





Italian Stata Users Group Meeting

November 12, 2015

Assessment of proportional hazards assumption: restricted mean difference as a potential alternative to the hazard ratio for the analysis of time-to-event endpoint on aggregate data

#### Francesca Ghilotti

Background Rationale Objectives

Background

- Survival improvement is an appropriate measure of clinical benefit
- Time-to-event endpoint is the outcome of interest in many oncological clinical studies
- Log-rank and proportional hazards (PH) Cox model are the most common techniques used for analyzing survival time data

Background Rationale Objectives

# Rationale

- The hazards need to be proportional but rarely PH assumption is assessed
- Survival curve convergences and crossings are common in medical research



f.ghilotti1@campus.unimib.it

November 12, 2015

Background Rationale Objectives



Conduct a **systematic review** to quantify the phenomenon of survival curve convergences and crossings

Propose the use of **meta-regression** as a method to test the **PH assumption** when only **aggregate data** are available

Propose the use of **restricted mean difference** as a potential alternative to the HR in case of non-PH

Systematic review Estimates of log(HR) and its variance Assessing the PH assumption Assessing the PH assumption RMST



#### Inclusion criteria for the review

- Phase II/III RCTs
- Advanced non-small-cell lung cancer (NSCLC)
- Antitumor therapies
- Time-to-event primary endpoint

Data extraction:

Study design, patient and treatment characteristics, metodological and statistical features

Systematic review Estimates of log(HR) and its variance Assessing the PH assumption Assessing the PH assumption RMST



- Inclusion criteria for the analysis
  - Number of patients at risk reported at each time-point p
  - At least 3 time-points available

Data extraction:

Survival probabilities from the KM curves at p time-points, number of patients at risk

-

Systematic review Estimates of log(HR) and its variance Assessing the PH assumption Assessing the PH assumption RMST

Estimates of log(HR) and its variance

- Life-table approach
- Censoring uniform within each time interval

$$s_{j,i}^* = s_{j,i-1}^* \cdot \left[ 1 - \frac{d_{j,i}^*}{n_{j,i-1} - (c_{j,i}^*/2)} \right]$$
(1)

$$n_{j,i} = n_{j,i-1} - d_{j,i}^* - c_{j,i}^*$$
(2)

Rearranging (1) e (2) gives the number of events  $d_{j,i}^*$ , the number censored  $c_{i,i}^*$  and the number at risk  $n_{i,i}^*$  during the interval  $[t_{i-1}, t_i)$ 

| $[t_{i}]$ |
|-----------|
|           |

Williamson, P.R. Statistics in medicine, 2002 f.ghilotti1@campus.unimib.it

Systematic review Estimates of log(HR) and its variance Assessing the PH assumption Assessing the PH assumption RMST

# Estimates of log(HR) and its variance

Logarithm of the Hazard Ratio whitin the *i*<sup>th</sup> time interval

$$log(HR)_i = rac{(d^*_{2,i} - e^*_{2,i})}{v_i}$$

Variance of the log(HR) whitin the *i*<sup>th</sup> time interval  $var(log(HR)_i) = \frac{1}{v_i}$ 

8/31

Systematic review Estimates of log(HR) and its variance Assessing the PH assumption Assessing the PH assumption RMST

Assessing the PH assumption

• GRAPHICAL APPROACH

• log(-log S) plot against time

twoway (scatter ln\_ln1 ln\_t, connect(l)) ///
(scatter ln\_ln2 ln\_t, connect(l))

• Forest plot within each study to visualize the relation between the HR and the time of follow-up

metan ln\_hr se\_hr, fixedi eform label(namevar=t)

Systematic review Estimates of log(HR) and its variance Assessing the PH assumption Assessing the PH assumption RMST

# Assessing the PH assumption

ANALYTICAL APPROACH

#### • Meta-regression to test for a linear trend with time

- Outcome: log(HR) at each time-point
- Explanatory variable: follow-up time
- Inverse-variance weighting

statsby \_b e(chi2) e(df\_m),by(id): vwls ln\_hr t1,sd(se\_hr)

```
rename _eq2_stat_1 chi2
rename _eq2_stat_2 df_m
gen pvalue=chi2tail(df_m, chi2)
gen z=sqrt(chi2)
list if pvalue<0.1</pre>
```

Systematic review Estimates of log(HR) and its variance Assessing the PH assumption Assessing the PH assumption RMST

Association between non-PH and study characteristics

- Type of treatment comparison
  - different mechanism of action
  - same mechanism of action

conventional therapy, biologics, tyrosine-kinase inhibitor (TKI), non-conventional target

