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Abstract

We extend the univariate results in [Wooldridge, J. M. (2005): “Unobserved heterogeneity and

estimation of average partial effects,” in Identification And Inference For Econometric Models:

Essays In Honor Of Thomas Rothenberg, ed. by D. W. K. Andrews, and J. H. Stock. Cambridge

University Press, New York] to multivariate probit models, proving the following. 1) Average par-

tial effects (APEs) based on joint or marginal response probabilities are identified in multivariate

probit models with general conditionally independent latent heterogeneity (LH), provided that

the error covariance matrix in the structural model is unconstrained beyond normalization. If this

caveat is not met, identification requires that the covariance matrix for the LH components be

restricted. This finding is substantial since in most coded routines for multivariate probit models it

is not possible to adjust the form of the covariance matrix to the parametric structure of the latent

regression model. Stata’s biprobit, mvprobit, mprobit and cmp or Limdep’s BIVARIATE PROBIT

and MPROBIT are cases in point. 2) Conditionally independent LH does not assure identification

of APEs based on conditional response probabilities, unless additional independence restrictions

are maintained. 3) The dimensionality benefit observed by [Mullahy, J. (2011): “Marginal ef-

fects in multivariate probit and kindred discrete and count outcome models, with applications in
∗Bocconi University, Milan
†Cà Foscari University, Venice and Catholic University of Milan
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health economics,” NBER WP SERIES 17588, NBER] in the estimation of partial effects extends

to APEs. We exploit this feature to design a simple procedure for estimating APEs, which is

both faster and more accurate than simulation-based codes, such as Stata’s mvprobit and cmp.

To demonstrate the finite-sample implications of our results, we carry out extensive Monte Carlo

experiments with bivariate and trivariate probit models. Finally, we apply our procedure in (3)

to Italian survey data of immigrants in order to estimate the APEs of a trivariate probit model of

ethnic identity formation and economic performance.
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1 Introduction

How much robust are estimators of average partial effects (APEs) in conventional multivariate probit

models to latent heterogeneity (LH)? Wooldridge (2005) shows that univariate probit estimators of

APEs are robust to LH if the latter is independent of the regressors, given a set a control variables (see

also Wooldridge 2010). We find that in many interesting multivariate probit models the assumption

of conditionally independent LH needs being strengthen in order to identify APEs.

Specifically, we find the following.

1. Identification of APEs based on joint or marginal probabilities in conventional probit models with

conditionally independent LH requires a structural-error covariance matrix that is unconstrained

beyond normalization, that is one with a minimal set of normalization restrictions given the

other constraints in the model, if any. For example with cross-equation equality restrictions, as

in the multinomial probit model with alternative-specific characteristics (implemented by Stata’s

asmprobit) or in the panel probit model examined by Bertschek and Lechner (1998) and Greene

(2004), identification requires a structural-error covariance matrix that is arbitrary up to a fixed

element. Should the latter be in correlation form, and as such constrained beyond normaliza-

tion, identification would break down unless the LH components are truly homoskedastic. This

finding is substantial since in most statistical packages there is no way to obtain a more general

covariance matrix than that in correlation form. Stata’s biprobit, mvprobit (Cappellari and

Jenkins 2003) and cmp (Roodman 2011) or Limdep’s BIVARIATE PROBIT and MPROBIT are cases

in point. Similarly, the covariance matrix used by the multinomial probit model with i.i.d. errors,

implemented by Stata’s mprobit, is constrained beyond normalization and as such supports only

a limited class of conditionally independent LH components. Stata’s asmprobit ensures more

flexibility in this respect, but restricts to a specific probit model.

2. Conditional independence of the LH components is not sufficient for identification of APEs based

on conditional probabilities. Adding independence of the LH components in the conditioning sub-

vector from all the observables in the model does not help either. Consistency can be proved only

if we expand the latter set to include the remaining latent components. Fortunately, within either
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sub-vector of LH components the covariance matrix can be arbitrary. We carry out extensive

Monte Carlo experiments that reveal that the bias in the conditional probability estimates is

severe when the additional independence assumption is violated. Importantly, this holds true

regardless of the model being a conventional one, i. e. with only exogenous regressors, or

recursive, as in Maddala (1983), Wooldridge (2010),Roodman (2011) and Greene (2012). We

show that the restricted framework is still compatible with applications of the control function

approach by Rivers and Vuong (1988) (see also Wooldridge 2010, pp. 585-594) to multivariate

probit models with both binary and continuous endogenous explanatory variables (Wooldridge

2010, pp. 594-599).

The second contribution of this paper is computational. We show that the dimensionality benefit

observed by Mullahy (2011) in the estimation of partial effects (PEs) of joint probabilities extends

to APEs with conditionally independent heterogeneity. We exploit this feature in the construction of

a simple estimation routine that, based on the marginalization property of the normal distribution,

estimates coefficients and covariances from a combination of m (m− 1) /2 bivariate probit models and

then evaluates the APEs averaging Mullahy’s formulas over the sample. In trivariate models this

routine completely dispenses with numerical evaluation of cumulative normal distributions by time-

consuming simulation methods, as otherwise required by mvprobit (Cappellari and Jenkins 2003) and

cmp (Roodman 2011), two popular Stata commands implementing multivariate probit models and

both based on the GHK simulator (see Geweke 1989, Hajivassiliou 1990, Keane 1994). Our routine is

extremely simple, as it can be executed through existing commands in Stata, but is also suboptimal

in large samples. A part of our Monte Carlo section evaluates the finite-sample performances of the

routine. Not only is it from 7 to 14 times faster than both mvprobit and cmp, but also it proves much

more accurate than the two GHK-based alternatives, both in terms of bias and root mean squared

error and even when the number of draws required by the GHK simulator is increased beyond defaults.

To demonstrate our routine on real data we focus on an issue that has been attracting increasing

attention among researchers and policy makers, that of ethnic identity formation among immigrants

in western countries and its interaction with immigrants economic performance. Robust APEs of joint

and conditional probabilities are estimated by applying multivariate probit models to the ISMU data
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base, a unique survey of immigrants in Italy.

1.1 Notation and conventions

Throughout, ΦΣ indicates the zero-mean multivariate Normal distribution function with covariance

matrix Σ; when no subscript is specified we mean the standard Normal distribution and φ indicates

the standard Normal density function. A generic covariance matrix, Σ, is expressed in correlation form

if

Σ ≡



1 σ12 · · · σ1m

σ12 1
...

...
. . .

σ1m · · · 1


.

In this case, we will use sometimes the compact notation Σ ≡ C (σij), with σij indicating the covariance

parameter, i 6= j .

A covariance matrix is said unconstrained beyond normalization (UBN) if it presents a minimal

set of normalization-for-scale restrictions given the other constraints in the model. In other words,

covariance restrictions are maintained only if the restrictions on the model coefficients, if any, are not

sufficient to normalize for scale.

1.2 Paper structure

The next section derives a general non-parametric identification result for APEs based on joint response

probability in multivariate models. Section 3 contains the main results for joint and marginal response

probabilities in probit models with and without constraints beyond normalization. Section 4 focuses on

conditional probabilities. In Section 5 we describe our estimation routine. The Monte Carlo analysis

is carried out in Section 6. Section 7 contains the empirical application. Section 8 concludes.
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2 Average partial effects in multivariate models

Let the indicator function 1 (A) be unity if event A occurs and zero if not. Then, define the random

vector y = (y1 y2... ym) such that

yi =

g∑
c=1

(c− 1)1 (λi,c−1 < y∗i ≤ λi,c) , (1)

i = 1, ...,m, where −∞ ≡ λi,0 < λi,1 ≡ 0 < λi,2... < λi,g−1 < λi,g ≡ +∞ are constant thresholds, g ≥ 2

denotes the number of outcomes and y∗i is a latent continuous random variable. Hence, y can be equal

to any of the gm possible m × 1 vectors k = (k1 ... km), where ki ∈ {0, 1, ..., g − 1} and i = 1, ...,m.

If g = 2 and m = 1, the model is a standard binomial model (e. g. probit or logit), whereas if g > 2

and m = 1, it is a model of ordered outcomes (e. g. ordered probit or logit). If m > 1, we have

multivariate models.

Now, consider the probability that y = k conditional on a vector of observed random vari-

ables x, Pr (y = k|x). Greene (2012), in the context of the bivariate probit model, observes that

Pr (y = k|x) is not a conditional expectation function, intending that unlike the univariate case, where

Pr (y = 1|x) = E (y|x), here Pr (y = k|x) cannot be reformulated as the conditional expectation of

any of the components in y. In a different sense, however, Pr (y = k|x) is a conditional expectation

function since, given two generic random vectors u ∈ Rk and v ∈ Rl and the set U ⊂ Rk one can

always write

Pr (u ∈ U |v) = Eu|v [1 (u ∈ U) |v] . (2)

A more general result that we will use later on is the following (see, for example, Wooldridge 2010, p.

524): given three random vectors u, v and z

Pr (u ∈ U |v) = Ez|v
{
Eu|v,z [1 (u ∈ U) |v, z]

}
. (3)

Equation (2) is our starting point for deriving APEs in multivariate models with conditionally

independent LH. 1 We bring LH into the analysis in the form of a latent random vector q = (q1 q2... qm),
1Equation (2) is an immediate implication of univariate representations of multivariate discrete choice models as, for
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which may be related to a vector of observed control variables w. We make the following conditional

independence assumptions

A.1 Pr (y = k|x,w,q) = Pr (y = k|x,q) for any k.

A.2 D (q|x,w) = D (q|w), where D (·|·) denotes conditional distributions.

Thus, conditioning on x and q, gives the structural probability expressed in the form of Equation (2)

Pr (y = k|x,q) = Ey|x,q [1 (y = k) |x,q] . (4)

Now, adapting the derivations in Wooldridge (2005), we have

Eq

[
Pr
(
y = k|x0,q

)]
= Ew

{
Eq|w

[
Pr
(
y = k|x0,q

)
|w
]}
.

