Handling missing data in Stata – a whirlwind tour

2012 Italian Stata Users Group Meeting

Jonathan Bartlett www.missingdata.org.uk

20th September 2012

◆□ → ◆聞 → ◆臣 → ◆臣 → □ 臣

1/55

Outline

The problem of missing data and a principled approach

Missing data assumptions

Complete case analysis

Multiple imputation

Inverse probability weighting

Conclusions

Outline

The problem of missing data and a principled approach

Missing data assumptions

Complete case analysis

Multiple imputation

Inverse probability weighting

Conclusions

The problem of missing data

- Missing data is a pervasive problem in epidemiological, clinical, social, and economic studies.
- Missing data always cause some loss of information which cannot be recovered.
- But statistical methods can often help us make best use of the data which has been observed.
- More seriously, missing data can introduce bias into our estimates.

Untestable assumptions

- Whether missing data cause bias depends on how missingness is associated with our variables.
- Crucially, with missing data we cannot empirically verify the required assumptions.
- e.g. consider the following distribution of smoking status (for males in THIN from [1]):

Smoking status	n (% of sample)	(% of those observed)			
Non	82,479 (36)	(48)			
Ex	30,294 (13)	(18)			
Current	57,599 (25)	(34)			
Missing	56,661 (25)	n/a			

Are the %s in the last column unbiased estimates?

A principled approach to missing data

- We cannot be sure that the required assumptions are true given the observed data.
- Data analysis and contextual knowledge should be used to decide what assumption(s) are plausible about missingness.
- We can then choose a statistical method which is valid under this/these assumption(s).

Outline

The problem of missing data and a principled approach

Missing data assumptions

Complete case analysis

Multiple imputation

Inverse probability weighting

Conclusions

Rubin's classification

- Rubin developed a classification for missing data 'mechanisms'
 [2].
- We introduce the three types in a very simple setting.
- We assume we have one fully observed variable X (age), and one partially observed variable Y (blood pressure (BP)).
- ► We will let R indicate whether Y is observed (R = 1) or is missing (R = 0).

Missing completely at random

- The missing values in BP (Y) are said to be missing completely at random (MCAR) if missingness is independent of BP (Y) and age (X).
- i.e. those subjects with missing BP do not differ systematically (in terms of BP or age) to those with BP observed.
- ▶ In terms of the missingness indicator *R*, MCAR means

$$P(R=1|X,Y)=P(R=1)$$

 e.g. 1 in 10 printed questionnaires were mistakenly printed with a page missing. Example - blood pressure (simulated data)

We assume age has been categorised into 30-50 and 50-70.

n = 200, but only 99 subjects have BP observed:

Age	n	Mean (SD) BP
30-50	72	129.7 (10.3)
50-70	27	160.6 (11.7)

Checking MCAR

- With the observed data, we could investigate whether age X is associated with missingness of blood presure (R).
- If it is, we can conclude the data are not MCAR.
- If it is not, we cannot necessarily conclude the data are MCAR.
- It is possible (though arguably unlikely in this case) that BP is associated with missingness in BP, even if age is not.

Example - blood pressure (simulated data)

We compare the distribution of age in those with BP observed and those with BP missing:

	tab	age	r,	chi2	row
•	oub	ugo	τ,	CHIZ	TOW

Кеу
frequency row percentage

	r							
age	0	1	Total					
30-50	28	72	100					
	28.00	72.00	100.00					
50-70	73	27	100					
	73.00	27.00	100.00					
Total	101	99	200					
	50.50	49.50	100.00					
Pe	earson chi2(1)	= 40.504	1 Pr = 0.000					

p < 0.001 from chi2 test, shows we have strong evidence that missingness is associated with age.

Missing at random

- BP (Y) is missing at random (MAR) given age (X) if missingness is independent of BP (Y) given age (X).
- This means that amongst subjects of the same age, missingness in BP is independent of BP.
- ▶ In terms of the missingness indicator *R*, MAR means

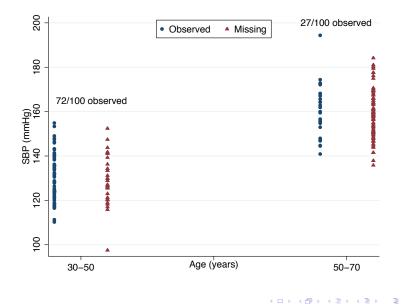
$$P(R=1|X,Y)=P(R=1|X)$$

13 / 55

Checking MAR

- We cannot check whethe MAR holds based on the observed data.
- To do this we would need to check whether, within categories of age, those with missing BP had higher/lower BP than those with it observed.