- Type of endpoint
  - Overall Survival (OS)
  - Progression Free Survival (PFS)

Systematic review Estimates of log(HR) and its variance Assessing the PH assumption Assessing the PH assumption RMST

Restricted Mean Survival Time (RMST)

- Select a time-point t\*, up to which we wish to compute the RMST
- For a random time-to-event variable T, we estimate:

$$\mu(t^*) = E[\min(T, t^*)] = \int_0^{t^*} S(t) dt$$
 (3)

- Area under the survival curve up to  $t^*$
- Can think of it as the 't\*-year life expectancy'
- Difference in RMST between arms could be used as an alternative to the HR

Royston, P. and Parmar, M.K. Statistics in medicine, 2011 (December 12, 2015) f.ghilotti1@campus.unimib.it November 12, 2015 12/31

Flow-chart

## Flow-chart



Flow-chart Characteristics of the studies PH assumption assessment RMST

Characteristics of the studies included in the review

- Phase: 33% were phase II studies, 67% were phase III
- **Primary endpoint:** 49% OS, 51% PFS
- **Treatment comparisons:** 41% same mechanism of action, 59% different mechanism
- Partecipants: The median number randomized was 332
- Statistical analysis: Log-rank test, Cox model

Only 4 (3%) out of 115 studies reported whether PH assumption was satisfied or not

14/31

Flow-chart Characteristics of the studies **PH assumption assessment** RMST

## PH assumption assessment

For 12 (19%) out of 62 treatment comparisons non-PH was detected

• Two studies in which PH assumption is violated:



Barlesi, F. Journal of clinical oncology, 2013

Flow-chart Characteristics of the studies PH assumption assessment RMST

## PH assumption assessment



Flow-chart Characteristics of the studies PH assumption assessment RMST

#### PH assumption assessment



Barlesi, F. Journal of clinical oncology, 2013

f.ghilotti1@campus.unimib.it

Flow-chart Characteristics of the studies PH assumption assessment RMST

#### PH assumption assessment



Mok, T.S. New England Journal of Medicine, 2009

f.ghilotti1@campus.unimib.it

November 12, 2015

Introduction Methods Results

Discussion

Flow-chart Characteristics of the studies PH assumption assessment RMST

### PH assumption assessment





Flow-chart Characteristics of the studies PH assumption assessment RMST

#### PH assumption assessment





f.ghilotti1@campus.unimib.it

November 12, 2015

Flow-chart Characteristics of the studies **PH assumption assessment** RMST

#### PH assumption assessment

• Two studies in which PH assumption is satisfied:





Flow-chart Characteristics of the studies PH assumption assessment RMST

## PH assumption assessment





Flow-chart Characteristics of the studies PH assumption assessment RMST

#### PH assumption assessment



Gridelli, C. Journal of thoracic oncology, 2007

f.ghilotti1@campus.unimib.it

< 同 > < 回 > < 回 > .

Flow-chart Characteristics of the studies PH assumption assessment RMST

## PH assumption assessment



Quoix, E. The Lancet, 2011

f.ghilotti1@campus.unimib.it

< 回 > < 回 > < 回 >

Flow-chart Characteristics of the studies PH assumption assessment RMST

## PH assumption assessment





Flow-chart Characteristics of the studies PH assumption assessment RMST

#### PH assumption assessment



Quoix, E. The Lancet, 2011

f.ghilotti1@campus.unimib.it

・ 同 ト ・ ヨ ト ・ ヨ ト

Flow-chart Characteristics of the studies **PH assumption assessment** RMST

## PH assumption results

#### Table: Association between non-PH and study characteristics

|                                                                                  | PH assumpt            | Fisher's           |            |
|----------------------------------------------------------------------------------|-----------------------|--------------------|------------|
|                                                                                  | No                    | Yes                | exact test |
| <b>Treatments</b><br>Same treatment comparison<br>Different treatment comparison | 20 (100%)<br>30 (71%) | 0 (0%)<br>12 (29%) | 0.006      |
| Primary endpoint<br>OS<br>PFS                                                    | 23 (92%)<br>27 (73%)  | 2 (8%)<br>10 (27%) | 0.101      |