That Eq|w
[
Pr
(
y = k|x0,q

)
|w
]
is identified follows from

Eq|w [Pr (y = k|x,q) |w] = Eq|x,w [Pr (y = k|x,q) |x,w]

= Eq|x,w
{
Ey|x,q [1 (y = k) |x,q] |x,w

}
= Eq|x,w

{
Ey|x,w,q [1 (y = k) |x,w,q] |x,w

}
= Ey|x,w [1 (y = k) |x,w] ,

= Pr (y = k|x,w)

where the first equality follows from A.2, the second equality from Equation (4), the third equality

from A.1, the fourth equality from the the law of iterated expectations and the last using Equation

(2). Hence,

Eq|w
[
Pr
(
y = k|x0,q

)
|w
]

= Pr
(
y = k|x0,w

)
,

example, in Mullahy (2011).
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implying in turn identification of Eq

[
Pr
(
y = k|x0,q

)]
:

Eq

[
Pr
(
y = k|x0,q

)]
= Ew

[
Pr
(
y = k|x0,w

)]
. (5)

The average partial effect of a generic component x of x on the joint probability Pr (y = k|xo q) is

defined as

APEx (k,xo) ≡ Eq {∂xPr (y = k|xo q)}

and provided that regularity conditions enabling interchange of derivatives and integrals are satisfied,

Equation (5) implies identification of APEs:

APEx (k,xo) = Ew

[
∂xPr

(
y = k|x = x0,w

)]
. (6)

The following Lemma contains properties of conditional independence that will be useful in the analysis

of subvectors.

Lemma 1. (Dawid 1979) Given the random vectors x, y and z, the following properties of conditional

independence hold: (i) D (y|x, z) = D (y|z) implies D (x|y, z) = D (x|z); ii) let u = h (y), D (y|x, z) =

D (y|z) implies D (u|x, z) = D (u|z) and D (y|x, z,u) = D (y|z,u).

Then, Lemma 1 assures that A.1 continue to hold with y replaced by any its subvector ya:

Pr (ya = ka|x,w,q) = Pr (ya = ka|x,q) (7)

for any ka. This combined with A.2 assures identification of APEs of marginal probabilities

Eq

[
Pr
(
ya = ka|x0,q

)]
= Ew

[
Pr
(
ya = kaθ|x0,w

)]
(8)

and APEs

APEx (ka,x
o) ≡ Eq {∂xPr (ya = ka|xo q)} = Ew

[
∂xPr

(
ya = ka|x = x0,w

)]
. (9)
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If, partitioning x as x = (xa xb), Pr (ya = ka|x,q) = Pr (ya = ka|xa,q), then by Lemma 1 Equa-

tion (7) and A.2 continue to hold with x replaced by xa and consequently Equations (8) and (9) follow

suit. Conditional response probabilities requires a specific analysis in Section 4.

3 The multivariate probit model

Multivariate probit models are constructed by supplementing the random vector y defined in (1) with

the latent regression model

y∗j = αj + x′βj + εj (10)

j = 1, ...,m, and αj , βj , x and εj are, respectively, the constant term, the p× 1 vectors of parameters

and explanatory variables and the error term. Stacking all εj ’s into the vector ε ≡ (ε1, ... , εm)
′, we

assume ε|x ∼ N (0, R). The covariance matrix R is subject to normalization restrictions that will be

made explicit below. Equation specific regressors are accommodated by allowing βj to have zeroes

in the positions of the variables in x that are excluded from equation j. Indeed, we will see below

that exclusion restrictions have no consequence as far as consistent estimation of APEs is concerned.

Cross-equation restrictions on the β’s are also permitted as we will see in Subsection 3.2.

Augmenting each of the equations in (10) with an additive LH component qj yields the structural

model

y∗j = αj + x′βj + qj + εj (11)

j = 1, ...,m.

Given the vector of control variables, w, we maintain throughout an assumption of conditionally

independent LH: ε|x,w,q ∼ N (0, R) and q|x,w ∼ N (µ,Ω) , where

µ ≡


η1 + w′δ1

...

ηm + w′δm

 ,

R is normalized for scale and may or may not be UBN, Ω is either arbitrary or constrained, with ωij
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denoting its (i, j) element.

Defining ν ≡ q − µ, the foregoing distributional assumptions imply ε|x,w,ν ∼ N (0, R) and

ν|x,w ∼ N (0,Ω) and, consequently, we end up with the following general multivariate regression

model

y∗j = (αj + ηj) + x′βj + w′δj + εj + νj , (12)

j = 1, ...,m and ε+ ν|x,w ∼ N (0,Ω +R).

We begin with a multivariate probit model based on the latent regressions (11) and with no explicit

parameter constraints. The number of outcomes is g = 2, so that kj ∈ {0, 1}, and R is in correlation

form, R ≡ C (ρij). Let diag (Ω) indicate the m×m diagonal matrix with the same diagonal as Ω,

diag (Ω) ≡



ω11 0 . . . 0

0 ω22

...
...

. . . 0

0 . . . 0 ωmm


,

then the normalized covariance matrix

Ξ ≡ (Im + diag (Ω))
−1/2

(Ω +R) (Im + diag (Ω))
−1/2 (13)

is also in correlation form, with Ξ = C (ξij) and

ξij ≡
ωij + ρij√

(1 + ωii) (1 + ωjj)
. (14)

It is evident from Equation (14) that the ξij ’s are free to take on any value. Hence, the reduced-form

m latent regressions

y∗j√
1 + ωjj

=
αj + ηj√
1 + ωjj

+ x′
βj√

1 + ωjj
+ w′

δj√
1 + ωjj

+
εj + νj√
1 + ωjj

(15)
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j = 1, ...,m, constitute a legitimate multivariate probit model with

(Im + diag (Ω))
−1/2

(ε+ ν) |x,w ∼ N (0,Ξ)

and

Pr (y = k|x w) = ΦC(ski
skj

ξij) (sk1h1, ..., skmhm) , (16)

where ΦC(ski
skj

ξij) denotes the zero-mean multivariate normal distribution with covariance matrix

C
(
skiskjξij

)
, skj ≡ 2kj − 1, kj ∈ {0, 1} ,

hj ≡
αj + ηj√
1 + ωjj

+ x′
βj√

1 + ωjj
+ w′

δj√
1 + ωjj

,

and j = 1, ...,m.

The above implies that the reduced-form multivariate-probit ML estimator will provide accurate

estimates of (αj + ηj) /
√

1 + ωjj , βj/
√

1 + ωjj and ξji as defined in (14). Hence, referring to α̂j ,

β̂j , δ̂j and ρ̂ij as the components of the foregoing estimator for, respectively, the constant terms,

coefficients on x and w and the covariances, we have proved the following.

Result 1 α̂j , β̂j and δ̂j converge in probability to (αj + ηj) /
√

1 + ωjj , βj/
√

1 + ωjj and δj/
√

1 + ωjj ,

respectively.

Result 2 ρ̂ij converges in probability to ξji as defined in (14).

Within this framework Ew

[
Pr
(
y = k|x = x0,w

)]
is identified under weak regularity conditions. In-

deed, let

h0
j ≡ αj + ηj√

1 + ωjj
+ x0′

βj√
1 + ωjj

+ w′
δj√

1 + ωjj
,

ĥ0
j,i ≡ α̂j + x0′ β̂j + w′iδ̂j ,

where i = 1, ...n denote the i.th observation in the sample and j = 1, ...,m. Then

Ew

[
Pr
(
y = k|x0,w

)]
= Ew

[
ΦC(sipsjpξij)

(
sk1h

0
1, ..., skmh

0
m

)]
11



Throughout we maintain that the regularity conditions of Lemma 12.1 in Wooldridge (2010) are met, so

that sample averages evaluated at consistent estimates are consistent estimators of population means.

Hence, in this case

Result 3 (1/n)
∑n
i=1

[
ΦC(sk1

skj
ρ̂ij)

(
sk1 ĥ

0
1,i, ..., skm ĥ

0
m,i

)]
converges in probability to

Ew

[
ΦC(ski

skj
ξij)

(
sk1h

0
1, ..., skmh

0
m

)]
.

From Result 1 we find that α̂j estimates αj with both location and rescaling biases, while β̂j estimates

βj with a rescaling bias, as already evidenced in Yatchew and Griliches (1985) in the univariate context.

Result 2 uncovers that ρ̂ij , as an estimator of ρij , is affected by both rescaling and location biases.

Given Result 3 and Equation (6), it turns out that APEs of the generic component x of x at any

point xo are consistently estimated by:

̂APEx (k,x0) ≡ (1/n)

n∑
i=1

[
∂xΦC(sk1

skj
ρ̂ij)

(
sk1 ĥ

0
1,i, ..., skm ĥ

0
m,i

)]
. (17)

Importantly, this holds with a covariance matrix of the LH components, Ω, that is fully general.

The multivariate normal distribution has the well-known property that any m1 × 1 sub-vector of

an m× 1 random vector with a multivariate normal distribution, m1 < m, has a marginal distribution

that is a m1-variate normal distribution (see Rao 1973, p. 522). This proves at once that Result

3 carries over to all possible marginal response probabilities of the same multivariate probit model,

which along with Equation (9) implies consistent estimation of the the corresponding APEs.

Another direct implication of the marginalization property is worth reporting here as a lemma for

future reference.

Lemma 2. Any subsystem of m1 latent equations from an m-variate probit latent equation system,

m1 < m, constitutes a legitimate m1-variate probit latent equation system.

A first implication of Lemma 2 is that APEs on marginal response probabilities can be estimated

using multivariate probit models of suitably reduced dimensionality.
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Remark 3. This framework applies to clustered data with LH, such as a panel-data multivariate probit

with correlated effects modeled a la Mundlak (or a la Chamberlain) where q is the vector of correlated

effects for an individual in the population and the w’s are the cluster means (the time values) of

the x’s. In principle, random effect estimation can be applied to the reduced-form model, identifying

the reduced-form equation variances, ξii, i = 1, ...m. As far as APEs are concerned, though, this is

not necessary and a computationally easier partial-ML estimator is available, which simply applies the

conventional reduced-form multivariate-probit ML estimator and corrects the standard-error estimates

for cluster correlation.

3.1 Within-equation restrictions

The nonparametric analysis at the end of Section 2 has shown that exclusion restrictions are not a

problem for the identification of APEs. In the Probit framework this straightforwardly extends to

within-equation linear homogenous restrictions, such as exclusion or equality restrictions, since these

are invariant to rescaling of coefficients: given ωjj 6= 0, a known full-row-rank J×k matrix A and some

vector b such that Aβj = b, then Aβj/
√

1 + ωjj = b if and only if b = 0. From a practical point

of view, this implies that APEs can be consistently estimated by imposing the structural restrictions

directly onto the the rescaled parameters of the reduced-form model.

