
Sar: Automatic Generation of Statistical Reports
Using Stata and Microsoft Word for Windows

Giovanni Luca Lo Magno
lomagno.gl@virgilio.it

Department of Economics, Business and Finance
University of Palermo

Currently under review by the Stata Journal

The workflow of data analysis

Cleaning data

Running analysis

Presenting results

Protecting files

Long, J. S. (2009), The Workflow of Data Analysis

A general scheme of automatic reporting

 Computational
engine

Automatic
report

Automation
management

commands

data

output

Formatting results: user-written Stata commands and other existing approaches

 listtex by Newson (2003)

 textab by Hardin (1995)

 estout by Jahn (2005)

 estab by Jann (2007)

 outreg by Gallup (1998)

 Automatic generation of documents,
discussed in Gini e Pasquini (2006)

General limits:

 Tex/Latex oriented

 Not easy to learn

 Not "what you see is what you get
approach" (WYSIWYG)

 Not complete solutions

What Stata automatic report (Sar) is

Sar is a software which allows you to
automatically obtain numerical results

from Stata in Word, making the
formatting of statistical results easier

Sar is not a Stata command, but a
macro for Microsoft Word written

in the Visual Basic for
Applications (VBA) programming

language

Current version of Sar is 1.0

How Sar works

Sar
Stata commands

data

Stata Automation

Stata Automation is a communication mechanism
between Stata and Microsoft Windows applications

(read www.stata.com/automation for details)

A quick look to Sar at work

Before executing Sar

After executing Sar

- Temporary text placeholder

Data retrieved from Stata

- Only comments with initials "sar" are processed by sar

- The @print command replaces the temporary text placeholder with data retrieved from Stata

note: all Sar commands begin with @

How to correctly write quotation marks and apostrophes in Sar comments

Wrong!

Correct!

Hint: press Control+Z after you typed the wrong quotation mark or apostrophe in Word

What you need to use Sar

 Software requirements

 Microsoft Word for Windows (Stata Automation only runs
on Windows)

 Stata (of course!)

 Manual settings

 You have to install the Stata Automation object

 You have to copy the Sar macro ("Stata automatic report
1.0.dotm") in the Word startup folder

 Optionally, you can customize the Word quick access toolbar
creating a button to easily execute the Sar macro

 You have to set user’s initials of Word comments to "sar"

Installing the Stata Automation object on a Windows Vista machine

1. Right-click on the Stata executable (on my machine the
executable file is westata.exe and it is located in the
C:\Stata10\ folder)

2. Choose "Create shortcut" (I suggest you to rename the
shortcut to "stata automation")

3. Right-click on the just created shortcut, choose "Property"
and change Target from "C:\Stata10\westata.exe" to
"C:\Stata10\westata.exe /Register" (please check the
correcteness of your Stata path and its executable)

4. Right-click on the shortcut and choose "Run as
administrator"

(read www.stata.com/automation for more details and informations about
how to install the Stata Automation object on a Windows non-Vista machine)

Copying the Sar macro in the Word startup folder

In Microsoft Word:
File Options Advanced File Locations…

Click on the "File Locations…" button to find out where the Word startup folder is and
copy the "Stata automatic report 1.0.dotm" macro file in it

Customize the Word quick access toolbar (Step 1 of 4)

In Microsoft Word:
Customize Quick Access Toolbar More Commands…

Customize the Word quick access toolbar (Step 2 of 4)

In Microsoft Word, after Step 1:
Choose "Macros" from the "Choose commands from" list Select the Stata

automatic report macro Click on the "Add" button

Customize the Word quick access toolbar (Step 3 of 4)

In Microsoft Word, after Step 2:
Select the Sar macro from the right list Click on the "Modify…" button to chooce an

icon for the button which will be added to the quick access toolbar

Customize the Word quick access toolbar (Step 4 of 4)

In Microsoft Word, after Step 3:
Choose your favorite icon and change the display name to "Stata automatic report 1.0"

