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ABSTRACT: This paper presents a parametric counter-factual model identifying Average 

Treatment Effects (ATEs) by Conditional Mean Independence when externality (or 

neighbourhood) effects are incorporated within the traditional Rubin’s potential outcome model. 

As such, it tries to generalize the usual control-function regression, widely used in program 

evaluation and epidemiology, when SUTVA (i.e. Stable Unit Treatment Value Assumption) is 

relaxed. As by-product, the paper presents also ntreatreg, an author-written Stata routine for 

estimating ATEs when social interaction may be present. Finally, an instructional application of 

the model and of its Stata implementation through two examples (the first on the effect of 

housing location on crime; the second on the effect of education on fertility), are showed and 

results compared with a no-interaction setting. 
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1. INTRODUCTION

n observational program evaluation 

studies, aimed at estimating the effect 

of an intervention on the outcome of a 

set of targeted individuals, it is generally 

assumed that “the treatment received by one 

unit does not affect other units’ outcome” 

(Cox, 1958). Along with other fundamental 

assumptions - such as, for instance, the 

conditional independence assumption, the 

exclusion restriction provided by 

instrumental-variables estimation, or the 

existence of a forcing-variable in regression 

discontinuity design - the no-interference 

assumption is required in order to obtain a 

consistent estimation of the (average) 

treatment effects (ATEs). It means that, if 

interference (or interaction) among units is 

assumed, traditional program evaluation 

methods such as control-function regression, 

selection models, matching or reweighting are 

bound to be biased estimations of the actual 

treatment effect.  

Rubin (1978) calls this important 

assumption as Stable-Unit-Treatment-Value-

Assumption (SUTVA), whereas Manski 

(2013) refers to Individualistic-Treatment-

Response (ITR) to emphasize that this poses a 

restriction in the form of the treatment 

response function that the analyst considers. 

SUTVA (or ITR) implies that the treatment 

applied to a specific individual affects only 

the outcome of that individual, so that 

potential “externality effects” flowing for 

instance from treated to untreated subjects are 

sharply ruled out. 

In this paper, we aim at removing this 

hypothesis to understand what happens to the 

estimation of the effect of a binary policy 

(treatment) in the presence of neighbourhood 

(externality) effects taking place among 

supported (treated) and non-supported 

(untreated) units.  

Epidemiological studies have addressed this 

hot topic although restricting the analysis to 

experimental settings where treatment 

randomization is assumed (see, for instance: 

Rosenbaum, 2007; Hudgens and Halloran, 

2008; Tchetgen-Tchetgen and VanderWeele, 

2010; Robins et al., 2000). Differently, this 

paper moves along the line traced by 

econometric studies normally dealing with 

non-experimental settings where sample 

selection is the rule (i.e., no random draw is 

assumed) and an ex-post evaluation is thus 

envisaged (Sobel, 2006). In particular, we 

work within the binary potential outcome 

model that in many regards we aim at 

generalizing for taking into account 

neighbourhood effects. Our theoretical 

reference may be found in some previous 

works dealing with treatment effect 

identification in the presence of externalities 

and in particular in the papers by Manski 

(1993; 2013).  

Moreover, as by-product, this work also 

presents a Stata routine, ntreatreg, for 

estimating Average Treatments Effects 

(ATEs) when neighbourhood effects are taken 

into account.  

The paper is organized as follows: section 2 

presents some related literature and positions 

our approach within the Manski’s notion of 

“endogenous” neighbourhood effects; section 

3 sets out the model, its assumptions and 

propositions; section 4 presents the model’s 

estimation procedure; section 5 puts forward 

the Stata implementation of the model via the 

author-written routine ntreatreg, and then 

provides two applications: one on the effect of 

housing location on crime; and one on the 

I 
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effect of education on fertility; section 6, 

finally, concludes the paper. 

2.  RELATED LITERATURE 

The literature on the estimation of treatment 

effects under potential interference among 

units is a recent and challenging field of 

statistical and econometric study. So far, 

however, only few papers have dealt formally 

with this relevant topic.  

Rosenbaum (2007) was among the first 

scholars paving the way to generalize the 

standard randomization statistical approach 

for comparing different treatments to the case 

of units’ interference. He presented a 

statistical model in which unit’s response 

depends not only on the treatment individually 

received, but also on the treatment received by 

other units’, thus showing how it is possible to 

test the null-hypothesis of no interference in a 

random assignment setting where 

randomization occurs within pre-specified 

groups and interference between groups is 

ruled out.      

On the same vein, Sobel (2006) provided a 

definition, identification and estimation 

strategy for traditional average treatment 

effect estimators when interference between 

units is allowed, by taking as example the 

“Moving To Opportunity” (MTO) randomized 

social experiment. In his paper, he uses 

interchangeably the term interference and 

spillover to account for the presence of such a 

kind of externality. Interestingly, he shows 

that a potential bias can arises when no-

interference is erroneously assumed, and 

defines a series of direct and indirect 

treatment effects that may be identified under 

reasonable assumptions. Moreover, this author 

shows some interesting links between the 

form of his estimators under interference and 

the Local Average Treatment Effect (LATE) 

estimator provided by Imbens and Angrist 

(1994), thus showing that – under interference 

– treatment effects can be identified only on 

specific sub-populations.  

The paper by Hudgens and Halloran (2008) 

is probably the most relevant of this literature, 

as these authors develop a rather general and 

rigorous modelling of the statistical treatment 

setting under randomization when interference 

is potentially present. Furthermore, their 

approach paves the way also for extensions to 

observational settings. Starting from the same 

two-stage randomization approach of 

Rosenbaum (2007), these authors manage to 

go substantially farther by providing a precise 

characterization of the causal effects with 

interference in randomized trials 

encompassing also the Sobel’s approach. 