Non-homogenous restrictions, i. e. b 6= 0, apply in various interesting situations. Willingness-

to-pay models comparing the observed cost and the latent benefit of a given option are an example

(Wooldridge 2005). From the previous paragraph it is clear that if R is in correlation form, that

is all J non-homogeneous restrictions are beyond normalization, the constrained ML reduced-form

estimator is consistent if and only if ωjj = 0. This restrictive framework is what we would implement

by using, for example, Stata’s biprobit with all the non-homogenous constraints passed through the

options constraint or offset. But unlike within-equation homogenous restrictions, non-homogenous

restrictions have normalizing power, which can be exploited to allow a more general R, with an

arbitrary ρjj replacing 1. This also allows an easy estimation procedure. In fact, A can be always

partitioned as A = (A1 A2), where A1 is of full column rank. Correspondingly let βj =
(
β1j β2j

)
and

x = (x1 x2), then β1j = c − Cβ2j and x′βj = x′1c + (x2 − C ′x1)
′
β2j , where c = (A′1A1)

−1
A′1b and
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C = (A′1A1)
−1
A′1A2 are known. This proves that in the absence of LH, given the rescaled equation

y∗j
ρjj

=
αj
ρjj

+ x′1c
1

ρjj
+ (x2 − C ′x1)

′ β2j

ρjj
+

εj
ρjj

ρjj would be identified along with βj . With LH the following equation

y∗j√
ρjj + ωjj

=
αj + ηi√
ρjj + ωjj

+ x′1c
1

√
ρjj + ωjj

+ (x2 − C ′x1)
′ β2j√

ρjj + ωjj
+w′

δj√
ρjj + ωjj

+
εj + νj√
ρjj + ωjj

allows to identify βj and ρjj +ωjj and, consequently, the APEs. This proves that APEs are identified

in the presence of arbitrary Ω and J − 1 non-homogeneous restrictions that are beyond normalization.

All of the above considerations clearly hold regardless of the model being univariate or multivariate.

3.2 Cross-equation equality restrictions

Cross-equation equality restrictions are often part of the conventional specifications. The multinomial

probit with alternative-specific regressors (Train 2002), henceforth ASMP, implemented for example

by Stata’s asmprobit, and the panel probit model (Bertschek and Lechner 1998 and Greene 2004) are

two notable examples.

The equality restrictions permit an error covariance matrix that is more than general than in the

unconstrained model. Partition x as x = (x′1,x
′
2)
′, with each component of the k2×1 vector x2 having

a common coefficient across equations. A non-empty x2 allows identification of the β′s with a general

covariance matrix for ε:

R =



1 ρ12 · · · ρ1m

ρ12 ρ22

...
...

. . .

ρ1m · · · ρmm


. (18)

It is not hard to see that the normalized covariance matrix Ξ = (1 + ω11)
−1

(Ω +R) satisfies the same
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restrictions as R defined in Equation (18). Hence, the m latent regressions

y∗j√
1 + ω11

=
αj + ηj√
1 + ω11

+ x′1
β1j√

1 + ω11
+ x′2

β2√
1 + ω11

+ w′
δj√

1 + ω11
+

εj + νj√
1 + ω11

, (19)

j = 1, ...,m, constitute a legitimate multivariate probit model with common coefficients for x2 and

(1 + ω11)
−1/2

(ε+ ν) |x,w ∼ N (0,Ξ) ,

Ξ ≡ (1 + ω11)
−1

(Ω +R) . This proves that results analogous to Results 1-3 hold true with (k2 − 1) (m− 1)

cross-equation equality restrictions beyond normalization, if k2 > 1, and arbitrary Ω. This result ex-

actly parallels what found in the case of non-homogenous restrictions.

Remark 4. If the variables x2 and εj + νj are differences with respect to an alternative 0, Model

(19) can be thought of as the part of an ASMP specification with m+ 1 alternatives that determines

whether or not alternative 0 is chosen (see Mullahy 2011).

Remark 5. If x1 is empty and m is the number of occasions, Model (19) is the the panel probit model.

This model is not to be confused with that of Remark 3. Here we have a univariate model that

is replicated m times and cluster correlation is fully taken into account with no necessity of robust

standard-error estimates.

With cross-equation equality restrictions, homoskedasticity of ε across equations implies that R is

in correlation form, with m−1 restrictions beyond normalization and as such not UBN. Estimating the

reduced-form model with the same constraints and in correlation form, then, will provide consistent

estimates of APEs if and only if ε + ν is homoskedastic across equations, or equivalently if and only

if ω11 = ω22 = ... = ωmm. Indeed, if an homoskedastic idiosyncratic error may be a reasonable

assumption, as observed by Greene (2004) in the context of the panel probit model, it may be overly

restrictive for the LH components, especially if these capture the impacts of omitted variables.

The limitation documented in the previous paragraph is substantial, since for most statistical

softwares it is not possible to get an error covariance matrix that is more general than the correlation

form. Within Stata this occurs not only with biprobit and mvprobit, but also with the more flexible
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cmp (Roodman 2011), where the most general covariance option, unstructured, when applied to

a multivariate probit model imposes a covariance matrix in correlation form. Limdep’s BIVARIATE

PROBIT and MPROBIT also impose the correlation form. Maintaining cross-equation equality restrictions

in all of those cases boils down to maintaining homoskedasticity in the LH covariance matrix. Stata’s

asmprobit allows much more flexibility in this respect, but it is specialized to ASMP.

3.3 Covariance restrictions

Covariance restrictions beyond normalization are not immaterial to consistent estimation of APEs in

the presence of LH. For example, by direct inspection of Equation (14) it follows that the restriction

ρij = 0 for some i and j, do not translate into a zero-covariance restrictions for the composite error,

unless ωij = 0 and as such is not compatible with an arbitrary Ω.

3.3.1 The multinomial probit model implemented by Stata’s mprobit

The model implemented by Stata’s mprobit is a multinomial probit model with no cross-equation

equality constraints, maintaining the assumption of independence from irrelevant alternatives. As in

the ASMP model of Subsection 3.2, the latent regression system is to be thought of as the part of the

multinomial probit model that identifies the probability of choosing alternative 0. But there is the

additional assumption that the idiosyncratic errors in the utility equation, say εi, i = 0, 1, ...,m, are

jointly distributed according to a m + 1-variate normal distribution with zero means and covariance

matrix equal to Im+1. Hence, εj ≡ εj − ε0, j = 1, ...,m, are zero-mean jointly normal with covariance

matrix

R ≡



2 1 · · · 1

1 2
...

...
. . .

1 · · · 2


.

Unlike the ASMP, here consistent estimation of APEs occurs only under a specific class of con-

ditional independent LH. This is shown by proving that a positive, diagonal matrix A such that

R = A (R+ Ω)A exists if and only if Ω is suitably restricted. Indeed, R = A (R+ Ω)A is equivalent
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to the system of m (m+ 1) /2 equations in m unknowns

aiaj =
ρij

ωij + ρij

i, j = 1, ...,m, which is overdetermined when m ≥ 2. It is thereby evident that the ωij ’s must be

restricted to make the system consistent. For example if m = 2,

 2 1

1 2

 =

 a1 0

0 a2


 2 + ω11 1 + ω12

1 + ω12 2 + ω22


 a1 0

0 a2


and so

a1 =

√
2

2 + ω11

a2 =

√
2

2 + ω22

ω12 =
1

a1a2
− 1

with 0 < a1 < 1 and 0 < a2 < 1, so that eventually ω12 depends on the values of ω11 and ω22 and

is positive. Therefore, the APE estimates here are robust to (conditional) independent heterogeneity

such that

Ω =

 ω11 −1 + 1
2

√
(2 + ω11) (2 + ω22)

−1 + 1
2

√
(2 + ω11) (2 + ω22) ω22

 . (20)

A matrix Ωo that belongs to the class of matrices in Equation (20) emerges in the case of unobserved

random components in the non-differenced utility equations, q̃j , j = 0, 1, ...,m that are independent

and with unknown common variance, ω > 0. In this case, Ωo = ωR, which satisfies Equation (20).
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3.3.2 Zero-covariance-factorizing restrictions

We say that a covariance matrix presents zero-covariance-factorizing restrictions if it can be trans-

formed into a block diagonal matrix through identical permutation of rows and columns. If R is such

a matrix, then ε that can be partitioned into independent subvectors and, in the absence of LH, the

likelihood function would factorize. Two examples are 1) R = I and 2) any R such that, for fixed i,

ρij = 0 for all j 6= i. The former requires separate estimation of m univariate probit models, while the

latter involve separate estimations of an (m− 1)-variate probit model and a univariate probit model.

What happen if we apply such restrictions to the rescaled models? It is easy to prove that Results

1 and 2 hold true, limited to the unconstrained parameters (all β′s and all ρij 6= 0). In fact, the

patterns in R do not carry over into Ξ and so the true likelihood function does not factorize: for some

i and j there is the true constraint ρij = 0, but LH may bring about a non-zero covariance between the

scaled latent components. Nonetheless, in the light of Lemma 2 the constrained ML estimator remains

consistent for the scaled coefficients, as well as the unconstrained elements of Ξ (Wooldridge 2010, p.

595, makes similar considerations in the context of the bivariate probit model). Clearly, Result 3 fails

for the joint response probability, implying inconsistent estimates of the corresponding APEs, unless

the Ω matrix replicates the same patterns as R. It does go through with arbitrary Ω, limited to the

APEs of the subsystem marginal probabilities.

Example 6. If all ρij = 0, i 6= j, running m separate probit regressions yield consistent estimates

of the marginal probabilities Pr (yj = kj |x w) and so of
∏m
j=1 Pr (yj = kj |x w), but the latter equals

Pr (y = k|x w) if and only if also ωij = 0, i 6= j. Only in this case, in fact, Ξ = Im. Since the scaled

coefficients are consistently estimated, the resulting inconsistency on the APEs is only due to non-zero

covariances and is bound to be small if the latter are small enough. In fact, focussing on m = 2, the

APE of x, a generic component of the x vector, is

APEx
(
k,x0

)
= Ew

[
φ
(
γ0

1

)
Φ

(
γ0

2 − ξ12 (k) γ0
1√

1− ξ2
12

)
β1√

1 + ω11
+ φ

(
γ0

2

)
Φ

(
γ0

1 − ξ12 (k) γ0
2√

1− ξ2
12

)
β2√

1 + ω22

]
.

where βj is the coefficient on x in equation j = 1, 2, γ0
j ≡ skjh

0
j , j = 1, 2, ξ12 (k) = sk1sk2ξ12 and ξ12
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is defined as in (14). If ρ = 0 and ML is incorrectly carried out subject to ξ12 = 0, the estimated APE

converges to

APEplimx

(
k,x0

)
= Ew

[
φ
(
γ0

1

)
Φ
(
γ0

2

) β1√
1 + ω11

+ φ
(
γ0

2

)
Φ
(
γ0

1

) β2√
1 + ω22

]
.

with a bias that can be approximated through a first-order Taylor expansion around zero as

bias
(
k,x0

)
= Ew

[
ξ12 (k)φ

(
γ0

1

)
φ
(
γ0

2

)( β1√
1 + ω11

γ0
1 +

β2√
1 + ω22

γ0
2

)]
.