< 🗇 > < 🖃 >

Flow-chart Characteristics of the studies PH assumption assessment RMST

Table: Comparison between the RMST results and the results reported by authors

|         | RMST results              |                   | Median Results      |                           |                           | HR Results |                   |
|---------|---------------------------|-------------------|---------------------|---------------------------|---------------------------|------------|-------------------|
| Study   | RMST<br>diff <sup>a</sup> | p-value<br>test Z | Median<br>(control) | Diff<br>(HR) <sup>b</sup> | Diff<br>(KM) <sup>c</sup> | HR         | p-value           |
| Wu      | 6.66                      | < 0.001           | 5.6                 | 14.4                      | 8.1                       | 0.28       | < 0.001           |
| Solomon | 6.13                      | < 0.001           | 7.0                 | 8.56                      | 3.9                       | 0.45       | < 0.001           |
| Seto    | 5.13                      | < 0.001           | 9.7                 | 8.26                      | 6.3                       | 0.54       | 0.002             |
| Shaw    | 3.33                      | 0.004             | 3.0                 | 3.12                      | 4.7                       | 0.49       | < 0.001           |
| Barlesi | 2.37                      | < 0.001           | 3.7                 | 4.01                      | 3.7                       | 0.48       | < 0.001           |
| Lee     | 1.23                      | 0.15              | 3.4                 | 1.26                      | -0.1                      | 0.73       | 0.04 <sup>§</sup> |
| Jänne   | 0.82                      | 0.61              | 5.2                 | 1.30                      | 4.2                       | 0.80       | 0.21 <sup>§</sup> |
| Reck    | 0.76                      | 0.018             | 2.7                 | 0.72                      | 0.8                       | 0.79       | 0.002             |
| Belani  | 0.65                      | 0.73              | 7.1                 | 0.88                      | 0.9                       | 0.89       | 0.36              |

<sup>a</sup> Restricted Mean Survival Time difference (months)

<sup>b</sup> Median difference derived from HR (months)

<sup>c</sup> Median difference derived from KM curve (months)

§ one-sided

f.ghilotti1@campus.unimib.it

November 12, 2015

< ロ > < 同 > < 回 > < 回 > :

Flow-chart Characteristics of the studies PH assumption assessment RMST

Table: Comparison between the RMST results and the results reported by authors

|         | RMST results              |                   | Median Results      |                           |                           | HR Results |                   |
|---------|---------------------------|-------------------|---------------------|---------------------------|---------------------------|------------|-------------------|
| Study   | RMST<br>diff <sup>a</sup> | p-value<br>test Z | Median<br>(control) | Diff<br>(HR) <sup>b</sup> | Diff<br>(KM) <sup>c</sup> | HR         | p-value           |
| Wu      | 6.66                      | < 0.001           | 5.6                 | 14.4                      | 8.1                       | 0.28       | < 0.001           |
| Solomon | 6.13                      | < 0.001           | 7.0                 | 8.56                      | 3.9                       | 0.45       | < 0.001           |
| Seto    | 5.13                      | < 0.001           | 9.7                 | 8.26                      | 6.3                       | 0.54       | 0.002             |
| Shaw    | 3.33                      | 0.004             | 3.0                 | 3.12                      | 4.7                       | 0.49       | < 0.001           |
| Barlesi | 2.37                      | < 0.001           | 3.7                 | 4.01                      | 3.7                       | 0.48       | < 0.001           |
| Lee     | 1.23                      | 0.15              | 3.4                 | 1.26                      | -0.1                      | 0.73       | 0.04 <sup>§</sup> |
| Jänne   | 0.82                      | 0.61              | 5.2                 | 1.30                      | 4.2                       | 0.80       | 0.21 <sup>§</sup> |
| Reck    | 0.76                      | 0.018             | 2.7                 | 0.72                      | 0.8                       | 0.79       | 0.002             |
| Belani  | 0.65                      | 0.73              | 7.1                 | 0.88                      | 0.9                       | 0.89       | 0.36              |

<sup>a</sup> Restricted Mean Survival Time difference (months)

<sup>b</sup> Median difference derived from HR (months)

<sup>c</sup> Median difference derived from KM curve (months)

§ one-sided

f.ghilotti1@campus.unimib.it

November 12, 2015

< ロ > < 同 > < 回 > < 回 > :