They define direct, indirect, total and overall 

causal effects showing the relation between 

these measures and providing an unbiased 

estimator of the upper bound of their variance. 

Tchetgen-Tchetgen and VanderWeele 

(2010)’s  paper follows in the footsteps traced 

by the approach of Hudgens and Halloran 

(2008) and provides a formal framework for 

statistical inference on population average 

causal effects in a finite sample setting with 

interference when the outcome variable is 

binary. Interestingly, they also present an 

original inferential approach for observational 

studies based on a generalization of the 

Inverse Probability Weighting (IPW) 

estimator when interference is present. 

Unfortunately, they do not provide the 

asymptotic variances for such estimators. 

Aronow and Samii (2013) finally 

generalizes the approach proposed by 

Hudgens and Halloran (2008) going beyond 
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the hierarchical experiment setting and 

providing a general variance estimation 

including covariates adjustment. 

Previous literature assumes that the 

potential outcome y of unit i is a function of 

the treatment received by such a unit (wi) and 

the treatment received by all the other units 

(w-i), that is: 

 

yi(wi; w-i) (1) 

 

entailing that – with N units and a binary 

treatment for instance – a number of 2
N
 

potential outcomes may arise. Nevertheless, 

an alternative way of modelling unit i’s 

potential outcome may be that of assuming: 

 

yi(wi; y-i) (2) 

 

where y-i is the (N-1)x1 vector of other units’ 

potential outcomes excluding unit i’s potential 

outcome. The notion of interference entailed 

by expression (2) is different from that 

implied by expression (2). The latter, 

however, is well consistent with the notion of 

“endogenous” neighbourhood effects 

provided by Manski (1993, pp. 532-533). 

Manski, in fact, identifies three types of 

effects corresponding to three arguments of 

the individual (potential) outcome equation 

incorporating social effects1:  

1. Endogenous effects. Such effects entail 

that the outcome of an individual depends 

on the outcomes of other individuals 

belonging to his neighbourhood. 

 

                                                      
1 The literature is not homogeneous in singling out a 

unique name of such effects: although context-

dependent, authors  interchangeably refer to 

neighbourhood, social, club, interference or interaction 

effects. 

2. Exogenous (or contextual) effects. These 

effects concern the possibility that the 

outcome of an individual is affected by 

the exogenous idiosyncratic 

characteristics of the individuals 

belonging to his neighbourhood.  

3. Correlated effects. They are effects due to 

belonging to a specific group and thus 

sharing some institutional/normative 

condition (that one can loosely define as 

“environment”).   

Contextual and correlated effects are to be 

assumed as exogenous, as they clearly depend 

on pre-determined characteristics of the 

individuals in the neighbourhood (case 2)  or 

of the neighbourhood itself (case 3). 

Endogenous effects are on the contrary of 

broader interest, as they are affected by the 

behaviour (measured as “outcome”) of other 

individuals involved in the same 

neighbourhood. This means that endogenous 

effects both comprise direct and indirect 

effects linked to a given external intervention 

on individuals. The model proposed in this 

paper incorporates the presence of  

endogenous neighbourhood effects as defined 

by Manski within a traditional binary 

counterfactual model and provides both an 

identification and an estimation procedure for 

the Average Treatment Effects (ATEs) in this 

specific case.  

How can we position this paper within the 

literature? Very concisely, previous literature 

assumes that: (i) unit potential outcome 

depends on own treatment and other units’ 

treatment; (ii) assignment is randomized or 

conditionally unconfounded; (iii) treatment is 

multiple; (iii) potential outcomes have a non-

parametric form. This paper, instead, assumes 

that: (i) unit potential outcome depends on 

own treatment and other units’ potential 
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outcome; (ii) assignment is mean 

conditionally unconfounded; (iii) treatment is 

binary; (iv) potential outcomes have a 

parametric form.  

As such, this paper suggests a simple but 

workable way to relax SUTVA, one that 

seems rather easy to implement in many 

socio-economic contexts of application. 

3. A BINARY TREATMENT MODEL  

WITH “ENDOGENOUS”  

NEIGHBOURHOOD EFFECTS 

This section presents a model for estimating 

the average treatment effects (ATEs) of a 

policy program (or a treatment) in a non-

experimental setting in the presence of 

“endogenous” neighbourhood (or externality) 

interactions. We consider a binary treatment 

variable w - taking value 1 for treated and 0 

for untreated units - assumed to affect an 

outcome (or target) variable y that can take a 

variety of forms. 

Some notation can help in understanding the 

setting: N is the number of units involved in 

the experiment; N1, the number of treated 

units; N0 the number of untreated units; wi the  

treatment variable assuming value “1” if unit i 

is treated and “0” if untreated; y1i is the 

outcome of unit i when she is treated; y0i is the 

outcome of unit i when she is untreated;  

xi = (x1i , x2i ,  x3i , ... , xMi)  is a row vector of M 

exogenous observable characteristics for unit 

i = 1, ... , N. 

To begin with, as usual in this literature, we 

define the unit i’s Treatment Effect (TE) as: 

 

TEi = y1i  - y0i (3) 

 

TEi is equal to the difference between the 

value of the target variable when the 

individual is treated (y1), and the value 

assumed by this variable when the same 

individual is untreated (y0). Since TEi refers to 

the same individual at the same time, the 

analyst can observe just one of the two 

quantities feeding into (3) but never both. For 

instance, it might be the case that we can 

observe the investment behaviour of a 

supported company, but we cannot know what 

the investment of this company would have 

been, had it not been supported, and vice 

versa.  The analyst faces a fundamental 

missing observation problem (Holland, 1986) 

that needs to be tackled econometrically in 

order to recover reliably the causal effect via 

some specific imputation technique (Rubin, 

1974; 1977).  