From the above it is clear that the bias gets smaller the smaller ξ12. Clearly, APEs evaluated for the

marginal probabilities, Pr (yj = kj |x w), are instead identified. If, more in general, R is exchangeable,

i.e. ρij = ρ, i 6= j, then by direct inspection of Equation (14) one proves that assuming ωii = ωjj,

i 6= j = 1, ...,m, Ξ is exchangeable if and only if Ω is exchangeable too. With ωii 6= ωjj, for some

i 6= j = 1, ...,m, exchangeability of Ξ is ensured by more complex non-linear relationships across the

ωij’s and ρ. In either case, consistent constrained estimation of APEs no longer supports a general Ω

matrix.

Remark 7. Zero-covariance-factorizing restrictions are not problematic since they can be easily tested

in most statistical packages. They are mainly implemented for computational ease, therefore in the

case of non-rejection it would make sense to apply them to the rescaled systems, independently by

what it is believed about the structural covariances (see Greene 1998, for example).

3.4 The recursive multivariate probit model

The recursive multivariate probit model is a notable case of within equation exclusion restrictions. It

includes the y in the right-hand side of the latent system with an m ×m matrix of coefficients that

is restricted to be triangular (Roodman 2011)2. Starting with the contributions of Evans and Schwab

(1995) and Greene (1998), there are by now many econometric applications of this model, including

the recent articles by Fichera and Sutton (2011) and Entorf (2012).
2Wooldridge (2010) argues that substantial identification in recursive models may also require exclusion restrictions

involving the x
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The feature that makes the recursive multivariate probit model appealing is that it accommodates

endogenous, binary explanatory variables without special provisions for endogeneity, simply maximiz-

ing the log-likelihood function as if the explanatory variables were all ordinary exogenous variables

(see Maddala 1983, Wooldridge 2010,Greene 2012 and, for a general proof, Roodman 2011). This can

be easily seen here in the simple case of a recursive bivariate probit model with no LH

Pr (y1 = 1, y2 = 1|x) = Pr (y1 = 1|y2 = 1,x)P (y2 = 1|x)

= Pr [ε1 > −α1 − x′β1 − λ|y2 = 1,x]P [y2 = 1|x]

= Pr [ε1 > −α1 − x′β1 − λ|ε2 > −α2 − x′β2,x]P [ε2 > −α2 − x′β2|x]

= Pr [ε1 > −α1 − x′β1 − λ, ε2 > −α2 − x′β2|x]

= ΦC(ρ12) (α1 + x′β1 + λ, α2 + x′β2)

The crux of the above derivations is that, given

y1 = 1 (ε1 > −α1 − x′β1 − λy2) and y2 = 1 (ε2 > −α2 − x′β2) ,

ε1 is independent of the lower limit of integration conditional on ε2 > −α2−x′β2 and so no endogeneity

issue emerges when working out the joint probability as a joint normal distribution. The other three

joint probabilities are similarly derived, so that eventually the likelihood function is assembled exactly

as in a conventional multivariate probit model. But this implies, crucially, that a separate analysis

for the recursive multivariate probit model with conditionally independent LH is not needed and so

Results 1-3 carry over smoothly.

4 Conditioning on response subvectors

Greene (1996, 1998, 2012), , Christofides, Stengos, and Swidinsky (1997) and Mullahy 2011 present the

formulas of PEs based on response probabilities conditional on response subvectors and Entorf (2012)

is an interesting recent application where these parameters are estimated. We notice, though, a key
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identification issue that seems to have received scarce attention in the literature so far, and that arises

when estimating conditional-probability-based APEs in the presence of conditional independent LH.

It regards the partition of the LH components between the conditional and the conditioning processes.

To elaborate, let y = (ya yb), k = (ka kb) and q = (qa qb) and let Pr (ya = ka|yb = kb,x,qa)

be the conditional probability of interest. In addition to A.1 and A.2, we consider the following

assumptions

A.3 Pr (yb = kb|x,q) = Pr (yb = kb|x,qb) for any kb.

A.4 D (qb|w) = D (qb) .

A.3 is met in multivariate probit models when qb are the only LH components that enters the subsystem

peculiar to yb. It is also met in recursive models if, in addition, yb is the subsystem that does not have

ya as right-hand variables. We will elaborate further on this assumption in Remark 12 below. A.4 is

more substantial, maintaining independence of w and qb.

In the following it is understood that Pr (ya = ka|yb,x,w) is identified, which is the case not only

in models with all exogenous variables, but also in recursive models, as observed in Subsection 3.4.

Our question, then, is under what circumstances APEs computed on Ew [Pr (ya = ka|yb,x,w)] are

equal to APEs computed on Eqa

[
Pr
(
ya = ka|yb = kb,x

0,qa
)]
. We start with the following result

Proposition 8. Given A.1-A.4

Ew

[
Pr
(
ya = ka|yb = kb,x

0,w
)]

=
Eq

[
Pr
(
y = k|x0,q

)]
Eqb

[Pr (yb = kb|x0,qb)]

Proof. Given A.1, Lemma 1(ii) assures Pr (yb = kb|x,w,q) = Pr (yb = kb|x,q) for any kb, which

along with A.2 yields

Eq

[
Pr
(
yb = kb|x0,q

)]
= Ew

[
Pr
(
yb = kb|x0,w

)]
(21)

for any kb. Therefore, within the borders of A.1 and A.2, we can identify the ratio of the average of
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Pr
(
y = k|x0,q

)
to the average of Pr

(
yb = kb|x = x0,q

)
:

Eq

[
Pr
(
y = k|x0,q

)]
Eq [Pr (yb = kb|x0,q)]

=
Ew

[
Pr
(
y = k|x0,w

)]
Ew [Pr (yb = kb|x0,w)]

. (22)

A.3 just specializes the left-hand side of Equation (22) to

Eq [Pr (y = k|x,q)]

Eq [Pr (yb = kb|x,q)]
=

Eq [Pr (y = k|x,q)]

Eqb
[Pr (yb = kb|x,qb)]

. (23)

Then, Lemma 1(ii) and A.2 yield D (qb|x,w) = D (qb|w) and hence, given A.4,

D (qb|x,w) = D (qb) . (24)

This leads to the following redundancy result

Pr (yb = kb|x,w) = Eq|x,w [Pr (yb = kb|x,w,q) |x,w]

= Eq|x,w [Pr (yb = kb|x,q) |x,w]

= Eqb|x,w [Pr (yb = kb|x,qb) |x,w]

= Eqb|x [Pr (yb = kb|x,qb) |x]

= Pr (yb = kb|x) , (25)

where equalities follow from: 1) Equation (3); 2) Lemma 1(ii) and A.2; 3) A.3; 4) Equation (24).

Therefore,

Pr (ya = ka|yb = kb,x,w) =
Pr (y = k|x,w)

Pr (yb = kb|x)

and so

Ew

[
Pr
(
y = k|x0,w

)]
Ew [Pr (yb = kb|x0,w)]

= Ew

[
Pr
(
ya = ka|yb = kb,x

0,w
)]
, (26)
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which, given Equations (22) and (23), completes the proof.

Proposition 8 establishes that A.1 and A.2, even if supplemented by A.3 and A.4, are not able to

identify averages of conditional probabilities through Ew

[
Pr
(
ya = ka|yb = kb,x

0,w
)]
. This issue,

which we did not find reported elsewhere in the literature, is general since the discrepancy between

what is of interest and what is estimated holds irrespectively of the model for y.

As strong as A.1-A.4 may be, forcing the LH in the conditioning process to be independent of

regressors and controls, they leave the statistical dependence between qa and qb unrestricted. One

may expect, therefore, that separating the two LH components can go a long way towards identification

of APEs. Indeed, this turns out to be the case.

A.5 D (qb|qa,w) = D (qb|w).

Proposition 9. Assume A.1-A.5. Then

Ew

[
Pr
(
ya = ka|yb = kb,x

0,w
)]

= Eqa

[
Pr
(
ya = ka|yb = kb,x

0,qa
)]
. (27)

Proof. Repeatedly applying Lemma 1(ii) and A.2 gives first D (q|x,w,qa) = D (q|w,qa) and then

D (qb|x,w,qa) = D (qb|w,qa). Hence, given A.4, A.5 assures

D (qb|x,w,qa) = D (qb) . (28)

Equation (28) has three implications. First,

Eqb
[Pr (yb = kb|x,qb)] = Eqb|x [Pr (yb = kb|x,qb)]

= Pr (yb = kb|x) ,
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where the first equality stems from Equation (28) and the second from Equation (3). Second,

Eq [Pr (y = k|x,q)] = Eqa {Eqb
[Pr (y = k|x,q)]}

= Eqa

{
Eqb|x,qa

[Pr (y = k|x,q)]
}

= Eqa
[Pr (y = k|x,qa)]

where the first equality stems from Fubini’s Theorem, the second from Equation (28) and the last from

Equation (3). Finally,

Pr (yb = kb|x,qa) = Eqb|x,qa
[Pr (yb = kb|x,q)]

= Eqb|x,qa
[Pr (yb = kb|x,qb)]

= Eqb|x [Pr (yb = kb|x,qb)]

= Pr (yb = kb|x) ,

where the first equality stems from Equation (3), the second from A.1, Lemma 1(ii) and A.3, the third

from Equation (28) and the last, again, from Equation (3). Therefore,

Eq

[
Pr
(
y = k|x0,q

)]
Eqb

[Pr (yb = kb|x0,qb)]
= Eq

[
Pr
(
y = k|x0,q

)
Pr (yb = kb|x0)

]

= Eqa

[
Pr
(
y = k|x0,qa

)
Pr (yb = kb|x0)

]

= Eqa

[
Pr
(
y = k|x0,qa

)
Pr (yb = kb|x0,qa)

]
= Eqa

[Pr (ya = ka|yb = kb,x,qa)] ,

which along with Proposition 8 proves the result.

