1 & 1 \\ 1 & 2 & 0 & 3 & 3 \\ 1 & 2 & 3 & 0 & 3 \\ 2 & 1 & 3 & 1 & 0\end{array}\right]$

DISTANCE DISTRIBUTION

- Networks can have the same "average shortest path length", but still be vastly different from each other.
- Better, look at the "distribution of shortest paths" instead of the average.
- Calculate how often each distance occurs.
$\left[\begin{array}{lllll}0 & 1 & 1 & 2 & 2 \\ 1 & 0 & 2 & 1 & 1 \\ 1 & 2 & 0 & 3 & 3 \\ 1 & 2 & 3 & 0 & 3 \\ 2 & 1 & 3 & 1 & 0\end{array}\right]$
distance

DISTANCE

. webnwuse florentine, nwclear
. nwgeodesic flomarriage

Network name: flomarriage
Network of shortest paths: geodesic
Nodes: 16
Symmetrized : 1

Paths (largest component) : 105
Diameter (largest component): 5
Average shortest path (largest component): 2.485714285714286

DISTANCE

. nwset
(3 networks)
flobusiness
flomarriage
geodesic
nwtabulate geodesic

Network: geodesic		Directed: false	
geodesic	Freq.	Percent	Cum.
-1	15	12.50	12.50
1	20	16.67	29.17
2	35	29.17	58.33
3	32	26.67	85.00
4	15	12.50	97.50
5	3	2.50	100.00
Total	120	100.00	

CENTRALITY

CENTRALITY

Well connected actors are in a structurally advantageous position.

- Getting jobs
- Better informed
- Higher status

CENTRALITY

Well connected actors are in a structurally advantageous position.

- Getting jobs
- Better informed
- Higher status
- ...

What is "well-connected?"

DEGREE CENTRALITY

Degree centrality

- We already know this. Simply the number of incoming/outgoing ties => indegree centrality, outdegree centrality
- How many ties does an individual have?

$$
C_{\text {odegree }}(i)=\sum_{j=1}^{N} y_{i j} \quad C_{i d e g r e e}(i)=\sum_{j=1}^{N} y_{j i}
$$

DEGREE CENTRALITY

Degree centrality

$C_{\text {degree }}(i)=\sum_{j=1}^{N} y_{i j}$
$C_{\text {degree }}(a)=4$
$C_{\text {degree }}(b)=1$
$C_{\text {degree }}(c)=1$

CLOSENESS CENTRALITY

Closeness centrality

- How close is an individual (on average) from all other individuals?

Farness

- How many steps (on average) does it take an individual to reach all other individuals?
$\operatorname{Farness}(i)=\frac{1}{N-1} \sum_{j=1}^{N} l_{i j}$
$l_{i j}=$ shortest path between iand j

FARNESS

Farness

$\operatorname{Farness}(i)=\frac{1}{N-1} \sum_{j=1}^{N} l_{i j}$

Farnes $s(a)=\frac{1}{4}(1+1+1+1)=1$
Farnes $s(b)=\frac{1}{4}(1+2+2+2)=\frac{7}{4}$

CLOSENESS CENTRALITY
$C_{\text {closeness }}(i)=\frac{1}{\operatorname{Farness}(i)}$
$C_{\text {closeness }}(a)=1 /\left[\frac{1}{4}(1+1+1+1)\right]=1$
$C_{\text {closeness }}(b)=1 /\left[\frac{1}{4}(1+2+2+2)\right]=\frac{4}{7}$
..'

BETWEENNESS CENTRALITY

Betweeness centrality

- How many shortest paths go through an individual?
$C_{\text {betweenness }}(a)=6$
$C_{\text {betweenness }}(b)=0$

BETWEENNESS CENTRALITY

Betweeness centrality

- How many shortest paths go through an individual?

What about multiple shortest paths?
E.g. there are two shortest paths from c to d (one via a and another one viae)

Give each shortest path a weight inverse to how many shortest paths there are between two nodes.
nwbetween flomarriage
Network name: flomarriage

Betweenness centrality

Variable	Obs	Mean	Std. Dev.	Min	Max
_between	16	19.5	24.60111	0	95

. list _nodelab _between

	_nodelab	_between
1.	acciaiuoli	0
2.	albizzi	38.66667
3.	barbadori	17
4.	bischeri	19

CENTRALITY

nwdegree
nwbetween
nwevcent \because C
nwcloseness
nwkatz

SIMULATION

RANDOM NETWORK

nwrandom 15, prob (.1)

nwrandom 15, prob (.5)

Each tie has the same probability to exist, regardless of any other ties.

LATTICE

nwlattice 55

RING LATTICE

nwring 15, $k(2)$ undirected

SMALL WORLD NETWORK

nwsmall 10, $k(2)$ shortcuts(3) undirected

PREFERENTIAL
 ATTACHMENT NETWORK

nwpref 10 , prob(.5)

HOMOPHILY NETWORK

nwhomophily gender, density (0.05) homophily (5)

VISUALIZATION

Nuffield Network 2008

GTETE

- webnwuse gang
- nwplot gang, color(Birthplace)

nwplot gang, color(Birthplace) symbol(Prison) size(Arrests)

. nwplotmatrix flomarriage, lab

. nwplotmatrix flomarriage, sortby(wealth) label(wealth)

UNDER THE HOOD

most nwcommands

nwname, nwset, nwtomata, _nwsyntax, nwunab...
quasi-objects (Mata matrix + globals)

THREE STEPS IN PROGRAMS

1. Parse network
2. Obtain adjacency matrix and meta-information
3. Perform some calculation with the adjacency matrix

EXAMPLE: OUTDEGREE

capture program drop myoutdegree program myoutdegree
syntax [anything]
_nwsyntax `anything' nwtomata `netname', mat(net)
mata: outdegree = rowsum(net)
getmata outdegree
mata: mata drop net outdegree
end

EXAMPLE: OUTDEGREE

capture program drop myoutdegree program myoutdegree
syntax [anything]
_nwsyntax `anything'

Parse networks.
Populate local "netname".
nwtomata `netname', mat(net)
mata: outdegree = rowsum(net) getmata outdegree
mata: mata drop net outdegree end

EXAMPLE: OUTDEGREE

capture program drop myoutdegree program myoutdegree
syntax [anything]
_nwsyntax `anything' nwtomata `netname', mat(net)
Obtain adjacency matrix "net"
mata: outdegree = rowsum(net) getmata outdegree
mata: mata drop net outdegree end

EXAMPLE: OUTDEGREE

capture program drop myoutdegree program myoutdegree
syntax [anything]
_nwsyntax `anything' nwtomata `netname', mat(net)
mata: outdegree $=$ rowsum(net) getmata outdegree
mata: mata drop net outdegree end

SOCIAL NETWORK ANALYSIS USING STATA

Thomas Grund
University College Dublin
thomas.u.grund@gmail.com

[^0]: nwset varlist[, edgelist directed undirected name(newnetname) labs(string)
 labsfromvar(varname) vars(string) keeporiginal xvars]
 nwset, mat (matamatrix) [directed undirected name(newnetname) labs(string) labsfromvar(varname) vars(string) xvars]