This is your Sar button on the quick
access toolbar. You can launch the Sar

macro by clicking on it

Setting user’s initials of Word comments to "sar"

In Microsoft Word:
Word Options General Set user’s initials to "sar"

Using the @print and the @format commands

Syntax
@print StataData

@format %StataNumericalFormat

Note: no leading spaces are added to the numerical output even
if they are expected according to the Stata formatting rules

Using the @filltable and @matrixrownames commands

Syntax
@filltable StataData startingRow startingCol [rowStep colStep]
@matrixrownames StataMatrix startingRow startingCol [rowStep]

Using optional arguments of @filltable and @matrixrownames

Syntax
@filltable StataData startingRow startingCol [rowStep colStep]
@matrixrownames StataMatrix startingRow startingCol [rowStep]

@beginstring #string#
@endstring #string#

Sar programs

Roughly speaking, a Sar program is a list of Sar and Stata commands:

Syntax
@program myprog [arg1 arg2 … argN]
[…]
[my Sar and Stata commands]
[…]
@end

It can be defined:

 in a Word comment

 in a plain text file (called library in the Sar jargon)

It can be executed using the @do command:

Syntax
@do myprog [arg1 arg2 … argN]

Sar programs with arguments: an example

Program definition

@program outmatrix matrix

@matrixrownames §matrix§ 2 1

@matrixcolnames §matrix§ 1 2

@format %4.3f

@filltable §matrix§ 2 2

@end

Example of usage
correlate price weight length
@do outmatrix r(C)

The compiled program

@program outmatrix r(C)

@matrixrownames r(C) 2 1

@matrixcolnames r(C) 1 2

@format %4.3f

@filltable r(C) 2 2

@end

program name

callbacks

argument

Using a Sar program by defining it in a Word comment

You can use the just defined outmatrix program how
many times you want in your Word document

Using a Sar program by loading it from a library

Plain text file: c:\sar libraries\mylibrary.txt

Syntax
@loadlibrary "pathOfTheLibraryFile"

@program outmatrix matrix
@matrixrownames §matrix§ 2 1
@matrixcolnames §matrix§ 1 2
@format %4.3f
@filltable §matrix§ 2 2
@end

A bit more complex program: the definition of the regressout program

@program regressout
matrix beta = e(b)'
mata: V = st_matrix("e(V)")
mata: V = st_matrix("sd", sqrt(diagonal(V)))
@format %10.1f
@filltable beta 2 2 1 0
@matrixrownames beta 2 1 1
@beginstring #(#
@endstring #)#
@filltable sd 3 2 1 0
@resetstring
@format %3.0f
@filltable e(N) -2 2
@format %4.3f
@filltable e(r2) -1 2
@end

Plain text file: c:\sar libraries\mylibrary.txt

Syntax
@resetstring

(no arguments are required)

Second last row

Last row

Note:
When arguments of the
@filltable command are -1,
-2, etc… they indicate the
last row/column, the
second last row/column
and so on.

A bit more complex program: the regressout program in action

Note: Sar is not verbose!

blah,
blah, blah

Using Sar in interactive mode (Step 1 of 3)

Syntax
@interact

(no arguments are required)

The execution of Sar will halt here, allowing the user to interact with Stata

Example: our goal is to create the well-known (X‘X)-1 matrix

This matrix will be created
by the user in Stata

Using Sar in interactive mode (Step 2 of 3)

**
* *
* Stata session called from Sar *
* Warning: don't close this Stata window from here, it will cause the crash of Sar *
* Close this Stata window from the dialog window appeared in Word *
* *
**
sysuse auto
(1978 Automobile Data)
. * suppose you don't remember how to use the mkmat command
. help mkmat
. mkmat mpg weight, matrix(X)
. count
 74
. matrix one = J(74, 1, 1)
. matrix X = X, one
. matrix mymatrix = invsym(X' * X)

This is our final matrix

This Stata window has to be closed from Word (see Step 3)

Commands typed
by the user in Stata

Using Sar in interactive mode (Step 3 of 3)

Don’t forget to click here
after interacting with Stata!