Both y1i  and  y0i are assumed to be 

independent and identically distributed (i.i.d.) 

random variables, generally explained by a 

structural part depending on observable 

factors and a non-structural one depending on 

an unobservable (error) term. Nevertheless, 

recovering the entire distributions of y1i  and 

y0i (and, consequently, the distribution of the 

TEi) may be too demanding without very 

strong assumptions, so that the literature has 

focused on estimating specific moments of 

these distributions and in particular the 

“mean”, thus defining the so-called population 

Average Treatment Effect (hereinafter ATE), 

and ATE conditional on xi (i.e., ATE(xi)) of a 

policy intervention as: 

 

ATE = E(yi1-yi0) (4) 

ATE(xi) = E(yi1 - yi0 | xi) (5) 

 

where E(∙) is the mean operator. ATE is equal 

to the difference between the average of the 

target variable when the individual is treated 

(y1), and the average of the target variable 



 

Cerulli G., Working Paper Cnr-Ceris, N° 04/2014                                                              

 

 9 

when the same individual is untreated (y0). 

Observe that, by the law of iterated 

expectations, ATE = Ex{ATE(x)}. 

Given the definition of the unconditional 

and conditional average treatment effect in (4) 

and (5) respectively, it is immediate to define 

the same parameters in the sub-population of 

treated (ATET) and untreated (ATENT) units, 

i.e.: 
 

ATET = E(yi1-yi0 | wi=1)  

ATET(xi) = E(yi1 - yi0 | xi, wi=1)  

and  
 

ATENT = E(yi1-yi0 | wi=0)  

ATENT(xi) = E(yi1 - yi0 | xi, wi=0)  

 

The aim of this paper is to provide 

consistent parametric estimation of all 

previous quantities (we refer to as ATEs) in 

the presence of neighbourhood effects.  

To that end, we start with what is 

observable to the analyst in such a setting, i.e. 

the actual status of the unit i, that can be 

obtained as: 
 

yi = y0i + wi (y1i  - y0i) (6) 

 

Equation (6) is known as the Rubin’s 

potential outcome model (POM), and it is the 

fundamental relation linking the unobservable 

with the observable outcome. Given Eq. (6), 

we first set out all the assumptions behind the 

next development of the proposed model. 

Assumption 1. Unconfoundedness (or 

CMI). Given the set of random variables {y1i, 

y1i, wi , xi} as defined above, the following 

equalities hold: 

 
E(yig | wi , xi) = E(yig | xi)    with  g = {0,1} 

Hence, throughout this paper, we will 

assume unconfoundedness, i.e. Conditional 

Mean Independence (CMI) to hold. As we 

will show, CMI is a sufficient condition for 

identifying ATEs also when neighbourhood 

effects are considered.  

Once CMI has been assumed, we then need 

to model the potential outcomes y0i and y1i in a 

proper way so to get a representation of the 

ATEs (i.e., ATE, ATET and ATENT) taking 

into account the presence of endogenous 

externality effects. In this paper, we simplify 

further our analysis by assuming some 

restrictions in the form of the potential 

outcomes. 

Assumption 2. Restrictions on the form of 

the potential outcomes. Consider the general 

form of the potential outcome as expressed in 

(2), and assume this relation to depend 

parametrically on a vector of real numbers 

θ = (θ0; θ1). We assume that: 

 

y1i(wi; xi; θ1) 

and  

y0i(wi; xi; y1,-i; θ0) 

 

Assumption 2 poses two important 

restrictions to the form given to the potential 

outcomes: (i) it makes them dependent on 

some unknown parameters θ (i.e., parametric 

form); (ii) it entails that the externality effect 

occurs only in one direction, from the treated 

individuals to the untreated, while the other 

way round is ruled out. 

Assumption 3. Linearity and weighting-

matrix. We assume that the potential 

outcomes are linear in the parameters, and that 

a NxN weighting-matrix Ω of exogenous 

constant numbers is known.  

Under Assumptions 1, 2 and 3, the model 

takes on this form: 
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1

1 0 1

1

ATE = E( ) = 
N

i i i ij j

j

y y   

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 
x δ x β  
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j
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j
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1

1
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1

1
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1

1
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1
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i i i
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N
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j
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N

ij

j

y e

y s e
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y y w y y
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

 








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
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
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
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


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
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

x β

x β

 (7) 

 

where μ1 and μ0 are scalars, β0 and β1 are two 

unknown vector parameters defining the 

different response of unit i to the vector of 

covariates x, e0 and e1 are two random errors 

with zero unconditional variance and is

represents unit i-th neighbourhood effect due 

to the treatment administrated to units 

j (j = 1, ..., N1). Observe that, by linearity, we 

have that: 

 

1

1

1

   if  { 0}

0               if  { 1}

N

ij j

ji

y i w
s

i w





 

 
  


 (8) 

 

where the parameter ωij is the generic element 

of the weighting matrix Ω expressing some 

form of distance between unit i and unit j. 

Although not strictly required for consistency, 

we also assume that these weights add to one, 

i.e.  

 

1

1

1
N

ij

j




 . 

 

In short, previous assumptions say that units 

i neighbourhood effect takes the form of a 

weighted-mean of the outcomes of treated  

 

units and that this “social” effect has an 

impact only on unit i’s outcome when this unit 

is untreated.  

As a consequence, by substitution of (8) into 

(7), we get that: 

 
1

0 0 0 1 0

1

  


   
N

i i ij j i

j

y y ex β  (9) 

 

making clear that untreated unit’s i outcome is 

a function of its own idiosyncratic 

characteristics (xi), the weighted outcomes of 

treated units multiplied by a sensitivity 

parameter γ, and a standard error term.  

We state now a series of propositions 

implied by previous assumptions.  

