

Maternal characteristics, childhood growth and eating disorder: a study of mediation using gformula

Bianca De Stavola and Rhian Daniel

London School of Hygiene and Tropical Medicine, UK

IX Convegno Italiano Utenti Stata, Bologna 20-21 September 2012

Social Disadvantage	Health outcome
in childhood	in adulthood

Social Disadvantage	 Health outcome
in childhood	in adulthood

and this leads to studying the underlying processes, e.g.:

and this leads to studying the underlying processes, e.g.:

and this leads to studying the underlying processes, e.g.:

and this leads to studying the underlying processes, e.g.:

and this leads to studying the underlying processes, e.g.:

and this leads to studying the underlying processes, e.g.:

and this leads to studying the underlying processes, e.g.:

and this leads to studying the underlying processes, e.g.:

and this leads to studying the underlying processes, e.g.:

• Focus on how the effect of an exposure is mediated via certain pathways

- Two main strands in the literature for the study of mediation:
 - Social sciences / psychometrics (Baron and Kenny, 1986)
 - Causal inference literature (Robins and Greenland, 1992; Pearl, 2001)
- They appear to be very different, but they are linked
- The second one may seem far too complex, but in fact is the one that poses fewer restrictions.

Aims of the talk:

- review the causal inference approach to mediation
- illustrate its implementation using gformula

- Focus on how the effect of an exposure is mediated via certain pathways
- Two main strands in the literature for the study of mediation:
 - Social sciences / psychometrics (Baron and Kenny, 1986)
 - Causal inference literature (Robins and Greenland, 1992; Pearl, 2001)
- They appear to be very different, but they are linked
- The second one may seem far too complex, but in fact is the one that poses fewer restrictions.

Aims of the talk:

- review the causal inference approach to mediation
- illustrate its implementation using gformula

- Focus on how the effect of an exposure is mediated via certain pathways
- Two main strands in the literature for the study of mediation:
 - Social sciences / psychometrics (Baron and Kenny, 1986)
 - Causal inference literature (Robins and Greenland, 1992; Pearl, 2001)
- They appear to be very different, but they are linked
- The second one may seem far too complex, but in fact is the one that poses fewer restrictions.

Aims of the talk: review the causal inference approach to mediation illustrate its implementation using gformula

- Focus on how the effect of an exposure is mediated via certain pathways
- Two main strands in the literature for the study of mediation:
 - Social sciences / psychometrics (Baron and Kenny, 1986)
 - Causal inference literature (Robins and Greenland, 1992; Pearl, 2001)
- They appear to be very different, but they are linked
- The second one may seem far too complex, but in fact is the one that poses fewer restrictions.

Aims of the talk:

- review the causal inference approach to mediation
- illustrate its implementation using gformula

1 Introduction

- 2 Motivating example
- 3 Mediation in Causal Inference
- 4 Using gformula
- 5 Summary

1 Introduction

2 Motivating example

3 Mediation in Causal Inference

4 Using gformula

5 Summary

- ED comprise a variety of heterogeneous diseases
- Maternal factors possibly important (body size, education, etc.)
- Onset often around puberty
- Childhood growth a possible mediator

Assuming that there is a causal effect of maternal BMI, we would like to find out, for example, how much of that effect is:

mediated by childhood growth: the indirect effect,

Assuming that there is a causal effect of maternal BMI, we would like to find out, for example, how much of that effect is:

mediated by childhood growth: the indirect effect,

Assuming that there is a causal effect of maternal BMI, we would like to find out, for example, how much of that effect is:

- mediated by childhood growth: the indirect effect,
- mediated via other factors: the direct effect.

1 Introduction

2 Motivating example

3 Mediation in Causal Inference

4 Using gformula

5 Summary

6 References

イロト イポト イヨト イヨト 二日

Causal inference literature:

- Many subtly different definitions of direct and indirect effect
- All involve counterfactuals (*i.e.* potential outcomes).