BP MAR given age



15 / 55

A different representation of MAR

- We have defined MCAR and MAR in terms of how P(R = 1|Y, X) depends on age (X) and BP (Y).
- ► From the plot, we see that MAR can also be viewed in terms of the conditional distribution of BP (Y) given age (X).
- MAR implies that

$$f(Y|X, R = 0) = f(Y|X, R = 1) = f(Y|X)$$

- That is, the distribution of BP (Y), given age (X), is the same whether or not BP (Y) is observed.
- This key consequence of MAR is directly exploited by multiple imputation.

Missing not at random

- If data are neither MCAR nor MAR, they are missing not at random (MNAR).
- This means the chance of seeing Y depends on Y, even after conditioning on X.
- Equivalently, $f(Y|X, R = 0) \neq f(Y|X, R = 1)$.
- MNAR is much more difficult to handle. Essentially the data cannot tell us how the missing values differ to the observed values (given X).
- We are thus led to conducting sensitivity analyses.

Outline

The problem of missing data and a principled approach

Missing data assumptions

Complete case analysis

Multiple imputation

Inverse probability weighting

Conclusions

Complete case analysis

- Complete case (CC) (or complete records) analysis involves using only data from those subjects for whom all of the variables involved in our analysis are observed.
- CC is the default approach of most statistical packages (including Stata) when we have missing data.
- By only analysing a subset of records, our estimates will be less precise than had there been no missing data.
- Arguably more importantly, our estimates may be biased if the complete records differ systematically to the incomplete records.
- However, CC can be unbiased in certain situations in which the complete records are systematically different.

Validity of complete case analysis

- CC analysis is valid provided the probability of being a CC is independent of outcome, given the covariates in the model of interest [3].
- Note that this condition has nothing to do with which variable(s) have missing values.
- This condition does not 'fit' into the MCAR/MAR/MNAR classification.
- It is not true, as is sometimes stated, that CC is always biased if data are not MCAR!

The complete case assumption

- The validity of the assumption required for CC analysis to be unbiased depends on the model of interest.
- Returning to the example of estimating mean BP, we can think of this as the following linear model with no covariates:

$$BP_i = \alpha + \epsilon_i$$

with $\epsilon_i \sim N(0, \sigma_{\epsilon}^2)$.

Here CC analysis is unbiased only of missingness is independent of BP (Y), i.e. P(R = 1|Y) = P(R = 1).

・ロト ・聞 ト ・ 国 ト ・ 国 ト 三 国

Estimating mean BP - complete case analysis

. reg sbp

Source	SS	df	MS		Number of obs = 99 F(0, 98) = 0.00
Model Residual	0 29924.3689	0 98	305.350703		F(0, 98) = 0.00 Prob > F = . R-squared = 0.0000 Adj R-squared = 0.0000
Total	29924.3689	98	305.350703		Root MSE = 17.474
sbp	Coef.	Std. E	arr. t	P> t	[95% Conf. Interval]
_cons	138.1012	1.7562	32 78.63	0.000	134.616 141.5864

- The estimated mean (138.1) is biased downwards (truth=145).
- ► This is because missingness is associated with BP (higher BP → more chance of BP missing).

A model for which CC is unbiased

. reg sbp age

Source	SS	df		MS		Number of obs	
Model Residual	18767.6873 11156.6816	1 97		7.6873 017336			= 0.0000 = 0.6272
Total	29924.3689	98	305.	350703		u	= 10.725
sbp	Coef.	Std. 1	Err.	t	P> t	[95% Conf.	Interval]
age _cons	30.9154 129.6697	2.420 1.263		12.77 102.59	0.000	26.11197 127.1612	35.71882 132.1782

- This CC analysis is unbiased, because we condition on the cause of missingness (BP).
- Of course this alternative model does not (by itself) give an estimate of mean BP.