 

Proposition 1. Formula of ATE with 

neighbourhood interactions. Given 

assumptions 2 and 3 and the implied 

equations established in (7), the average 

treatment effect (ATE) with neighbourhood 

interactions takes on this form:   

 

 

                    (10) 

 

 

where E( )i ix x is the unconditional mean 

of the vector xi, and 1 0 1      . The 

proof is in Appendix. See A1. 

Indeed, by the definition of ATE as given in 

(4) and by (7), we can immediately show that 

for such a model: 

 

        

(11) 
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0 1

1
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 (12) 

 

and by developing ATE further using Eq. 

(11), we finally get the result in (10). 

 

Proposition 2. Formula of ATE(xi) with 

neighbourhood interactions. Given 

assumptions 2 and 3 and the result in 

proposition 1, we have that: 

 

 

(13) 

 

where it is now easy to see that 

ATE =Ex{ATE(x)}. The proof is in Appendix. 

See A2. 

 

Proposition 3. Baseline random-coefficient 

regression. By substitution of equations (7) 

into the POM of Eq. (6), we obtain the 

following random-coefficient regression 

model (Wooldridge, 1997):  

 

 

(14) 

 

where,    

 

and  

 
1 1

1 0 1 0 1

1 1

( )
N N

i ij j i i i i i ij j

j j

e e e w e e w e   
 

     

 

The proof is in Appendix. See A3. 

 

Proposition 4. Ordinary Least Squares 

(OLS) consistency. Under assumption 1 

(CMI), 2 and 3, the error tem of regression 

(14) has zero mean conditional on (wi, xi), i.e.:  

 

 

(15) 

 

 

 

thus implying that Eq. (14) is a regression 

model whose parameters can be consistently 

estimated by Ordinary Least Squares (OLS). 

The proof is in Appendix. See A4. 

Once a consistent estimation of the 

parameters of (14) is obtained, we can 

estimate ATE directly from the regression, 

and ATE(xi) by plugging the estimated 

parameters into formula (11). This is because 

ATE(xi) becomes a function of consistent 

estimates, and thus consistent itself: 

 

plim ATE( ) ATE( )i ix x   

 

where ATE( )ix  is the plug-in estimator of 

ATE(xi). Observe, however, that the 

(exogenous) weighting matrix Ω=[ωij] needs 

to be provided in advance.  

Once the formulas for ATE and ATE(xi) are 

available, it is also possible to recover the 

Average Treatment Effect on Treated (ATET) 

and on non-Treated (ATENT) as:   

 

1

1

1

ATE( ) = ATE ( ) ( ) 


   
N

i i ij j

j

x x x δ x x β

1

1

1

ATE( ) = ATE ( ) ( ) 


   
N

i i ij j

j

x x x δ x x β
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1

   on   1,   ,   ,   ( ),   ( )
N

i i i i i i ij j j

j

y w w w w


 
  

 
x x x x x

 

1

   on   1,   ,   ,   ( ),   ( )
N

i i i i i i ij j j

j

y w w w w


 
  

 
x x x x x

 1

no-neigh with-neigh 1

1

Bias = ATE - ATE = 
N

ij j

j

 


 
 
 
 x β

 1

no-neigh with-neigh 1

1

Bias = ATE - ATE = 
N

ij j

j

 


 
 
 
 x β

 
1 β λ

 

   (16) 

 

 

 

 

and: 

 

   (17) 

 

 

 

 

 

These quantities are functions of observable 

components and parameters consistently 

estimated by OLS (see next section). Once 

these estimates are available, standard errors 

for ATET and ATENT can be correctly 

obtained via bootstrapping (see Wooldridge, 

2010, pp. 911-919). 

4. ESTIMATION 

Starting from previous section’s results, a 

simple protocol for estimating ATEs can be 

suggested. Given an i.i.d. sample of observed 

variables for each individual i: 

{yi, wi, xi} with i = 1, …, N 

1. provide a weighting matrix Ω=[ωij] 

measuring some type of distance between 

the generic unit i (untreated) and unit j 

(treated);  

2. estimate by an OLS a regression model of: 

 

 

 

 

 

3. obtain 0 1
ˆ ˆ ˆˆ,  ,  ,  β δ β  and put them into 

the formulas of ATEs. 

 
By comparing for instance the formula of 

ATE with (γ ≠ 0) and without (γ = 0) 

neighbourhood effect, we get the 

neighbourhood-bias defined as: 

 

 

 

(18) 

 

 

 
This can also be seen as the externality 

effect produced by the evaluated policy: it 

depends on the weights employed, on the 

average of the observable confounders 

considered into x, and on the magnitude of the 

coefficients γ and β1.  

Observe that such bias may be positive as 

well as negative. Furthermore, by defining:  

  
                                            (19) 

 
it is also possible to test whether this bias is or 

is not statistically significant by simply testing 

the following null-hypothesis:  

 
0 1 2H :   ... 0M       

 
If this hypothesis is rejected, we cannot 

exclude that neighbourhood effects are 

pervasive, thus affecting significantly the 

estimation of the causal parameters ATEs. 

Finally, in a similar way, we can also get an 

estimation of the neighbourhood-bias for 

ATET and ATENT.    
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5. STATA IMPLEMENTATION  

VIA  ntreatreg 

The previous model can be easily estimated 

by using the author-written Stata routine 

ntreatreg.  

The syntax of  ntreatreg is a very 

common one for a Stata command and takes 

on this form: 
  

 

ntreatreg outcome treatment 

varlist hetero(varlist_h) 

spill(matrix) graphic 
 

 

where: 
 

outcome: is the y of the previous model, i.e. 

the target variable of the policy considered. 

treatment: is the w of the previous model, 

i.e. the binary policy (treatment) indicator. 

varlist: is the x of the previous model, i.e. 

the vector of observable unit characteristics. 

hetero(varlist_h): is an optional subset 

of x to allow for observable heterogeneity.  

spill(matrix): is the weighting-matrix Ω, 

to be provided by the user. 

graphic: returns a graph of the distribution 

of ATE(x), ATET(x) ans ATENT(x).  