To make causal statements we need to compare the outcomes that would arise under different scenarios:

- Y(x): the potential values of Y that would have occurred had X been set, possibly counter to fact, to the value x.
- M(x): the potential values of M that would have occurred had X been set, possibly counter to fact, to the value x.
- Y(x, m): the potential values of Y that would have occurred had X been set, possibly counter to fact, to the value x and M to m.

To make causal statements we need to compare the outcomes that would arise under different scenarios:

- Y(x): the potential values of Y that would have occurred had X been set, possibly counter to fact, to the value x.
- M(x): the potential values of M that would have occurred had X been set, possibly counter to fact, to the value x.
- Y(x, m): the potential values of Y that would have occurred had X been set, possibly counter to fact, to the value x and M to m.

To make causal statements we need to compare the outcomes that would arise under different scenarios:

- Y(x): the potential values of Y that would have occurred had X been set, possibly counter to fact, to the value x.
- M(x): the potential values of M that would have occurred had X been set, possibly counter to fact, to the value x.
- Y(x, m): the potential values of Y that would have occurred had X been set, possibly counter to fact, to the value x and M to m.

• For simplicity consider the case where X is binary

It also helps to start with the definition of *total causal effect*

The average total causal effect of X, comparing exposure level X = 1 to X = 0, can be defined as the linear contrast ¹:

TCE = E[Y(1)] - E[Y(0)]

This is a comparison of two hypothetical worlds: in the first, X is set to 1, and in the second X is set to 0.

Note that, in general: $TCE \neq E[Y|X = 1] - E[Y|X = 0]$.

¹ we are working throughout on the mean difference scale...alternatives exist → < (□) → < (≥) → (≥) → (≥) → (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○) < (○)

The average total causal effect of X, comparing exposure level X = 1 to X = 0, can be defined as the linear contrast ¹:

TCE = E[Y(1)] - E[Y(0)]

This is a comparison of two hypothetical worlds: in the first, X is set to 1, and in the second X is set to 0.

Note that, in general: $TCE \neq E[Y|X = 1] - E[Y|X = 0]$.

we are working throughout on the mean difference scale...alternatives exist 🕨 🧃 🕨 🧹 🚍 🕨 Bianca De Stavola & Rhian Daniel/Mediation with gformula · 20 September 2012

This is possible if these assumptions are satisfied:

- consistency: Y(x) can be inferred from observed Y when X = x
- conditional exchangeability: there is no unmeasured confounding between X and Y:

This is possible if these assumptions are satisfied:

- consistency: Y(x) can be inferred from observed Y when X = x
- conditional exchangeability: there is no unmeasured confounding between X and Y:

This is possible if these assumptions are satisfied:

- consistency: Y(x) can be inferred from observed Y when X = x
- conditional exchangeability: there is no unmeasured confounding between X and Y:

This is possible if these assumptions are satisfied:

- consistency: Y(x) can be inferred from observed Y when X = x
- conditional exchangeability: there is no unmeasured confounding between X and X

If these are satisfied, we can infer the TCE from the data

The average controlled direct effect of X on Y, when M is controlled at m, is:

$$CDE(m) = E[Y(1,m)] - E[Y(0,m)]$$

This is a comparison of two hypothetical worlds:

- In the first, X is set to 1, and in the second X is set to 0.
- In both worlds, M is set to m.
- By keeping *M* fixed at *m*, we are getting at the direct effect of *X*, unmediated by *M*.
- In general CDE(m) varies with m.

The average controlled direct effect of X on Y, when M is controlled at m, is:

$$CDE(m) = E[Y(1,m)] - E[Y(0,m)]$$

This is a comparison of two hypothetical worlds:

- In the first, X is set to 1, and in the second X is set to 0.
- In both worlds, M is set to m.
- By keeping *M* fixed at *m*, we are getting at the direct effect of *X*, unmediated by *M*.
- In general CDE(m) varies with m.