Outline

The problem of missing data and a principled approach

Missing data assumptions

Complete case analysis

Multiple imputation

Inverse probability weighting

Conclusions

・ロ ・ <
一 ・ <
通 ・ <
言 ・ <
言 ・ 、
言 ・ の へ (*)
24 / 55

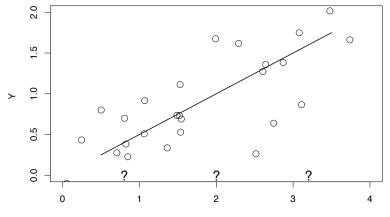
Multiple imputation

- Multiple imputation (MI) involves 'filling in' each missing values multiple times.
- This results in multiple completed datasets.
- We then analyse each completed dataset separately, and combine the estimates using formulae developed by Rubin ('Rubin's rules').
- By using observed data from all cases, estimates based on MI are generally more efficient than from CC.
- And, in some settings, MI may remove bias present CC estimates.

MI in a very simple setting

- There are many different imputation methods.
- We describe one (the 'classic') in the context of a very simple setting.
- Suppose we have two continuous variables X and Y.
- ► X is fully observed, but Y has some missing values.
- Our task is to impute the missing values in Y using X.

Imputing Y from X



Х

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Linear regression imputation

1. Fit the linear regression of Y on X using the complete cases:

$$Y = \alpha + \beta X + \epsilon$$

where $\epsilon \sim N(0, \sigma^2)$.

- 2. This gives estimates $\hat{\alpha}$, $\hat{\beta}$ and $\hat{\sigma}^2$.
- 3. To create the *m*th imputed dataset:
 - 3.1 Draw new values α_m , β_m and σ_m^2 based on $\hat{\alpha}$, $\hat{\beta}$ and $\hat{\sigma}^2$.
 - 3.2 For each subject with observed X_i but missing Y_i , create imputation $Y_{i(m)}$ by:

$$Y_{i(m)} = \alpha_m + \beta_m X_i + \epsilon_{i(m)}$$

where $\epsilon_{i(m)}$ is a random draw from $N(0, \sigma_m^2)$.

The end result

	Da	ata	Impu	Imputation 1 Imputa		utation 2 Imputation 3		Imputation 4		
Subject	Y	X	Y	Х	Y	Х	Y	X	Y	X
1	1.1	3.4	1.1	3.4	1.1	3.4	1.1	3.4	1.1	3.4
2	1.5	3.9	1.5	3.9	1.5	3.9	1.5	3.9	1.5	3.9
3	2.3	2.6	2.3	2.6	2.3	2.6	2.3	2.6	2.3	2.6
4	3.6	1.9	3.6	1.9	3.6	1.9	3.6	1.9	3.6	1.9
5	0.8	2.2	0.8	2.2	0.8	2.2	0.8	2.2	0.8	2.2
6	3.6	3.3	3.6	3.3	3.6	3.3	3.6	3.3	3.6	3.3
7	3.8	1.7	3.8	1.7	3.8	1.7	3.8	1.7	3.8	1.7
8	?	0.8	0.2	0.8	0.8	0.8	0.3	0.8	2.3	0.8
9	?	2.0	1.7	2.0	2.4	2.0	1.8	2.0	3.5	2.0
10	?	3.2	2.7	3.2	2.5	3.2	1.0	3.2	1.7	3.2

The analysis stage

- For each imputation, we estimate our parameter of interest θ, and records its standard error.
- e.g. $\theta = E(Y)$, the average value of Y.
- Let θ̂_m and Var(θ̂_m) denote the estimate of θ and its variance from the mth imputation.
- Our overall estimate of θ is then the average of the estimates from the imputed datasets

$$\hat{\theta}_{MI} = \frac{\sum_{m=1}^{M} \hat{\theta}_m}{M}$$

イロト イロト イヨト イヨト 三日

where M denotes the number of imputations used.

Variance estimation

The 'within-imputation variance' is given by

$$\frac{\sum_{m=1}^{M} Var(\hat{\theta}_m)}{M}.$$

This quantifies uncertainty due to the fact we have a finite sample (the usual cause of uncertainty in estimates).

The 'between-imputation variance' is given by

$$\frac{\sum_{m=1}^{M}(\hat{\theta}_m-\hat{\theta}_{MI})^2}{M-1}.$$

This quantifies uncertainty due to the missing data.

• The overall uncertainty in our estimate $\hat{\theta}$ is then given by

$$Var(\hat{\theta}_{MI}) = \sigma_w^2 + \left(1 + \frac{1}{M}\right)\sigma_b^2.$$

31 / 55

Inference

- The MI estimate and its variance can be used to form confidence intervals and performs hypothesis test.
- Implementations of MI in statistical packages like Stata automate the process of analysing each imputation and combining the results.