Example 10. Consider a trivariate probit model where we maintain A.1-A.5. We may want to

estimate the APE of y3 on the conditional probability of any the four combined outcomes for (y1, y2) =
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ya:

APEy3
(
ka,x

0
)

= Eqa

[
Pr
(
ya = ka|y3 = 1,x0,qa

)
− Pr

(
ya = ka|y3 = 0,x0,qa

)]
.

where ka ∈ {(1, 0) , (1, 1) , (0, 1) , (0, 0)}. This makes sense both in a model with all strictly exogenous

variables and in a recursive model. To estimate APEy3
(
ka,x

0
)
, we first invoke Equation (27), which

establishes

APEy3
(
ka,x

0
)

= Ew

[
Pr
(
ya = ka|y3 = 1,x0,w

)
− Pr

(
ya = ka|y3 = 0,x0,w

)]
,

then we use consistent estimates of coefficients and covariances to estimate Pr
(
ya = ka|y3,x

0,w
)
and

finally we average over the sample

̂APEy3 (ka,x0) =
1

n

n∑
i=1

ΦR̂1

(
sk1 ĥ

0
1,i, sk2 ĥ

0
2,i,x

0′ β̂3 + w′iδ̂3

)
Φ
(
x0′ β̂3 + w′iδ̂3

) −
ΦR̂0

(
sk1 ĥ

0
1,i, sk2 ĥ

0
2,i,−x0′ β̂3 −w′iδ̂3

)
1− Φ

(
x0′ β̂3 + w′iδ̂3

)


where 3

R̂1 ≡


1 . .

sk2sk1 ρ̂12 1 .

sk1 ρ̂31 sk2 ρ̂32 1

 and R̂0 ≡


1 . .

sk2sk1 ρ̂12 1 .

−sk1 ρ̂31 −sk2 ρ̂32 1

 .

Remark 11. An extreme case covered by Proposition 9 is when qa exhausts the whole amount of LH

in the model, that is qa = q. It is also clear that common variables in qa and qb violates A.5 and so

are a problem for the identification of APEs.

Remark 12. In the context of the multivariate probit model with all exogenous regressors, one can

further restrict the model by maintaining also A.3(ya): Pr (ya = ka|x,q) = Pr (ya = ka|x,qa) for any

ka and A.4(qa): D (qa|w) = D (qa). This makes it possible to reverse the analysis, conditioning on

ya (notice that in this case D (q|x) = D (q), making the conditioning on w useless). In the recursive
3This example is couched in terms of a model with all strictly exogenous regressors. To be consistent with a recursive

model, one has simply to adjust the notation to allow that
(
ĥ0
1,i, ĥ

0
2,i

)
be different between ΦR̂1

and ΦR̂0
. See the end

of Remark 12 for the reason why this is so.
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model, such reverse conditioning is both useless and arbitrary. It is useless since interest centers only

on the effects of yb on ya. It is arbitrary since Pr (ya = ka|x,q) does depend on qb if the latter is

part of the yb sub-system. This can be easily seen in the bivariate recursive model:

Pr (y1 = 1|x,q) = Pr (y1 = 1|y2 = 1,x,q)Pr (y2 = 1|x, q2) +

Pr (y1 = 1|y2 = 0,x,q)Pr (y2 = 0|x, q2)

= ΦC(ρ12) (α1 + x′β1 + λ+ q1, α2 + x′β2 + q2) +

ΦC(−ρ12) (α1 + x′β1 + q1,−α2 − x′β2 − q2) ,

q = (q1, q2), where the complication lies in the fact that, because of the λ term, the two bivariate

normal distributions have a different first argument and so the sum of the two distributions does not

collapse to a univariate normal, as it otherwise would in the standard bivariate model.

Remark 13. In recursive models average treatment effects (ATEs) are typically of interest. In the

bivariate model, for example, we may estimate

ATEy2
(
k1,x

0
)

= Eq1
{
Pr
(
y1

1 = 1|x0, q1

)
− Pr

(
y0

1 = 1|x0, q1

)}
,

where y1
1 = 1 (ε1 > −α1 − x′β1 − λ− q1) and y0

1 = 1 (ε1 > −α1 − x′β1 − q1) (Wooldridge 2010, pp.

586, and Bhattacharya, Goldman, and McCaffrey (2006) report analogous formulas without the q1

component; Entorf (2012) instead focuses on coefficient estimates and APEs based on marginal and

conditional probabilities, without reporting the formulas used; Fichera and Sutton (2011) do not report

the formulas for their partial effects). ATEy2
(
k1,x

0
)
is a counterfactual APE since both y1

1 and y0
1

are latent. It measures the population-averaged difference in response probability between the two

hypothetical situations of treatment and non-treatment for the same random draw. In the bivariate

recursive model, the ATE is based on the marginal probabilities of y1
1 and y0

1 . If m > 2 the ATEs

may involve marginal as well as joint probabilities. In either situation the results in Sections 2 and 3

apply assuring identification of ATEs under just A.1 and A.2. Greene (1998) tests y2 being exogenous

in a bivariate model and does not reject it, so Pr
(
y1

1 = 1|x0, q1

)
= Pr

(
y1 = 1|y2 = 1,x0, q1

)
and
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Pr
(
y0

1 = 1|x0, q1

)
= Pr

(
y1 = 1|y2 = 0,x0, q1

)
and the two concepts would coincide therein.

Remark 14. It is well known that the control function approach can be used for estimation and infer-

ence in probit models with continuous endogenous regressors (Rivers and Vuong (1988), Wooldridge

2010, pp. 585-594). As already observed in Subsection 3.4, the recursive probit model provides a

computationally inexpensive method to accommodate binary endogenous regressors. This section’s

results permit to combine the two methods within a general procedure that accommodates binary and

continuous endogenous variables at the same time, allowing consistent estimation of ATEs and APEs.

Consider, for example, the bivariate recursive model with

y∗1 = α1 + γy2 + β1x+ q1 + ε1,

y∗2 = α2 + z′β2 + q2 + ε2,

yj = 1
(
y∗j > 0

)
, j = 1, 2, x = z′β3 + w, ε|z, x, w,q ∼ N (0, R) and q|z, x, w ∼ N (µ,Ω) ,

R ≡

 1 ρ

ρ 1



µ ≡

 η1 + δ1w

η2


and

Ω ≡

 ω1 0

0 ω2

 .

In the structural equation of interest

y∗1 = α1 + γy2 + β1x+ q1 + ε1,

y2 and x are both endogenous because, respectively, ρ 6= 0 and the latent variable w is a common factor

for q1 and x. Since assumptions A.1-A.5 are verified, APEs based Eq1
[
Pr
(
y1|y2, x

0, z0, q1

)]
can be
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consistently estimated into two steps: Step 1 estimates w using the residuals from the OLS regression

of x on z, ŵ. Step 2 implements a recursive bivariate model with explanatory variables y2, x, z and ŵ

and computes the APEs using the conditional probability estimates averaged over the sample values

of ŵ. The ATE of y2 can be computed similarly.

5 A simple estimation procedure

Mullahy (2011) derives the formula of the PE of the joint probability in m-variate probit models,

∂xΦC(.) (.), and uncovers that it involves evaluation of a multivariate cumulative normal over m − 1

dimensions only. Equation (17) shows that this computational benefit is retained by APEs with con-

ditional independent heterogeneity and arbitrary covariance matrix, provided that in the PE formula

the scaled coefficients and the scaled and repositioned covariances replace, respectively, the model

coefficients and the model covariances. In addition, given Results 1, 2 and Lemma 2, a bivariate

probit model made by any two equations i and j of System (15) will provide consistent estimates of

(αh + ηh) /
√

1 + ωhh , βh/
√

1 + ωhh, δh/
√

1 + ωhh, h = i, j and ξij . This suggests a simple two-step

procedure for estimating APEs, which partly dispenses with simulation algorithms.

Step 1. Carry out all possible m′ ≡ m (m− 1) /2 bivariate probit regressions to provide consistent

Quasi-ML estimators of all parameters of interest. An estimate of the combined covariance matrix of

the foregoing estimators, V̂ , is obtained by applying the covariance estimator in White (1982). This

yields m′ covariance estimates and, for each equation j = 1, ...,m of System (15), m − 1 vectors of

coefficient estimates, of which only one vector is selected at random for use in Step 2.

Step 2. Assemble the estimated APE as in Equation (17) by plugging the m′ covariance estimates

and the m vectors of coefficient estimates retained in Step 1 into ∂xΦC(sk1
skj

ρij)
(
sk1h

0
1,i, ..., skmh

0
m,i

)
using the formulas in Mullahy (2011) for ∂xΦC(.) (.) and then average the resulting values over the

sample.

We obtain the variance of the the estimated APEs through the delta method as suggested by

Greene (2012), pp. 738-739. We first work out the (m · k +m′) × 1 vector of partial derivatives of a

given APE with respect to the k ·m coefficients and the m′ covariances, ∂APEi, i = 1, ..., n. Then,
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we evaluate all ∂APEi in the sample at the parameter estimates to get ∂̂APEi and average all the

∂̂APEi values over the sample to get the (m · k +m′)×1 column vector ∂̂APE = (1/n)
∑n

1 ∂̂APEi .

Finally, we evaluate the variance of the estimated APE as ∂̂APE
′
V̂ ∂̂APE, where V̂ is the covariance

matrix obtained in Step 1.

Remark 15. Step 1 dispenses completely with simulation algorithms and is close in spirit to the GMM

approach of Bertschek and Lechner (1998), which is based on the m marginal univariate normal

distributions and estimates covariances in a subsequent step. Here, we focus on marginal bivariate

normal distributions and so coefficients and covariances are jointly estimated. Step 2 always permits

to exploit in full the dimensional benefit evidenced in Mullahy (2011), where it is proved that the

PE formulas for m-variate probit models involve only (m− 1)-variate normal distributions. Hence, in

trivariate models simulation algorithms can be avoided altogether, as the next example shows.

Example 16. The APE of the generic regressor x in the trivariate probit model with conditionally

independent heterogeneity is

APEi (k,xo) = Ew

[
φ
(
sk1h

0
1

)
ΦC(%23(k))

(
sk2h

0
2 − ξ12 (k) sk1h

0
1√

1− ξ2
12

,
sk3h

0
3 − ξ13 (k) sk1h

0
1√

1− ξ2
13

)
β1i√

1 + ω11

+ φ
(
sk2h

0
2

)
ΦC(%13(k))

(
sk1h

0
1 − ξ12 (k) sk2h

0
2√

1− ξ2
12

,
sk3h

0
3 − ξ23 (k) sk2h

0
2√

1− ξ2
23

)
β2i√

1 + ω22

+ φ
(
sk3h

0
3

)
ΦC(%12(k))

(
sk1h

0
1 − ξ13 (k) sk3h

0
3√

1− ξ2
13

,
sk2h

0
2 − ξ23 (k) sk3h

0
3√

1− ξ2
23

)
β3i√

1 + ω33

]
(29)

where

%23 (k) = ξ23 (k)− ξ12 (k) ξ13 (k)

%13 (k) = ξ13 (k)− ξ12 (k) ξ23 (k)

%12 (k) = ξ12 (k)− ξ13 (k) ξ23 (k)

ξij (k) = skiskjξij , i, j = 1, 2, 3 i 6= j,

and ξij is defined as in (14). Inspection of Equation (29) shows that only the univariate Normal density
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and the bivariate Normal distribution are required. Hence, consistent estimator of APEi (k,xo) can

be obtained without having to evaluate trivariate normal distributions.