The average controlled direct effect of X on Y, when M is controlled at m, is:

$$CDE(m) = E[Y(1,m)] - E[Y(0,m)]$$

This is a comparison of two hypothetical worlds:

- In the first, X is set to 1, and in the second X is set to 0.
- In both worlds, M is set to m.
- By keeping *M* fixed at *m*, we are getting at the direct effect of *X*, unmediated by *M*.
- In general CDE(m) varies with m.

(i) consistency: Y = Y(x, m) if X = x and M = m

(ii) sequential conditional exchangeability:

- (i) consistency: Y = Y(x, m) if X = x and M = m
- (ii) sequential conditional exchangeability:

(i) consistency: Y = Y(x, m) if X = x and M = m

(ii) sequential conditional exchangeability:

$$Y = Y(x, m)$$
 if $X = x$ and $M = m$

(ii) sequential conditional exchangeability:

If these assumptions are satisfied we can infer the CDE(m) from the observed data

The average Natural Direct Effect of X on Y is:

NDE = E[Y(1, M(0))] - E[Y(0, M(0))]

This is a comparison of two hypothetical worlds:

- In the first, X is set to 1, and in the second X is set to 0.
- In both worlds, M is set to the natural value M(0), *i.e.* the value it would take if X were set to 0.
- Since *M* is the same (*within* individual) in both worlds, we are still getting at the direct effect of *X*, unmediated by *M*.

The average Natural Direct Effect of X on Y is:

$$NDE = E[Y(1, M(0))] - E[Y(0, M(0))]$$

This is a comparison of two hypothetical worlds:

- In the first, X is set to 1, and in the second X is set to 0.
- In both worlds, M is set to the natural value M(0), i.e. the value it would take if X were set to 0.
- Since *M* is the same (*within* individual) in both worlds, we are still getting at the direct effect of *X*, unmediated by *M*.

(i) consistency Y = Y(x, m) if X = x and M = m, M = M(x) if X = x, and $Y = Y \{x, M(x^*)\}$ if X = x and $M = M(x^*)$.

(ii) sequential conditional exchangeability:

(i) consistency Y = Y(x, m) if X = x and M = m, M = M(x) if X = x, and $Y = Y \{x, M(x^*)\}$ if X = x and $M = M(x^*)$.

(ii) sequential conditional exchangeability:

(i) consistency Y = Y(x, m) if X = x and M = m, M = M(x) if X = x, and $Y = Y \{x, M(x^*)\}$ if X = x and $M = M(x^*)$.

(ii) sequential conditional exchangeability:

(i) consistency Y = Y(x, m) if X = x and M = m, M = M(x) if X = x, and $Y = Y \{x, M(x^*)\}$ if X = x and $M = M(x^*)$.

(ii) sequential conditional exchangeability:

(iii) and ... <u>either no intermediate confounders or</u> some restrictions on X - M interactions in their effect on Y

(i) consistency Y = Y(x, m) if X = x and M = m, M = M(x) if X = x, and $Y = Y \{x, M(x^*)\}$ if X = x and $M = M(x^*)$.

(ii) sequential conditional exchangeability:

(iii) and ... <u>either no intermediate confounders or</u> some restrictions on X - M interactions in their effect on Y

If these assumptions are satisfied: we can infer the *NDE* from the observed data

Note: the Natural Indirect Effect (NIE) is defined as TCE - NDE

Wide range of options, for most combinations of M and Y:

- G-computation:
 - suitable for estimating *CDE*(*m*) and *NDE*
 - can deal with intermediate confounding
 - flexible and efficient but heavy on parametric modelling assumptions
 - implemented in gformula (Daniel et al 2011)
- Semi-parametric methods (*e.g.*g-estimation) make fewer parametric assumptions

Wide range of options, for most combinations of M and Y:

- G-computation:
 - suitable for estimating *CDE*(*m*) and *NDE*
 - can deal with intermediate confounding
 - flexible and efficient but heavy on parametric modelling assumptions
 - implemented in gformula (Daniel et al 2011)
- Semi-parametric methods (*e.g.*g-estimation) make fewer parametric assumptions

Wide range of options, for most combinations of M and Y:

- G-computation:
 - suitable for estimating *CDE*(*m*) and *NDE*
 - can deal with intermediate confounding
 - flexible and efficient but heavy on parametric modelling assumptions
 - implemented in gformula (Daniel et al 2011)
- Semi-parametric methods (*e.g.*g-estimation) make fewer parametric assumptions

1 Introduction

- 2 Motivating example
- 3 Mediation in Causal Inference
- 4 Using gformula

5 Summary

Introduction Example Causal inference gformula Summary References

Back to the example The Avon Longitudinal Study (ALSPAC)

Birth cohort with 3,500 girls, born in 1991-2

- Outcome (Y): Binge eating at age 13yrs (ED)
- Exposure (X): maternal pre-pregnancy BMI
- Mediator (M): child BMI at age 7 yrs (bmi7)
- Intermediate confounder (*L*): birth weight (BW)
- Confounders (C): Maternal education and mental disorders

	G-computation estimate	Bootstrap Std. Err.	Z	P> z	
TCE	.1473497	.0252176			
	.0574193	.0242394	2.37	0.018	
NIE		.0101036	8.9		
		.0242823	2.37	0.018	

	G-computation estimate	Bootstrap Std. Err.	z	P> z
TCE	.1473497	.0252176	5.84	0.000
NDE	.0574193	.0242394	2.37	0.018
NIE	.0899304	.0101036	8.9	0.000
CDE	.0575705	.0242823	2.37	0.018

		G-computation estimate	Bootstrap Std. Err.	z	P> z
TCE	i.	.1473497	.0252176	5.84	0.000
NDE	1	.0574193	.0242394	2.37	0.018
NIE		.0899304	.0101036	8.9	0.000
CDE		.0575705	.0242823	2.37	0.018

TCE: Average ED score in the world where all mothers are set to BMI>25 minus that where they are set to BMI \leq 25 (*TCE* = *NDE* + *NIE*)

		G-computation estimate	Bootstrap Std. Err.	z	P> z
TCE	i	.1473497	.0252176	5.84	0.000
NDE	1	.0574193	.0242394	2.37	0.018
NIE	1	.0899304	.0101036	8.9	0.000
CDE	1	.0575705	.0242823	2.37	0.018

NDE: Average ED score in the world where all mothers are set to BMI>25 minus that where they are set to BMI \leq 25, with child BMI set at its natural value when the mother's BMI is set at \leq 25

		G-computation estimate	Bootstrap Std. Err.	z	P> z
TCE	i.	.1473497	.0252176	5.84	0.000
NDE	1	.0574193	.0242394	2.37	0.018
NIE	1	.0899304	.0101036	8.9	0.000
CDE	I.	.0575705	.0242823	2.37	0.018

CDE = CDE(0): Average ED score in the world where all mothers are set to BMI>25 minus that where they are set to BMI \leq 25, with child BMI set at 0 (bmi7 is standardized)

G-computations allows flexible specification of all association models. ⇒ Adding interactions between exposure overbmi, confounder BW and mediator bmi7:

gformula <original varlist> over_BW over_bmi7 , ...
derived(over_BW over_bmi7) derrules(over_BW:overbmi*BW,
over_bmi7:overbmi*bmi7)

	 	G-computation estimate	Bootstrap Std. Err.	Z	P> z	
TCE		.1649645	.0263194	6.27		
		.0539651	.0251499	2.15	0.032	
NIE		.1109994	.0174183	6.37		
		.0489107	.0235276	2.08		