 

In the next two sub-sections we provide two 

instructional applications of the model 

presented in this paper and of its Stata 

implementation: the first one on the effect of 

housing location on crime; the second one on 

the effect of education on fertility.  

Results are also compared with a no-

interaction setting. 

 

 

5.1 Example 1: the effect of location 

on crime  

As a first application, we consider the 

dataset “SPATIAL_COLUMBUS.DTA” 

provided by  Anselin (1988) containing 

information on property crimes in 49 

neighbourhoods in Columbus, Ohio (US), in 

1980. A total of 22 variables forms this 

dataset. The aim of this instructional 

application is that of evaluating the impact of 

housing location on crimes, i.e. the causal 

effect of the variable “cp” - taking value 1 if 

the neighbourhood is located in the “core” of 

the city and 0 if located in the “periphery” - 

on the number of residential burglaries and 

vehicle thefts per thousand households (i.e., 

the variable “crime”). Several conditioning (or 

confounding) observable factors are included 

in the dataset, but here we only consider two 

main factors, that is, the household income in 

$1,000 (“inc”) and the housing value in 

$1,000 (“hoval”). We are interested in 

detecting the effect of housing location on the 

number of crimes in such a setting, by taking 

into account possible interactions among 

neighbourhoods. More in detail, our 

conjecture is that: “the number of crimes 

occurring in a peripheral neighbourhood (that 

is an ‘untreated’ unit) is not only affected by 

the income and the value of houses located 

within its boundaries, but also by the number 

of crimes occurred in core-neighbourhoods 

(i.e., the ‘treated’ units)”, by assuming that 

this effect is proportional to the “distance” – 

measured by geographical coordinates – 

between the peripheral neighbourhood and the 

set of core-neighbourhoods. In what follows, 

the estimation steps with Stata commands. 
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Step 0. INPUT DATA FOR THE REGRESSION MODEL 
 

y: crime 

w: cp 

x: inc hoval 

Matrix Ω: W 
 

Step 1. LOAD THE STATA ROUTINE "NTREATREG" AND THE DATASET 
 

. ssc install ntreatreg 

. ssc install spatwmat // see package: sg162 from 

http://www.stata.com/stb/stb60 

. use "SPATIAL_COLUMBUS.DTA" 

 

Step 2. PROVIDE THE MATRIX "OMEGA" (HERE WE CALL IT "W") 
 

. spatwmat, name(W) xcoord($xcoord) ycoord($ycoord) band(0 $band) /// 

standardize eigenval(E)   // this generates the inverse distance matrix W  
 

The following matrices have been created: 

1. Inverse distance weights matrix W (row-standardized) 

   Dimension: 49x49 

   Distance band: 0 < d <= 10 

   Friction parameter: 1 

   Minimum distance: 0.7       

   1st quartile distance: 6.0       

   Median distance: 9.5       

   3rd quartile distance: 13.6      

   Maximum distance: 27.0      

   Largest minimum distance: 3.37      

   Smallest maximum distance: 14.51     

2. Eigenvalues matrix E 

   Dimension: 49x1 

 

Step 3. ESTIMATE THE MODEL USING "NTREATREG" TO GET THE “ATE” WITH 

NEIGHBORHOOD-INTERACTIONS 
 

. set more off 

. xi: ntreatreg crime cp inc hoval , hetero(inc hoval) spill(W) graphic  
 

      Source |       SS       df       MS              Number of obs =      49 

-------------+------------------------------           F(  7,    41) =   15.74 

       Model |  9793.37437     7  1399.05348           Prob > F      =  0.0000 

    Residual |  3644.84518    41  88.8986629           R-squared     =  0.7288 

-------------+------------------------------           Adj R-squared =  0.6825 

       Total |  13438.2195    48  279.962907           Root MSE      =  9.4286 

------------------------------------------------------------------------------ 

       crime |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          cp |   9.492458   4.816401     1.97   0.056    -.2344611    19.21938 

         inc |  -.4968051   .3653732    -1.36   0.181    -1.234691     .241081 

       hoval |  -.2133293    .101395    -2.10   0.042    -.4181006    -.008558 

     _ws_inc |   -1.19053   .9911119    -1.20   0.237    -3.192121    .8110612 

   _ws_hoval |   .1440651   .2268815     0.63   0.529    -.3141313    .6022616 

   z_ws_inc1 |  -5.719737   2.934276    -1.95   0.058    -11.64563    .2061538 

 z_ws_hoval1 |   .3889889   .9016162     0.43   0.668    -1.431862     2.20984 

       _cons |   34.78312   8.655264     4.02   0.000     17.30346    52.26279 

-------------+---------------------------------------------------------------- 
 

. scalar ate_neigh = _b[cp]      // put ATE into a scalar 

. rename ATE_x _ATE_x_spill      // rename ATE_x as _ATE_x_spill 

. rename ATET_x _ATET_x_spill 

. rename ATENT_x _ATENT_x_spill 
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Step 4. DO A TEST TO SEE IF THE COEFFICIENTS OF THE NEIGHBOURHOOD-

EFFECT ARE JOINTLY ZERO 

 

4.1. if one accepts the null Ho: γβ0 = 0  =>  the neighbourhood-effect is negligible; 

4.2. if one does not accept the null  =>  the neighbourhood-effect effect is relevant. 