Flow-chart Characteristics of the studies PH assumption assessment RMST

Table: Comparison between the RMST results and the results reported by authors

|         | RMST results              |                   | Median Results      |                           |                           | HR Results |                   |
|---------|---------------------------|-------------------|---------------------|---------------------------|---------------------------|------------|-------------------|
| Study   | RMST<br>diff <sup>a</sup> | p-value<br>test Z | Median<br>(control) | Diff<br>(HR) <sup>b</sup> | Diff<br>(KM) <sup>c</sup> | HR         | p-value           |
| Wu      | 6.66                      | < 0.001           | 5.6                 | 14.4                      | 8.1                       | 0.28       | < 0.001           |
| Solomon | 6.13                      | < 0.001           | 7.0                 | 8.56                      | 3.9                       | 0.45       | < 0.001           |
| Seto    | 5.13                      | < 0.001           | 9.7                 | 8.26                      | 6.3                       | 0.54       | 0.002             |
| Shaw    | 3.33                      | 0.004             | 3.0                 | 3.12                      | 4.7                       | 0.49       | < 0.001           |
| Barlesi | 2.37                      | < 0.001           | 3.7                 | 4.01                      | 3.7                       | 0.48       | < 0.001           |
| Lee     | 1.23                      | 0.15              | 3.4                 | 1.26                      | -0.1                      | 0.73       | 0.04 <sup>§</sup> |
| Jänne   | 0.82                      | 0.61              | 5.2                 | 1.30                      | 4.2                       | 0.80       | 0.21 <sup>§</sup> |
| Reck    | 0.76                      | 0.018             | 2.7                 | 0.72                      | 0.8                       | 0.79       | 0.002             |
| Belani  | 0.65                      | 0.73              | 7.1                 | 0.88                      | 0.9                       | 0.89       | 0.36              |

<sup>a</sup> Restricted Mean Survival Time difference (months)

<sup>b</sup> Median difference derived from HR (months)

<sup>c</sup> Median difference derived from KM curve (months)

§ one-sided

f.ghilotti1@campus.unimib.it

November 12, 2015

< ロ > < 同 > < 回 > < 回 > :

Pros and Cons Next steps

# Pros and Cons

- **New!** Assess the PH assumption using aggregate data
- Conclusions are in line with the log-log plots and with the results reported by authors

- Data constrained by the quality of figures
- Assumption about the mechanism of censoring
  - Only studies with patients at risk reported

Pros and Cons Next steps

## Future research

- Compare the conclusions obtained with individual patient data (IPD) and with aggregate data
- Investigate how many time-points are needed

I DQA

30/31

Pros and Cons Next steps

# Thank you for your attention!

Joined work with: Rino Bellocco <sup>1</sup> Eliana Rulli <sup>2</sup> Valter Torri <sup>2</sup>

1 Karolinska Institutet, University of Milano-Bicocca 2 Mario Negri Institute for Pharmacological Research

## Appendix

Numbers at risk during a time interval are:

$$n_{j,i}^{*} = \frac{(n_{j,i-1} + n_{j,i}) \cdot s_{j,i-1}^{*}}{(s_{j,i-1}^{*} + s_{j,i}^{*})}$$
(4)

Number of events during a time interval is:

$$d_{j,i}^{*} = \frac{(n_{j,i-1} + n_{j,i}) \cdot (s_{j,i-1}^{*} - s_{j,i}^{*})}{(s_{j,i-1}^{*} + s_{j,i}^{*})}$$
(5)

Numbers censored during a time interval are:

$$c_{j,i}^{*} = \frac{2 \cdot (n_{j,i-1} \cdot s_{j,i}^{*} - n_{j,i} \cdot s_{j,i-1}^{*})}{(s_{j,i-1}^{*} + s_{j,i}^{*})}$$
(6)



Appendix



$$log(HR)_{i} = \frac{(d_{2,i}^{*} - e_{2,i}^{*})}{v_{i}}$$
(7)  
$$var(log(HR)_{i}) = \frac{1}{v_{i}}$$
(8)

where

$$e_{2,i}^{*} = (d_{2,i}^{*} + d_{1,i}^{*}) \cdot \frac{(n_{2,i}^{*})}{(n_{2,i}^{*} + n_{1,i}^{*})}$$
(9)  
$$v_{i} = (d_{2,i}^{*} + d_{1,i}^{*}) \cdot \frac{n_{2,i}^{*} \cdot n_{1,i}^{*}}{(n_{2,i}^{*} + n_{1,i}^{*})^{2}}$$
(10)

Back to <a></a></a>

## Appendix

The area under the curve for group j was estimated by:

$$\mu_{j} = \sum_{i=1}^{p} \mu_{j,i} = \sum_{i=1}^{p} \frac{(s_{j,i-1}^{*} + s_{j,i}^{*}) \cdot (t_{i} - t_{i-1})}{2}$$
(11)

To estimate the variability of this quantity the formula reported by Klein was used:

$$V(\mu_j) = \sum_{i=1}^{p} \left[ \int_{t_i}^{t^*} S(t) dt \right]^2 \cdot \frac{d_i}{n_i \cdot (n_i - d_i)}$$
(12)

Back to 12.