G-computations allows flexible specification of all association models. ⇒ Adding interactions between exposure overbmi, confounder BW and mediator bmi7:

gformula <original varlist> over_BW over_bmi7 , ...
derived(over_BW over_bmi7) derrules(over_BW:overbmi*BW,
over_bmi7:overbmi*bmi7)

		G-computation estimate	Bootstrap Std. Err.	z	P> z
TCE	İ	.1649645	.0263194	6.27	0.000
NDE		.0539651	.0251499	2.15	0.032
NIE		.1109994	.0174183	6.37	0.000
CDE		.0489107	.0235276	2.08	0.038

Replacing binary overbmi with continuous BMIpre (standardized):

gformula <newvarlist> , ...linexp

		G-computation estimate	Bootstrap Std. Err.	Z	P> z
TCE		.0199475	.0033078	6.03	
			.0029689		0.002
NIE		.010883	.001978		
		.0077757	.0027279	2.85	

Replacing binary overbmi with continuous BMIpre (standardized):

gformula <newvarlist> , ...linexp

	 	G-computation estimate	Bootstrap Std. Err.	z	P> z
TCE	i	.0199475	.0033078	6.03	0.000
NDE		.0090645	.0029689	3.05	0.002
NIE		.010883	.001978	5.5	0.000
CDE	I	.0077757	.0027279	2.85	0.004

Bianca De Stavola & Rhian Daniel/Mediation with gformula · 20 September 2012

Replacing binary overbmi with continuous BMIpre (standardized):

gformula <newvarlist> , ...linexp

		G-computation estimate	Bootstrap Std. Err.	z	P> z		
TCE NDE		.0199475 .0090645	.0033078 .0029689	6.03 3.05	0.000 0.002		
NIE		.010883	.001978	5.5	0.000		
CDE	I	.0077757	.0027279	2.85	0.004		
This gives effects for 1 unit increase in (stand) Maternal BMI							

Replacing binary overbmi with categorical bmicat (coded: 0,1,2):

gformula <varlist> , ...oce baseline(1)

	G-computation	Bootstrap Std. Err.	Z	P> z	
TCE(0) TCE(2)	1041429 .1055137	.0152158 .015159	-6.84 6.96		
NDE(0) NDE(2)	.0160151 0429508	.0163919 .0143828	.98 2.99	0.329 0.003	
NIE(0) NIE(2)	1201579 .0625629	.0125716 .0067193	-9.56 9.31		
CDE(0)	0431978	.0143389	-3.01 ▲□▷▲虎	0.003	2

Bianca De Stavola & Rhian Daniel/Mediation with gformula · 20 September 2012

Introduction Example Causal inference gformula Summary References Using gformula (4) Categorical exposure

Replacing binary overbmi with categorical bmicat (coded: 0,1,2):

gformula <varlist> , ...oce baseline(1)

	G-computation estimate	Bootstrap Std. Err.	z	P> z	
TCE(0) TCE(2)	1041429 .1055137	.0152158 .015159	-6.84 6.96	0.000	
NDE(0) NDE(2)	.0160151 .0429508	.0163919 .0143828	.98 2.99	0.329 0.003	
NIE(0) NIE(2)	1201579 .0625629	.0125716 .0067193	-9.56 9.31	0.000	
CDE(0)	0431978	.0143389	-3.01	0.003	lil.

Bianca De Stavola & Rhian Daniel/Mediation with gformula · 20 September 2012

Replacing binary overbmi with categorical bmicat (coded: 0,1,2):

gformula <varlist> , ...oce baseline(1)

	G-computation estimate	Bootstrap Std. Err.	z	P> z
TCE(0)	1041429	.0152158	-6.84	0.000
TCE(2)	.1055137	.015159	6.96	0.000
NDE(0)	.0160151	.0163919	.98	0.329
NDE(2)	.0429508	.0143828	2.99	0.003
Results 18≤BMI those wit	with "(0)" refer <25 (normal); h "(2)" to BMI>25	to BMI<18 relatively to no	(low) rela ormal BMI.	atively to