   

. test  z_ws_inc1 = z_ws_hoval1 = 0 

 ( 1)  z_ws_inc1 - z_ws_hoval1 = 0 

 ( 2)  z_ws_inc1 = 0 

 

       F(  2,    41) =    2.35 

            Prob > F =    0.1078  //  externality effect seems not significant 

 

 

 

 

Step 5. ESTIMATE THE MODEL USING "IVTREATREG" (TO GET ATE "WITHOUT" 

NEIGHBOURHOOD-INTERACTIONS) 

 
. xi: ivtreatreg crime cp inc hoval , hetero(inc hoval) model(cf-ols) graphic  

 

      Source |       SS       df       MS              Number of obs =      49 

-------------+------------------------------           F(  5,    43) =   19.84 

       Model |  9375.05895     5  1875.01179           Prob > F      =  0.0000 

    Residual |   4063.1606    43  94.4921069           R-squared     =  0.6976 

-------------+------------------------------           Adj R-squared =  0.6625 

       Total |  13438.2195    48  279.962907           Root MSE      =  9.7207 

------------------------------------------------------------------------------ 

       crime |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          cp |   13.59008   4.119155     3.30   0.002     5.283016    21.89715 

         inc |  -.8335211   .3384488    -2.46   0.018    -1.516068   -.1509741 

       hoval |  -.1885477   .1036879    -1.82   0.076    -.3976543    .0205588 

     _ws_inc |   -1.26008   1.004873    -1.25   0.217    -3.286599    .7664396 

   _ws_hoval |   .2021829   .2300834     0.88   0.384    -.2618246    .6661904 

       _cons |   46.52524   6.948544     6.70   0.000     32.51217    60.53832 

------------------------------------------------------------------------------ 

 

. scalar ate_no_neigh = _b[educ7] // put ATE into a scalar 

. di ate_no_neigh 

 

 

 

Step 6. SEE THE MAGNITUDE OF THE NEIGHBORHOOD-INTERACTIONS BIAS 

 
. scalar bias= ate_no_neigh - ate_neigh  // in level 

. di bias 

4.09  // the difference in level is around four crimes 

. scalar bias_perc=(bias/ate_no_neigh)*100  // in percentage 

. di bias_perc 

30.15 // there is a 30% of bias due to neighbourhood interaction 
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Step 7. COMPARE GRAPHICALLY THE DISTRIBUTION OF ATE(x), ATET(x) and 

ATENT(x) WITH AND WITHOUT NEIGHBOURHOOD-INTERACTION 
 
* ATE 

twoway kdensity ATE_x , ///  

|| /// 

kdensity _ATE_x_spill ,lpattern(longdash_dot) xtitle() /// 

ytitle(Kernel density) legend(order(1 "ATE(x)" 2 "ATE_spill(x)")) /// 

title("Model `model': Comparison of ATE(x) and ATE_spill(x)", 

size(medlarge))  

 

 

 

* ATET 

twoway kdensity ATET_x , ///  

|| /// 

kdensity _ATET_x_spill ,lpattern(longdash_dot) xtitle() /// 

ytitle(Kernel density) legend(order(1 "ATET(x)" 2 "ATET_spill(x)")) /// 

title("Model `model': Comparison of ATE(x) and ATE_spill(x)", 

size(medlarge))  
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* ATENT 

twoway kdensity ATENT_x , ///  

|| /// 

kdensity _ATENT_x_spill ,lpattern(longdash_dot) xtitle() /// 

ytitle(Kernel density) legend(order(1 "ATENT(x)" 2 "ATENT_spill(x)")) /// 

title("Model `model': Comparison of ATE(x) and ATE_spill(x)", 

size(medlarge))  

 

 

 

As a conclusion, we can state that if the 

analyst does not consider “neighbourhood 

effects” she will “over-estimate” the actual 

effect of housing location on crime of around 

a 30%. However, the test seems to show that 

the neighbourhood effect is not relevant, as 

the coefficients of the neighbourhood 

component of regression (14) are not jointly 

significant.   

5.2 Example 2: the effect of education 

on fertility  

As a second application, we consider the 

dataset “FERTIL2_200.DTA” accompanying 

the manual “Introductory Econometrics: A 

Modern Approach” by Wooldridge (2000), 

where we consider only N=200 (out of 4,361) 

randomly drawn women in childbearing age 

in Botswana. The aim of this application is 

that of evaluating the impact of education on 

fertility, i.e. the causal effect of the variable 

“educ7” - taking value 1 if a woman has more 

than or exactly seven years of education and 0 

otherwise - on the number of family children 

(the variable “children”). Several conditioning 

(or confounding) observable factors are 

included in the dataset, such as the age of the 

woman (“age”), whether or not the family 

owns a TV (“tv”), whether or not the woman 

lives in a city (“urban”), and so forth. We are 

particularly interested in detecting the effect 

of education on fertility in such a setting, by 

taking into account possible peer-interactions 

among women. In particular, our research 

presumption is that: “in choosing their 

‘desired’ number of children, less educated 

women (the untreated ones) are not only 

affected by their own (idiosyncratic) 

characteristics (the x), but also by the number 

of children chosen by more educated women”. 

The conjecture behind this statement is that 

less educated women might want to be as like 

as possible to more educated ones as a way to 

avoid some form of social stigma. 
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Step 0. INPUT DATA FOR THE REGRESSION MODEL 

y: children 

w: educ7 

x: age agesq evermarr electric tv 

Matrix Ω: dist 

 

Step 1. LOAD THE STATA ROUTINE "NTREATREG" AND THE DATASET 

. ssc install ntreatreg 

. use "FERTIL2_200.DTA" 

 

Step 2. PROVIDE THE MATRIX "OMEGA" (HERE WE CALL IT "dist") 

. matrix dissimilarity dist = age agesq urban electric tv , corr // we use 

correlation weights  

. matewmf dist dist_abs, f(abs) // take the absolute values of the OMEGA 

 

Step 3. ESTIMATE THE MODEL USING "NTREATREG" TO GET THE “ATE” WITH 

NEIGHBORHOOD-INTERACTIONS 

. set more off 

. xi: ntreatreg children educ7 age agesq evermarr electric tv  , /// 

hetero(age agesq evermarr) spill(dist_abs) graphic  

 