Assumptions for MI

- MI gives unbiased estimates provided data are MAR and the imputation model(s) is correctly specified.
- To be correctly specified, we must include all variables involved in our model of interest in the imputation model(s).
- The plausibility of MAR can be guided by data analysis and contextual knowledge.
- Often we have variables which are associated with missingness and the variable(s) being imputed, but which are not in the model of interest.
- Including these in the imputation model increases likelihood of MAR holding.

Specification of imputation models

- We should also ensure as best as possible that our imputation models are reasonably well specified.
- e.g. if a variable has a highly skewed distribution, imputing using normal linear regression is probably not a good idea.
- Various diagnostics can be used to aid this process, e.g. comparing distributions of imputed and observed

MI in Stata

- Historically the only imputation command in Stata was Patrick Royston's ice command, which performed ICE/FCS imputation (more on this later).
- Stata 11 included imputation using the multivariate normal model.

35/55

Stata 12 adds ICE/FCS imputation functionality.

Imputing missing BP values in Stata Step 1 - mi set the data

- ▶ e.g. mi set wide
- Alternatives include mlong, flong.
- This only affects how Stata organises the imputed datasets.

Imputing missing BP values in Stata

Step 2 - mi register variables

- At a minimum, we must mi register variables with missing values we want to impute.
- e.g. mi register imputed sbp

Imputing missing BP values in Stata

Step 3 - imputing the missing values

- We are now ready to impute the missing values.
- Since we have only missing values in one continuous variable, we shall impute using a linear regression imputation model:

. mi impute reg sbp age, add(10) rseed(5123)

Univariate imputation	Imputations =	10
Linear regression	added =	10
<pre>Imputed: m=1 through m=10</pre>	updated =	0

	Observations per m				
Variable	Complete	Incomplete	Imputed	Total	
sbp	99	101	101	200	

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

Imputing missing BP values in Stata

Step 4 - analysing the imputed datasets

- We are now ready to analyse the imputed datasets.
- This is done by Stata's mi estimate command, which supports most of Stata's estimation commands.

. mi estimate:	reg sbp						
Multiple-imputation estimates				Imputa	tions	=	10
Linear regression				Number	of ob	s =	200
5				Averag	e RVI	=	0.7163
				Larges	t FMI	=	0.4420
				Comple	te DF	=	199
				DF:	min	=	35.63
					avg	=	35.63
DF adjustment:	Small sam	ple			max	=	35.63
				F(0	,	.) =	
Within VCE typ	be: (DLS		Prob >	F	=	•
sbp	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
_cons	145.3263	1.747398	83.17	0.000	141.	7811	148.8715

The estimate is quite close to the true value (145).

Other MI imputation methods in Stata

In addition to linear regression Stata's mi command offers imputation using:

- Logistic, ordinal logistic, and multinomial logistic models
- Predictive mean matching
- Truncated normal regression for imputing bounded cts variables
- Interval regression for imputing censored cts variables
- Poisson regression for imputing count data
- Negative binomial regression for imputing overdispersed count data

MI with more than one variable

- So far we have considered setting with one variable partially observed.
- Often we have datasets with multiple partially observed variables.
- Stata 11/12 supports imputation with the multi-variate normal model.
- What if we have categorical or binary variables with missing values?
- More on this in tomorrow's course...

Outline

The problem of missing data and a principled approach

Missing data assumptions

Complete case analysis

Multiple imputation

Inverse probability weighting

Conclusions

Inverse probability weighting

- Inverse probability weighting (IPW) for missing data takes a different approach [4].
- We perform a CC analysis, but weight the complete cases by the inverse of their probability of having data observed (i.e. not being missing).
- Those who had a small chance of being observed are given increased weight, to compensate for those similar subjects who are missing.
- This requires us to model how missingness depends on fully observed variables.

Using IPW to estimate mean BP

Recall our previous analysis of missingness in BP and age:

Key			
frequenc row percer			
	r		
age	0	1	Total
30-50	28	72	100
	28.00	72.00	100.00
50-70	73	27	100
	73.00	27.00	100.00
Total	101	99	200
	50.50	49.50	100.00
Pe	earson chi2(1)	= 40.504	11 Pr = 0.

The probability of observing BP is 0.72 for 30-50 year olds, and 0.27 for 50-70 year olds.