1 Introduction

- 2 Motivating example
- 3 Mediation in Causal Inference
- 4 Using gformula

イロト イロト イヨト イヨト 二日

- The study of mediation implies causal questions
- Causal inference literature offers general definitions
- There is a choice of estimation methods, each asking a different causal question
- gformula offers a very flexible tool to estimate these estimands
- Their identification requires stringent, unverifiable, assumptions:

"To claim that effects are causal, it is not sufficient to use causally defined effects." (Muthèn, 2011)

Need for sensitivity analyses (Imai et al, 2010)

Thank you!

Acknowledgements: Nadia Micali, UCL and George Ploubidis, LSHTM

Bianca De Stavola & Rhian Daniel/Mediation with gformula · 20 September 2012

1 Introduction

- 2 Motivating example
- 3 Mediation in Causal Inference
- 4 Using gformula

5 Summary

イロト イロト イヨト イヨト 二日

Introduction Example Causal inference gformula Summary References References

- Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. *Journal of Personality and Social Psychology* 1986; 51, 1173-1182.
- 2 Cole SR, Hernán MA. Fallibility in estimating direct effects. Int J Epidemiol 2002; 31: 163165.
- 3 Daniel RM, De Stavola BL, and Cousens SN. gformula: Estimating causal effects in the presence of time-varying confounding or mediation using the g-computation formula. Stata Journal 2011; 11: 479–517.
- 4 Imai K, Keele L, Tingley D. A general approach to causal mediation analysis. *Psychological Methods* 2010; 15, 309-334.
- 5 Muthén B. Applications of Causally Defined Direct and Indirect Effects in Mediation Analysis using SEM in Mplus. 2011.
- 6 Nandi A, Glymour MM, Kawachi I, VanderWeele TJ. Using marginal structural models to estimate the direct effect of adverse childhood social conditions on onset of heart disease, diabetes, and stroke. *Epidemiology*.2012;32
- 7 Pearl J. Direct and indirect effects. Proceedings of the Seventeenth Conference on Uncertainty and Artificial Intelligence 2001; San Francisco: Morgan Kaufmann.
- 8 Robins, J. M. and Greenland, S. Identi?ability and exchangeability for direct and indirect e?ects Epidemiology 1992, 3:143-155.
- 9 VanderWeele T, Vansteelandt S. Conceptual issues concerning mediation, interventions and composition. Statistics and Its Interface 2009; 2, 457468
- 10 Vansteelandt S. Estimation of direct and indirect effects (chapter 4.2). In *Causality: Statistical Perspectives and Applications*, Berzuini C, Dawid AP, Bernardinelli L (eds). Wiley, 2011.

Bianca De Stavola & Rhian Daniel/Mediation with gformula · 20 September 2012

・ロト ・四ト ・ヨト ・ヨト 三日

- The inclusion of interaction terms implies that exposure effect is allowed to vary with the mediator
- Hence the CDE(m) will vary with the value assigned to M

Estimand	G-computation	Bootstrap
	estimate	Sta. Err.
CDE(0)	0.049	0.024
CDE (-1)	0.021	0.034
CDE (1)	0.077	0.032

• Lets look at how the CDE is estimated, when there is also an intermediate confounder *L*:

$$CDE(m, c) = E\{Y(1, m) | C = c\} - E\{Y(0, m) | C = c\}$$
$$= \int E(Y|C = c, X = 1, L = I, M = m) f_{L|C,X}(I|c, 1) dI$$
$$- \int E(Y|C = c, X = 0, L = I, M = m) f_{L|C,X}(I|c, 0) dI$$

- This is the g-computation formula.
- It requires correct specification of these parametric associational models for *Y*|*C*, *X*, *L*, *M* and *L*|*C*, *X*.
- Both models can be completely flexible: they can include non-linearities and interactions.
- By marginalising over L|C, X, intermediate confounding is appropriately dealt with.