 

      Source |       SS       df       MS              Number of obs =     200 

-------------+------------------------------           F( 12,   187) =   17.62 

       Model |   493.24433    12  41.1036942           Prob > F      =  0.0000 

    Residual |   436.33567   187  2.33334583           R-squared     =  0.5306 

-------------+------------------------------           Adj R-squared =  0.5005 

       Total |      929.58   199  4.67125628           Root MSE      =  1.5275 

-------------------------------------------------------------------------------- 

      children |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

---------------+---------------------------------------------------------------- 

         educ7 |  -.3869939   .2405745    -1.61   0.109    -.8615826    .0875948 

           age |   -.004031   1.109614    -0.00   0.997    -2.193002     2.18494 

         agesq |  -.0037554   .0098361    -0.38   0.703    -.0231595    .0156486 

      evermarr |   .7954806   .3436893     2.31   0.022      .117474    1.473487 

      electric |  -1.173366   .5034456    -2.33   0.021    -2.166529   -.1802034 

            tv |    .358726   .6334492     0.57   0.572    -.8908988    1.608351 

       _ws_age |  -.1171632   .1797361    -0.65   0.515    -.4717342    .2374077 

     _ws_agesq |   .0013009   .0029585     0.44   0.661    -.0045354    .0071372 

  _ws_evermarr |   .0212155   .5385761     0.04   0.969     -1.04125    1.083681 

     z_ws_age1 |   5041.887   8015.575     0.63   0.530    -10770.69    20854.46 

   z_ws_agesq1 |  -151.9131   230.3377    -0.66   0.510    -606.3075    302.4812 

z_ws_evermarr1 |   93992.24   130909.8     0.72   0.474    -164257.6    352242.1 

         _cons |   14492.64   11104.22     1.31   0.193    -7412.988    36398.27 

-------------------------------------------------------------------------------- 

 

. scalar ate_neigh = _b[educ7]  // put ATE into a scalar 

. di ate_neigh 

-.3869939 

. rename ATE_x _ATE_x_spill     // rename ATE_x as _ATE_x_spill 

. rename ATET_x _ATET_x_spill 

. rename ATENT_x _ATENT_x_spill 
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Step 4. DO A TEST TO SEE IF THE COEFFICIENTS OF THE NEIGHBOURHOOD-

EFFECT ARE JOINTLY ZERO 

 

4.1. if one accepts the null Ho: γβ0 = 0  =>  the neighbourhood-effect is negligible; 

4.2. if one does not accept the null  =>  the neighbourhood-effect effect is relevant. 
  

 

. test  z_ws_age1 = z_ws_agesq1 = z_ws_evermarr1 = 0 

 

 ( 1)  z_ws_age1 - z_ws_agesq1 = 0 

 ( 2)  z_ws_age1 - z_ws_evermarr1 = 0 

 ( 3)  z_ws_age1 = 0 

       F(  3,   187) =    2.49 

            Prob > F =    0.0619    // social interaction significant at 6% 

 

Step 5. ESTIMATE THE MODEL USING "IVTREATREG" (TO GET ATE "WITHOUT" 

NEIGHBOURHOOD-INTERACTIONS) 

 
. xi: ivtreatreg children  educ7 age agesq evermarr electric tv  , /// 

hetero(age agesq evermarr) model(cf-ols) graphic  

 

      Source |       SS       df       MS              Number of obs =     200 

-------------+------------------------------           F(  9,   190) =   22.14 

       Model |  475.829139     9  52.8699044           Prob > F      =  0.0000 

    Residual |  453.750861   190  2.38816243           R-squared     =  0.5119 

-------------+------------------------------           Adj R-squared =  0.4888 

       Total |      929.58   199  4.67125628           Root MSE      =  1.5454 

------------------------------------------------------------------------------ 

    children |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       educ7 |  -.4581193   .2417352    -1.90   0.060    -.9349488    .0187101 

         age |   .4703103   .1252132     3.76   0.000     .2233237    .7172968 

       agesq |  -.0053527   .0019811    -2.70   0.008    -.0092605    -.001445 

    evermarr |   .7601864   .3439046     2.21   0.028     .0818249    1.438548 

    electric |  -.8397923   .4060984    -2.07   0.040    -1.640833   -.0387517 

          tv |   .1892151   .4754544     0.40   0.691    -.7486321    1.127062 

     _ws_age |  -.1412403   .1788508    -0.79   0.431    -.4940286     .211548 

   _ws_agesq |   .0018331   .0029337     0.62   0.533    -.0039537    .0076199 

_ws_evermarr |   .0667193    .543741     0.12   0.902    -1.005825    1.139264 

       _cons |  -6.409861    1.83986    -3.48   0.001    -10.03904   -2.780685 

------------------------------------------------------------------------------ 

 

. scalar ate_no_neigh = _b[educ7] // put ATE into a scalar 

. di ate_no_neigh 

-.45811935 

 

Step 6. SEE THE MAGNITUDE OF THE NEIGHBORHOOD-INTERACTIONS BIAS 

 
. scalar bias= ate_no_neigh - ate_neigh  // in level 

. di bias 

-.07112545 

. scalar bias_perc=(bias/ate_no_neigh)*100  // in percentage 

. di bias_perc 

15.525528   // there is a 15% of bias due to social interaction 
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Step 7. COMPARE GRAPHICALLY THE DISTRIBUTION OF ATE(x), ATET(x) and 