The procedure is simply implemented through official commands in Stata and is referred to as

combined biprobit, throughout. Each of the m′ bivariate probit regressions in Step 1 is executed

through biprobit and the m′ estimation results are then combined together through suest to get

the estimated covariance matrix V̂ into memory. The APE and standard error formulas of Step 2 can

then be either processed through the command predictnl or from within the Mata environment in

Stata.

Remark 17. The combined biprobit procedure is not implementable in recursive models, since neces-

sarily at least one of the bivariate subsystem that are needed for estimating covariances is not recursive,

that is with a response variable in the right hand side of the first equation and a second equation that

is not peculiar to that response variable. In this case simulation-based estimators are indispensable.

6 Monte Carlo experiments

We now report on two distinct batteries of Monte Carlo experiments. The first battery focuses on the

estimation of APEs in a trivariate probit model and evaluates the finite-sample performances of the

combined biprobit procedure of Subsection 5 in comparison with two popular simulation based Stata

codes, mvprobit and cmp. The second battery estimates the finite sample bias of APEs of conditional

probabilities under the assumptions spelled out in Section 4.

We generate multivariate normal variables using a result in Rao (1973):

Lemma 18. given the m× 1 random vector z, then

z ∼ N (µ,Σ)

if and only if

z = µ+Bu,
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where u is a p × 1 random vector such that u ∼ N (0, I), B is an m × p matrix with p rank and

Σ = BB′.

6.1 APEs in trivariate probit

We consider a trivariate probit model with independent, or conditionally independent, LH.

We first generate a vector of six (pseudo) independent standard normal variables (u1 u2 u3 u4 u5 u6)
′ ∼

N (0, I6). Then, we set ε = B (u1 u2 u3)
′ and ν = B (u4 u5 u6)

′, where

B =


0.6 −0.8 0

−0.8 0.6 0

0.8 0 0.6

 .

From Lemma 18, ε and ν are independent random numbers from the same normal distribution

N




0

0

0

 ,


1

−0.96 1

0.48 −0.64 1


 .

We also specify the latent regression model

y∗j = 2 + x+ qj + εj , (30)

and define yj = 1
(
y∗j > 0

)
, j = 1, 2, 3, where qj = w + νj ,

 x

w

 ∼ N

 0

0

 ,

 1

τ 1


 ,

νj and εj are independent and both independent of (x w) and τ alternates between 0 and 0.5. Therefore,

x and qj are either independent, if τ = 0, or only independent conditional on w if τ = 0.5. It also has
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that

R+ Ω = 2


1

−0.96 1

0.48 −0.64 1


and so the normalized coefficient on x in all equations is 1/

√
2, while the normalized covariances, ξij ,

are exactly equal to the original ones, so ξ21 = ξ32 = −0.96 and ξ31 = 0.48. We consider samples of

500, 1000 and 10000 observations. The number of simulation points in mvprobit alternates among

5 (the default), 10 and 100. True and estimated APEs of x are averaged over the sample. Monte

Carlo biases and root mean squared errors for the APE and the three coefficients on x, along with

the three covariances, are computed through 1000 replications. Results for independent (τ = 0) and

conditionally independent (τ = 0.5) heterogeneity are reported in Tables 1 and 2, respectively.
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Monte Carlo results decidedly support the combined biprobit procedure. For all sample sizes and

for both τ = 0 (Table 1) and τ = 0.5 (Table 2), combined biprobit yields APE estimates that almost

always are virtually unbiased and, anyhow, with smaller bias than mvprobit. While the mvprobit

estimates have always negligible standard deviations, with RMSEs that virtually equal biases, the

latter are far from being negligible to the extent that the RMSE of the combined biprobit APE

estimates are almost always smaller than mvprobit’s. We also notice that the mvprobit finite-sample

performance seems particularly poor when it comes to the bias of estimated coefficients and, especially,

estimated covariances. Finally, combined biprobit is from 7 to 14 times faster than mvprobit, with

computing times that are also less sensitive to sample sizes.

The mvprobit estimates reported in Tables 1 and 2 have been obtained using 5 simulations points

(draws in the mvprobit jargon), which is the default option for the procedure. At the cost of enormously

higher computing times, we have also used 10 and 100 simulation points, observing a steady, although

very slow, improvement in accuracy. With a sample size of 1000, the magnitude of the bias decreases

from 0.023, to 0.020 and 0.012 as the number of draws increases from 5 to 10 and 100, respectively (see

Table 5 in appendix). We therefore conjecture that only with a number of draws close to the sample

size, which may be hardly feasible in many circumstances, the finite-sample bias of mvprobit would

be comparable to that of combined biprobit.

As a further check, we have also tried the recent cmp code by Roodman (2011), a general procedure

for non-linear seemingly unrelated equations that can estimate multivariate probit models based on

simulations. Table 6 shows that, although with a largely better performance than mvprobit, cmp is

still behind combined biprobit in all respects.

6.2 Conditioning on response subvectors: experiments on bivariate probit

We here consider a bivariate probit model with independent, or conditionally independent, LH. We

base the random part of the model on a vector of six (pseudo) independent standard normal vari-

ables (u1 u2 u3 u4 u5 u6)
′ ∼ N (0, I6). Then, we set ε ≡ (ε1 ε2)

′
= Bε (u1 u2)

′ and ν ≡ (ν1 ν2)
′

=

35



Bν (u3 u4)
′ and (x w)

′
= Bκ (u5 u6)

′ where

Bε =

 0.6 −0.8

−0.8 0.6

 , Bν =

 1 0

c 1.5

 , Bκ =

 1 0

0.8 0.6

 ,

From Lemma 18 ε, ν and (x w)
′ are independent and

ε ∼ N


 0

0

 ,

 1

−0.96 1


 , ν ∼ N


 0

0

 ,

 1

c c2 + 2.25


 ,

 x

w

 ∼ N

 0

0

 ,

 1

0.8 1


 .

We also specify the bivariate latent regression model

y∗1 = 1 + λy2 + βx+ q1 + ε1,

y∗2 = 1 + x+ q2 + ε2

with yj = 1
(
y∗j > 0

)
, j = 1, 2, and

q1 = δw + ν1,

q2 = ν2.

We wish to evaluate models with and without right-hand-side endogenous binary variables, therefore

we let λ alternate between 0 and 1 with β = 1 − λ. A.1-A.4 are always satisfied and so is A.5 when

c = 0. Thus, letting c vary across 0, 0.5, 1, 2 and 10 permits to evaluate the impact of departures

from A.4 in the second equation. We also let δ alternate between 0 and 1 to shift from independence

to conditional independence of x and q1.
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The population object of interest is Eq1
[
Pr
(
y1 = 1|y2 = 1, x0, q1

)]
:

Eq1
[
Pr
(
y1 = 1|y2 = 1, x0, q1

)]
=

Eq1

[
Pr
(
y1 = 1, y2 = 1|x0, q1

)
Pr (y2 = 1|x0, q1)

]
=

Eq1

{
ΦC(ξ)

[
1 + λ+ βx0 + q1,

[
1 + x0 + c

(
q1 − 0.8δx0

)
/
(
1 + 0.36δ2

)]
/κ
]

Φ [(1 + x0 + c (q1 − 0.8δx0) / (1 + 0.36δ2)) /κ]

}
. (31)

where ξ = −0.96/κ and

κ =

√
3.25 +

0.36c2δ2

1 + 0.36δ2
.

When δ = 0 and c = 0, then q1 and (y2, x) are independent and so Eq1
[
Pr
(
y1 = 1|y2 = 1, x0, q1

)]
=

Pr
(
y1 = 1|y2 = 1, x0

)
, or

Eq1
[
Pr
(
y1 = 1|y2 = 1, x0, q1

)]
=

Φ
C
(
−0.96√

6.5

) [(1 + λ+ βx0
)
/
√

2,
(
1 + x0

)
/
√

3.25
]

Φ
[
(1 + x0) /

√
3.25

] . (32)

As discussed in Subsection 3.4, regardless of y2 being endogenous in the first equation, conven-

tional bivariate probit estimation yields consistent estimators of the scaled coefficients and the scaled-

repositioned covariance for any values of δ and c and so of conditional probabilities. Let P̂11

(
x0, wi

)
denote the bivariate probit estimate of Pr

(
y1 = 1|y2 = 1, x0, wi

)
and let

ÊP
0

11 ≡ (1/n)

n∑
i=1

P̂11

(
x0, wi

)
.
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Given Proposition 8, ÊP
0

11 is a consistent estimator of

Eq

[
Pr
(
y1 = 1, y2 = 1|x0, q1, q2

)]
Eq2 [Pr (y2 = 1|x0, q2)]

=

Ew
[
Pr
(
y1 = 1, y2 = 1|x0, w

)]
Pr (y2 = 1|x0)

=

Ew

Φ
C

(
−0.96√

2(c2+3.25)

) [(1 + λ+ βx0 + δw
)
/
√

2,
(
1 + x0

)
/
√
c2 + 3.25

]
Φ
[
(1 + x0) /

√
c2 + 3.25

] . (33)

where the first equality is implied by independence of q2 and x in our data generating process and the

last by the fact that A.1 and A.2 hold. The foregoing expression coincides with the population object

of interest in Equation (31) if and only if c = 0. When δ = 0, Equation (33) simplifies to

Eq

[
Pr
(
y1 = 1, y2 = 1|x0, q1, q2

)]
Eq2 [Pr (y2 = 1|x0, q2)]

=

Φ
C

(
−0.96√
c2+3.25

) [(1 + λ+ βx0
)
/
√

2,
(
1 + x0

)
/
√
c2 + 3.25

]
Φ
[
(1 + x0) /

√
c2 + 3.25

] . (34)

We consider two bivariate models: with only exogenous regressors (β = 1, λ = 0, δ = 0) and with a

binary endogenous regressor (β = 0, λ = 1, δ = (0, 1)). We fix x0 = 1 in either model.