000

So the 'weight' for 30-50 year olds is 1/0.72 = 1.39 and for 50-70 year olds is 1/0.27 = 3.7. Since we are interested in estimating a simple parameter (mean BP), we can manually calculate the IPW estimate:

 $\frac{72 \times 129.7 \times 1.39 + 27 \times 160.6 \times 3.7}{72 \times 1.39 + 27 \times 3.7} = 145.1$

 IPW appears has removed the bias from the simple CC estimate of mean BP.

IPW more generally

Step 1 - Constructing weights

With multiple fully observed variables, we can use logistic regression to model missingness:

. logistic r a	age						
Logistic regre	ession			Number	c of obs	=	200
				LR chi	i2(1)	=	42.00
				Prob >	> chi2	=	0.0000
Log likelihood	d = -117.62122	2		Pseudo	5 R2	=	0.1515
r	Odds Ratio	Std. Err.	z	P> z	[95% C	Conf.	Interval]

. predict pr, pr

. gen wgt=1/pr

IPW more generally

Step 2 - parameter estimation

We can then pass the constructed weights to our estimation command:

. reg sbp [pwe (sum of wgt is		2)				
Linear regress	sion				Number of obs	
					F(0, 98)	
					Prob > F	= .
					R-squared	= 0.0000
					Root MSE	= 19.008
sbp	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
_cons	145.1274	2.162726	67.10	0.000	140.8356	149.4193

Notice that the SE is larger (2.16) compared to the MI SE (1.75).

Outline

The problem of missing data and a principled approach

Missing data assumptions

Complete case analysis

Multiple imputation

Inverse probability weighting

Conclusions

 Problems caused by missing data and a principled approach

- Missing data reduce precision and potentially parameter bias estimates and inferences.
- Producing valid estimates requires additional assumptions about the missingness to be made.
- Ad-hoc methods should generally be avoided.
- Both data analysis and contextual knowledge should guide us in thinking about missingness in a given setting.
- We can then choose a statistical method which accommodates missing data under our chosen assumption (e.g. MAR).

Complete case analysis

- Complete case (CC) analysis is the default method of most software packages, including Stata.
- CC analysis is generally biased unless data are MCAR.
- But it can be unbiased in certain non-MCAR settings when the model of interest is a regression model.
- Even when it is unbiased, CC may be inefficient compared to other methods.

Multiple imputation

- Multiple imputation is a flexible approach to handling missing data under the MAR assumption [5].
- Stata 12 now includes a comprehensive range of MI commands, including ICE/FCS MI.
- In settings where both CC and MI are unbiased, MI will generally give more precise estimates.
- We must carefully consider the plausibility of the MAR assumption and whether imp. models are correctly specified.

Inverse probability weighting

- ► IPW involves performing a weighted CC analysis.
- Rather than model the partially observed variable, we model the observation/missingness indicator R.
- The weights based on this model are then passed to our estimation command, and most Stata estimation commands support weights.
- Sometimes modelling missingness may be easier than modelling the partially obs. variable (e.g. if the partially observed variable has a tricky distribution).
- However, IPW estimators can be quite inefficient compared to MI or maximum likelihood.
- IPW is also difficult (or impossible) to use in settings with complicated patterns of missingness.

Sensitivity to the MAR assumption

- Since we can never definitively our assumptions (e.g. MAR) hold, we should consider sensitivity analysis.
- MI can also be used to perform MNAR sensitivity analyses [6].
- If you want to learn more, come on our missing data short course at LSHTM in June.
- And/or visit our website www.missingdata.org.uk

References I

 L. Marston, J. R. Carpenter, K. R. Walters, R. W. Morris, I. Nazareth, and I. Petersen.

Issues in multiple imputation of missing data for large general practice clinical databases.

Pharmacoepidemiology and Drug Safety, 19:618-626, 2010.

[2] D B Rubin.

Inference and missing data.

Biometrika, 63:581-592, 1976.

[3] I. R. White and J. B. Carlin.

Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values.

Statistics in Medicine, 28:2920–2931, 2010.

References II

[4] S. R. Seaman and I. R. White.

Review of inverse probability weighting for dealing with missing data. *Statistical Methods in Medical Research*, 2011.

[5] J A C Sterne, I R White, J B Carlin, M Spratt, P Royston, M G Kenward, A M Wood, and J R Carpenter.

Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls.

British Medical Journal, 339:157–160, 2009.

[6] J R Carpenter, M G Kenward, and I R White.

Sensitivity analysis after multiple imputation under missing at random — a weighting approach.

Statistical Methods in Medical Research, 16:259–275, 2007.