ATENT(x) WITH AND WITHOUT NEIGHBOURHOOD-INTERACTION 

 
* ATE 

twoway kdensity ATE_x , ///  

|| /// 

kdensity _ATE_x_spill ,lpattern(longdash_dot) xtitle() /// 

ytitle(Kernel density) legend(order(1 "ATE(x)" 2 "ATE_spill(x)")) /// 

title("Model `model': Comparison of ATE(x) and ATE_spill(x)", 

size(medlarge))  

 

 
 

 

* ATET 

twoway kdensity ATET_x , ///  

|| /// 

kdensity _ATET_x_spill ,lpattern(longdash_dot) xtitle() /// 

ytitle(Kernel density) legend(order(1 "ATET(x)" 2 "ATET_spill(x)")) /// 

title("Model `model': Comparison of ATE(x) and ATE_spill(x)", size(medlarge))  

 

 

0
.5

1
1

.5

K
e

rn
e

l 
d
e

n
s
it
y

-1 -.5 0 .5
x

ATE(x) ATE_spill(x)

Model : Comparison of ATE(x) and ATE_spill(x)

.4
.6

.8
1

1
.2

K
e

rn
e

l 
d
e

n
s
it
y

-.8 -.6 -.4 -.2 0 .2
x

ATET(x) ATET_spill(x)

Model : Comparison of ATE(x) and ATE_spill(x)



 

Cerulli G., Working Paper Cnr-Ceris, N° 04/2014                                                              

 

 21 

* ATENT 

twoway kdensity ATENT_x , ///  

|| /// 

kdensity _ATENT_x_spill ,lpattern(longdash_dot) xtitle() /// 

ytitle(Kernel density) legend(order(1 "ATENT(x)" 2 "ATENT_spill(x)")) /// 

title("Model `model': Comparison of ATE(x) and ATE_spill(x)", size(medlarge))  

 

 
 

 

As a conclusion, we can state that if the 

analyst does not consider neighbourhood 

effects, she will “over-estimate” the actual 

effect of education on fertility of around a 

15%. Furthermore, the test shows that the 

neighbourhood effect is relevant, as the 

coefficients of the neighbourhood component 

of regression (14) are jointly significant.   

How can we interpret such a result? A 

possible argument can be that there is a peer-

effect in choosing how many children to have 

by women. Indeed, as said before, the 

“desired” number of children for a woman 

does not depend only on her individual 

determinants (“age”, for instance), but also on 

“what my friends do”. In our sample, the 

existence of such a “social interaction” 

reduces the “effect of education on fertility” 

(from 0.45 to 0.38 on absolute values), by 

showing that fertility behaviour of more 

educated women (generally unconditionally 

less fertile) produce a spillover on less 

educated ones, by pushing them to reduce the 

number of children to have. This might be a 

typical “imitative behaviour” on the part of 

less educated women striving to be as much 

similar as possible to more educated ones. 

Therefore, “education” has an effect on 

“fertility”, not only because schooling can 

delay the time to have a child, but also 

because education “triggers” imitative peer-

effects. 

6. CONCLUSION 

This paper has presented a possible solution 

to incorporate externality (or neighbourhood) 

effects within the traditional Rubin’s potential 

outcome model under conditional mean 

independence. As such, it generalizes the 

traditional parametric models of program 

evaluation when SUTVA is relaxed. As by-
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product, this work has also put forward 

ntreatreg, a Stata routine for estimating 

Average Treatments Effects (ATEs) when 

social interactions are present.  

The two instructional applications to the 

causal effect of housing location on crime, 

and of education on fertility, seem to show 

that such approach can change significantly 

usual no-interaction results in those fields of 

social and economic contexts where 

externalities due to units’ interaction may be 

pervasive.  

Of course, this approach presents also some 

limitations, and in what follows we list some 

of its potential developments. Indeed, the 

model might be improved by: 

 allowing also for treated units to be 

affected by other treated units’ outcome;  

 extending the model to “multiple” or 

“continuous” treatment, when treatment 

may be multi-valued or fractional for 

instance, by still holding CMI; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 identifying ATEs with neighbourhood 

interactions when w may be endogenous 

(i.e., relaxing CMI) by implementing 

GMM-IV estimation; 

 trying to go beyond the potential 

outcomes’ parametric form, by relying on 

a semi-parametric specification; 

 providing Monte Carlo studies to check 

to which extent are model’s results robust 

under different specification-errors in the 

weighting matrix Ω.  

Finally, an interesting issue deserving 

further inquiry regards the assumption of 

exogeneity concerning the weighting matrix 

Ω. Indeed, a challenging question might be: 

what happens if individuals strategically 

modify their weighting weights to better profit 

of others’ treatment outcome? It is clear that 

weights do become endogenous, thus yielding 

severe identification problems for previous 

causal effects. Future studies should tackle 

situations in which this possibility may occur. 
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APPENDIX A 

In this appendix, we show how to obtain the formulas of ATE and ATE(x) set out in (12) and 

(13). Then, we show how regression (14) can be obtained and, finally, we prove that 

Assumption 1 is sufficient for consistently estimating the parameters of regression (14) by OLS. 
 

A1. Formula of ATE with neighbourhood interactions.  

Given assumptions 2 and 3, and the implied equations in (7), we get that: 
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where 1 0 = (1 )     , = E( )j jx x and 1 0 δ β β .         ■ 

 

 

A2. Formula of ATE(xi) with neighbourhood interactions.  

Given assumptions 2 and 3, and the result in A1, we get: 
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A3. Obtaining regression (14).  

By substitution of the potential outcome as in (7) into the potential outcome model, we get that: 
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Therefore, we can conclude that: 
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where 0 1    , 1 0 δ β β .            ■ 

 

 

A4. Ordinary Least Squares (OLS) consistency.  

Under Assumption 1 (CMI), the parameters of regression (14) can be consistently estimated by 

OLS. Indeed, it is immediate to see that the mean of ei conditional on (wi; xi) is equal to zero: 
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where 0 1    .              ■ 
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