Table 3 reports the finite-sample bias of ÊP
0

11 with respect to the population object of interest:

BIAS = E
(
ÊP

0

11

)
− Eq1

[
Pr
(
y1 = 1|y2 = 1, x0, q1

)]
as well as the finite-sample bias with respect to the probability limit of ÊP

0

11:

BIASplim = E
(
ÊP

0

11

)
−
Eq

[
Pr
(
y1 = 1, y2 = 1|x0, q1, q2

)]
Eq2 [Pr (y2 = 1|x0, q2)]

.

We consider estimation samples of 500, 1000 and 10000 observations and computeBIAS, BIASplim,

plim
(
ÊP

0

11

)
when δ 6= 0, and Eq1

[
Pr
(
y1 = 1|y2 = 1, x0, q1

)]
when c 6= 0 or δ 6= 0, as Monte Carlo

averages over 10000 replications (when δ = 0, plim
(
ÊP

0

11

)
is exactly computed through Equation
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(34) and, for both models, takes on the values reported in Table ?? in appendix; when δ = 0 and

c = 0, Eq1
[
Pr
(
y1 = 1|y2 = 1, x0, q1

)]
equals plim

(
ÊP

0

11

)
4.)

Table 3: Biases in average conditional probabilities
Bivariate model with a unique exogenous regressor:

y∗1 = 1 + x+ q1 + ε1

y∗2 = 1 + x+ q2 + ε2

n=500 n=1000 n=10000
(c, δ) BIAS BIASplim BIAS BIASplim BIAS BIASplim

(0, 0)a 0.000 0.000 0.000 0.000 0.000 0.000
(0.5, 0) 0.005 0.000 0.004 0.000 0.004 0.000
(1, 0) 0.012 0.000 0.012 0.000 0.012 0.000
(2, 0) 0.031 0.000 0.030 0.000 0.030 0.000
(10, 0) 0.069 -0.000 0.069 -0.000 0.070 -0.000

Bivariate model with a binary endogenous regressor:
y∗1 = 1 + y2 + q1 + ε1

y∗2 = 1 + x+ q2 + ε2

(c, δ) BIAS BIASplim BIAS BIASplim BIAS BIASplim

(0, 0)a -0.001 -0.001 -0.001 -0.001 -0.000 -0.000
(0.5, 0) 0.009 -0.001 0.010 -0.000 0.010 -0.000
(1, 0) 0.024 -0.001 0.025 -0.000 0.025 0.000
(2, 0) 0.063 -0.000 0.063 -0.000 0.063 0.000
(10, 0) 0.268 -0.000 0.268 -0.000 0.268 -0.000
(0, 1) -0.004 -0.004 -0.002 -0.002 -0.000 -0.000

(0.5, 1) 0.014 -0.003 0.015 -0.002 0.017 -0.000
(1, 1) 0.036 -0.002 0.038 -0.001 0.038 -0.000
(2, 1) 0.081 -0.002 0.082 -0.001 0.083 -0.000
(10, 1) 0.134 -0.001 0.135 -0.000 0.135 0.000

aIn this case BIAS = BIASplim

Results are clear-cut. We proved in Section 4 that restricting LH to be independent across equations

(c = 0) results in consistent estimators for conditional probabilities, and so for the corresponding APEs.

We find here that this translates into a negligible finite sample bias (BIAS), which always declines with

the size of the estimation sample and becomes virtually zero when n = 10000. While BIAS remains
4For the sake of validation of our Monte Carlo computations, we evaluated Monte Carlo averages also for the cases

where exact results were available, with virtually zero differences. These further Monte Carlo results are available on
request from the Authors.
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quite small when c = 0.5, it increases steadily with c. BIASplim is always negligible, virtually zero

when n = 10000. The foregoing Monte Carlo findings hold regardless of the binary endogenous variable

being or not included into the first equation, as well as regardless of x and q1 being independent or

conditionally independent. The Monte Carlo results also confirm a virtually zero bias in the estimate

of the scaled coefficient as well as the scaled and re-positioned covariance (unreported, but available

on request from the authors).

Bhattacharya, Goldman, and McCaffrey (2006) conduct similar Monte Carlo experiments, focusing

on ATEs with no LH and restricting to the case of λ 6= 0. They find that bivariate probit always

outperforms competitor estimators, showing virtually zero biases in estimated PEs. Thus, our results

confirm that the excellent finite-sample performance of the bivariate probit model is robust to condi-

tionally independent heterogeneity, provided that the covariance between the omitted variables in the

two biprobit equations is small, if not zero. We stress that the latter qualification has to be met also

for the seemingly harmless bivariate probit model with no endogenous regressors (see Remark 12).

7 An application to immigrants’ models of trans-national ethnic

identities

As an empirical illustration of our results we estimate APEs in the context of measurement and analysis

of immigrants’ ethnic identity. This topic is nowadays largely debated since, following a number of

EU-directives, during the last decade one of the common goals of policy makers across the European

countries has been to provide a good level of integration to the increasing number of immigrants from

within or outside Europe. This seems to be an appropriate action for avoiding episodes of social danger.

In this view, the analysis of ethnic identity in association with the individual economic performance

seems particularly useful.

Most of the initial economic literature on immigrants’ integration focussed on measures of wage

or occupational differentials with respect to natives. Here we take inspiration from a recent strand

of the literature, based on an application of the theoretical models of Akerlof (1997) and Akerlof

and Kranton (2000), and consider immigrants’ economic performance and ethnic identity as both
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endogenous variables that are possibly interrelated. While we do not attempt to extract a casual link

in one direction or the other, we set up a new model of joint determination of immigrants’ economic

performance and ethnic identity that identifies interesting response probabilities and the related APEs.

The process of formation of individual’s sense of belonging to a country is complex: first, it is

subjectively determined and can be different across people coming from a same country; second, it is

essentially dynamic; third, it involves many aspects beyond the individual economic performance, such

as the social, political and cultural dimensions. From an empirical point of view, different approaches

to the measurement of ethnic identity have been proposed in the literature.

The majority of studies focus on one or more aspects of ethnic identity that are modeled, basically,

as a linear process where commitment to the home and the host country are mutually exclusive: the

more an individual commits and feels for one country the less she commits and fells for the other. In

other words, individuals are assumed to adopt so-called oppositional identities. Figure 1 illustrates

this process of identity formation. Imagine to represent the relationship between commitment to the

origin and commitment to the host country on a bi-dimensional graph with the two axis dedicated, and

suppose that we can measure each type of commitment on a 0-1 scale. All the points for which the two

commitments are mutually exclusive lie on the diagonal from (1,0) to (0,1). The two extremes of the

diagonal are the (0,1) point of maximum commitment to the host country, that denotes full adaptation

of immigrants, and the (1,0) point of maximum commitment to the home country, that denotes the

maximum level of ethnicity in the sense that ethnic identity has not been affected by the host country.

Along the diagonal it is possible to the define what Constant, Gataullina, and Zimmermann (2009)

call the one-dimensional measure of ethnic identity or ethnosizer, that implicitly captures the idea of

immigrant low/high assimilation in economic research, one that is easy to measure because in practice

requires information on the commitment only for one country.

Constant, Gataullina, and Zimmermann (2009) develop a more general model for ethnic identity,

based on the psychological studies of Berry (1997). In this context ethnic identity is considered as

a personal mix between the sense of belonging to the home or the host country, i.e. as the result of

a dynamic acculturation process that happens in a trans-national dimension and can generate more

than two extreme outcomes because commitment to the home and the host countries can also co-exist,
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although with different strengths. . In terms of Figure 1, our measure of ethnic identity can be any

point in the area delimited by the points (0,0), (0,1), (1,1) and (1,0). Constant, Gataullina, and Zim-

mermann (2009) call this measure the two-dimensional ethnosizer because it requires information on

the commitment to both the home and the host cultures on as many aspects as possible (values, norms,

languages, culture, etc.). According to the definitions in Berry (1997), when a strong identification

with the host culture is coupled with a weak dedication to the ancestry the immigrant’s type of ac-

culturation is called Assimilation and the ethnosizer falls in the upper-left quadrant; any point in the

upper-right quadrant (strong dedication to both the home and the host culture) describes the process

of Integration; the state opposite to Assimilation is called Separation (lower-right quadrant); and the

case of weak dedication to both home and host country is referred to as Marginalisation (lower-left

quadrant).

There are only a few empirical applications based on the the two-dimensional ethnosizer (Constant,

Gataullina, and Zimmermann 2009 for Germany, Nekby and Rodin 2010 for Sweden, and Drydakis

2012 for Greece). Although with different data and number of aspects available for constructing the

ethnosizer, all of them follow an approach into two separate stages. First, they analyze the determinants

of the four ethnic identity outcomes separately through OLS regressions. Then, in the spirit of Akerlof

(1997) and Akerlof and Kranton (2000), they work out correlations between some measures of economic

performance and ethnic identity.

Here we adhere to a concept of two-dimensional ethnosizer, but from a new methodological stance.

Explicitly admitting the endogenous status of, on the one hand, the two dimensions of ethnic identity

and, on the other, an indicator of economic performance, we estimate joint and conditional response

probabilities, with the related APEs. In doing this, we extend the evidence from the existing literature

to the Italy.
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7.1 A Model of trans-national ethnic identities

We set up a trivariate probit model with no constraints beyond normalization, i.e. System (11)

specialized to m = 3. The first two equations describe the immigrant’s latent commitment to the

culture of host, y∗1 , and home country y∗2 , whereas the last equation describes the immigrant’s latent

propensity to find an occupation y∗3 :

y∗1 = α1 + x′β1 + q1 + ε1

y∗2 = α2 + x′β2 + q2 + ε2

y∗3 = α3 + x′β3 + q3 + ε3

with the observed binary variables yi = 1 (y∗i > 0) , i = 1, 2, 3. This latent regression system can

be thought of as the reduced form of a simultaneous equation model, where y∗1 , y∗2 and y∗3 may be

right-hand side variables in some or all of the equations. Combining the outcomes of y1 and y2 leads

to the classification in Berry (1997): 1) Integrated (y1 = 1, y2 = 1); 2) Assimilated (y1 = 1, y2 = 0); 3)

Separated (y1 = 0, y2 = 1); and 4) Marginalized (y1 = 0, y2 = 0). A finer partition of eight possible

outcomes arises when the four different types of ethnic identities are combined with the economic
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status Occupied (y3 = 1) or Not occupied (y3 = 0). Accordingly, eight APEs of the generic regressor

x are identified under A.1 and A.2 alone

APEx (k1, k2, k3) = Eq

[
∂xPr

(
y1 = k1, y2 = k2, y3 = k3|x0,q

)]
,

k1, k2, k3 = 0, 1 and, given the unconstrained nature of the system, with an arbitrary covariance matrix

for the q’s, as seen in Section 3.

Interesting insights on the association between economic performance and ethnic identity can be

grasped by estimating the average gap between conditional response probabilities

APEy3 (k1, k2) = Eq

[
Pr
(
y1 = k1, y2 = k2|y3 = 1,x0,q

)
− Pr

(
y1 = k1, y2 = k2|y3 = 0,x0,q

)]
, (35)

k1, k2 = 0, 1. The foregoing APEs are identified under the restricted framework of Section 4, with A.3

satisfied by construction and A.4 and A.5 that read here as D (q3|w) = D (q3) and D (q3|w, q1, q2) =

D (q3|w).

The reference individual described by vector x0 is a catholic male living in the north macro-region of

Italy, of current age and age at arrival equal to the sample mean points, 38 and 32 years old respectively.

The APEs are then obtained averaging over the control variables, w: education dummies and country-

of-origin dummies. As established in Subsection 3, the APEs can be estimated using either estimators

based on the GHK or the computationally inexpensive and also more precise combined biprobit

procedure.

7.2 Data and variables’ definition

The data used for our analysis have been collected by Fondazione ISMU (Foundation for Initiatives

and Studies on MUltietnicity) between October 2008 and February 2009 through a questionnaire

asked to more than 12,000 foreign immigrants aged more than 18. The method of collection called by

centres5, allows to construct proper weights of observations so that, although collected for a subset of

regions, data are representative of the whole Italian population of foreign immigrants. In particular,
5Details of the sampling method can be found in Blangiardo and Cesareo (2011)
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the regions covered are 13: Piemonte, Lombardia, Trentino Alto Adige, Veneto, Emilia Romagna,

Toscana, Marche, Abruzzo, Lazio, Campania, Molise, Puglia, Sicilia.

Various are the advantages of using ISMU data. First of all, to date they are the only set of data

in Italy that oversamples foreign immigrants, therefore being highly representative of this population.

Second, they are collected with the specific purpose of studying the concept of integration. Third, they

provide two variables asked symmetrically in the direction of the host and the home country, therefore

allowing to provide two-dimensional measures of identity à la Zimmermann. The first question is a

general self-assessment of the sense of belonging to a country: “How much do you feel you belong

to Italy?” and “How much do you feel you belong to your home country?” . The second question

asks: “To what extent are you interested in knowing what happens in Italy?” and “To what extent are

you interested in knowing what happens in your home country?”. In both cases the possible answers

respect the following scale: “not at all”,”a little”, “rather/sufficiently”, and “a lot”. The two lowest levels

of intensity have been aggregated and valued 0, and the two highest levels have been aggregated and

valued 1.

As explanatory variables we use: age, ethnicity (aggregated in four groups: Eastern-Europe, North-

Africa, Other-Africa, Latin America), age at arrival, education (available in four levels: none, com-

pulsory, secondary, laurea and more/tertiary6), religion (muslim, catholic, orthodox, copto, evangelis-

tic/evangelical, other christian, hindu, sikh, other, none), region (aggregated in North, Centre, South).

7.3 Results

Estimation results are reported in Table 4. We first focus on the eight APEs of each of the three regres-

sors: age, age at arrival and sex , APEx (k1, k2, k3), and then on the four APEs of the employed/not-

employed dummy variable, APEy3 (k1, k2).

Estimation is carried out through combined biprobit and mvprobit. The mvprobit estimators

are implemented using the default number of draws, 5. In the case of the four APEy3 (k1, k2) we have

also used 100 and 1000 draws.

We start commenting results for the eight APEx (k1, k2, k3). Results are generally close between
6Notice that those are the degrees achieved in the home country, and therefore can be heterogeneous.
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combined biprobit and mvprobit, in terms of coefficient signs, magnitudes and standard errors and

we will therefore base our comments on the results from the former procedure. Focussing on the APE of

age we find that growing one year older makes it more likely being “employed” and either “integrated”,

“assimilated”, or “marginalized”, with a greater APE (+2.7%) on the association “employed-integrated”.

It also makes it less likely being “not-employed” in general, with a greater APE on the association “not-

employed-separated” (-2.0%). Turning, then, on the APE of age at arrival, we notice that arriving

one year later makes it less likely to be employed and either integrated, assimilated, or marginalized

with a strong negative effect on the association with “integrated” (-2.9%). It also makes it more likely

being separated, whether employed or not, with a greater APE on the association “not-employed-

separated” (+2.1%). As regards the differences between women and men7, we find that they are

not generally significant, with two notable exceptions: in comparison with men, women have 1) a

smaller probability of being “employed-separated” (-4.4% smaller); 2) a greater probability of being

“not-employed-integrated” (+1.6%).

Finally, turning to the four estimators of APEy3 (k1, k2), we find that being employed has a sig-

nificantly positive impact on the chances of being integrated and significantly reduces those of being

either assimilated or marginalized. It has, though, a small and statistically insignificant impact on

separation. From a policy perspective, these findings show that policies stimulating the labour market

participation of immigrants in Italy are likely to increase integration, but only at the expenses of as-

similation and marginalization, not separation. If the policy target is on a lower degree of immigrants’

separation, different forms of interventions should be thought of.

On the computation side, we notice that mvprobit provides estimates that are largely close to

combined biprobit. Of course greater accuracy, at the expenses of enormously higher computation

times, is obtained when the number of draws departures from 5, increasing to 100 and 1000. It is

interesting that in these cases the mvprobit’s APE estimates get even closer to combined biprobit’s,

so confirming the dimensionality gains exploited by the computationally inexpensive combined proce-

dures.
7Our APE estimates are to be thought of as first-order Taylor approximations of the differences in probability statuses

between women and men.
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8 Conclusion

This paper has dealt with identification and estimation of APEs in multivariate probit models with

conditionally independent LH.

We have proved that APEs based on joint or marginal response probabilities are identified by a

reduced-from multivariate probit model with the same constraints as the structural model, provided

that the structural-error covariance matrix is unconstrained beyond normalization (UBN). To be UBN,

it must have a minimal set of normalization constraints given the other model restrictions. In models

with cross-equation equality restrictions or linear non-homogenous restrictions, a structural covariance

matrix in correlation form does not respect the foregoing caveat, with the consequence that for the

APEs to be identified by a conformably restricted reduced-form model the LH covariance matrix has

to be restricted as well.

In principle, the problem could be overcome by estimating the reduced-form model with a covariance

matrix that is UBN. This is rather easy for the multinomial models estimated by Stata’s asmprobit

and for models with linear non-homogenous restrictions, such as willingness-to-pay models (Wooldridge

2005). But standard multivariate models with cross-equation equality constraints, such as the panel

probit model (Bertschek and Lechner 1998 and Greene 2004), meet the limitation common to many

probit routines that the error covariance matrix cannot be more general than the correlation form.

This is the case of Stata’s biprobit, mvprobit and cmp or Limdep’s BIVARIATE PROBIT and MPROBIT.

The multinomial probit model with i.i.d. errors, implemented by Stata’s mprobit, provides another

example of a covariance matrix that is not UBN and as such does not support arbitrary covariance for

the LH components.

We have also proved that, in the case of APEs of conditional response probabilities, conditional

independence of the LH components is not sufficient for consistency of the reduced-form multivariate

probit estimator, and further independence assumptions are needed. This holds regardless of the model

being standard or recursive. Monte Carlo experiments prove that in the absence of the additional

independence assumptions the finite-sample bias may be severe.

A computational result of the paper is that the analytical formulas available for PEs in multivariate
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probit models (Greene 2012; Mullahy 2011) can be used for robust estimation of APEs, taking advan-

tage of the reduced-dimensionality benefit evidenced by Mullahy (2011). In this respect, we propose

a combined bivariate probit method for estimation of robust multivariate-probit APEs that proves to

be not only dramatically faster, but also more accurate and precise than existing simulation-based

estimators, such as those implemented by mvprobit and cmp, as we demonstrate in a battery of Monte

Carlo experiments. Further efficiency gains, at the expenses of computational ease though, could be

obtained in principle by implementing a minimum distance estimator averaging all of the available

vectors of coefficient estimates from the m (m− 1) /2 bivariate probit regressions. This is part of our

research agenda.
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Table 5: Monte Carlo results for mvprobit with 10 draws (100 where indicated) and τ = 0.

n � parameters APE β1 β2 β3 cov12 cov13 cov23
BIAS

n=500 0.023 -0.035 0.007 -0.046 0.121 -0.039 0.073
n=1000 -0.020 -0.036 0.060 -0.024 0.130 -0.081 0.186

n=1000 (100 draws) -0.012 -0.093 0.107 -0.035 0.056 -0.014 -0.028
n=10000 -0.004 0.009 -0.025 0.017 0.206 0.006 0.078

n � parameters RMSE
n=500 0.023 0.035 0.007 0.046 0.121 0.039 0.074
n=1000 0.020 0.036 0.060 0.024 0.130 0.081 0.186

n=1000 (100 draws) 0.012 0.093 0.107 0.035 0.056 0.014 0.028
n=10000 0.004 0.009 0.025 0.017 0.206 0.006 0.078

A Further Monte Carlo results
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Table 6: Monte Carlo results for cmp with 10 draws (cmp’s default draws where indicated) and τ = 0.

n � parameters APE β1 β2 β3 cov12 cov13 cov23
BIAS

n=500 -0.008 0.008 -0.017 0.001 0.203 -0.035 0.098
n=1000 -0.008 0.002 -0.019 0.004 0.201 -0.031 0.097

n=1000 (default) -0.003 0.008 -0.013 0.003 0.039 0.003 0.024
n=10000 -0.009 -0.001 -0.025 -0.002 0.207 -0.036 0.101

n � parameters RMSE
n=500 0.018 0.097 0.098 0.098 0.218 -0.106 0.135
n=1000 0.014 0.066 0.069 0.067 0.207 0.072 0.115

n=1000 (default) 0.011 0.068 0.067 0.066 0.052 0.065 0.071
n=10000 0.009 0.022 0.033 0.022 0.208 0.042 0.103

n � parameters Computation time per replication
n=500 3.37”
n=1000 3.97”

n=1000 (default) 12.03”
n=10000 12.96”
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