This is the final output:

This dialog window will be opened in
Word after the execution of @interact

Probably you will delete this Sar comment (it’s useless)

Calling do files from Sar

sysuse auto
summarize price
global mean: display %5.1f r(mean)
global nObs: display %2.0f r(N)
count if foreign==1
global nObsForeign: display %2.0f r(N)

Do file: c:\mydofile.do

Conclusions: approaches using Sar

do file

 There is no need to
edit your report if
data have changed

 The report is well
documented

You can obtain data
from Stata on the fly

 You can test your
do file in Stata

 You can store your
statistical analysis
in a do file

Creating automatic
reports

Using Sar in
interactive mode

Calling do files
from Sar

Conclusions: advantages of using Sar

 Automatic reports: documents which can auto-update
themselves if data have changed

 Self-explaining data analysis

 WYSIWYG approach exploiting all the functions of Word

 Ease of learning

 Only 15 keywords

 Sar documents are not verbose

 Extensibility through Sar programs

Conclusions: some limits of Sar

 Sar only works in Windows

 Lack of "undo" function to erase all changes made by Sar on the
document

 The following Stata commands can not be used: program define,
while, forvalues, foreach and input (but they can be used in do
files)

 The @print command can not be used inside a Word table

 Setting of global and local macros has no effect in Sar

 Word comments with Sar commands can not refer to the same portion
of a text

 You have to avoid to use the macro names "stataAutomaticReportValue"
and "stataAutomaticReportMatrix", because they are interally used by
Sar

Thank you for your attention

Appendix A – Automatic classwork

The problem
Students like copying from their schoolmates during statistics classwork

The solution
An automatic document created with Sar where numerical values of the exercises are
randomly sampled from a dataset. A code-seed is uniquely assigned to each student.
The teacher can use the code-seed to quickly reproduce the sampled dataset and
mark the schoolwork.

Appendix A – Automatic classwork

You should manually change
the seed in the comment and in
the document, launch Sar and
print the document: that’s very
boring if you have many
students. It’s better to use the
mail-merge functions by Word.

Appendix A – Automatic classwork

What is mail-merge is?
It is a software function which allows you to create multiple documents from a template

How you can access the mail-merge functions of Word:

Appendix A – Automatic classwork

Step 1: Select the «letters» document type

Appendix A – Automatic classwork

Step 2: Create a new database

Appendix A – Automatic classwork

Step 3: Fill the database with your students’ names and a univocal ID

Click here to add the «ID» column

Appendix A – Automatic classwork

Step 4: Create the template

Don’t worry about this
incomplete command
(seed number is missing)

Don’t forget to use
the «clear» option

Appendix A – Automatic classwork

Step 5: Insert merge fields

Appendix A – Automatic classwork

Step 6: Preview results

Appendix A – Automatic classwork

Step 7: Add a page break at the end of the document

Appendix A – Automatic classwork

Step 8: Merge to a new document

Appendix A – Automatic classwork

Problem: an artifact is generated by Word in the «mail-merge» document

This artifact is automatically generated by Word in
each comment of the new «mail-merge» document.

It will generate an error if Sar tries to execute it.

Appendix A – Automatic classwork

Step 9: Correct the generated by Word artifact in the «mail-merge» document

Notes:

 The string you have to replace is «Page: 1 ^l», where «^l» is a special character for
«manual line break»

 Leave the «replace with» field void

Appendix A – Automatic classwork

Step 10: Launch Sar from the «mail-merge» document
and print the schoolwork for your students

Every student has got
a different schoolwork

Appendix A – Automatic classwork

Step 11: Create a Sar command (in a library) to mark the schoolwork

@program checkcompute seed
sysuse auto, clear
set seed §seed§
sample 7, count
encode make, generate(makeNumeric)
mkmat makeNumeric, matrix(make) rownames(make)
mkmat price, matrix(price)
mkmat weight, matrix(weight)
generate xy = price * weight
mkmat xy, matrix(xy)
generate xQuad = price ^ 2
mkmat xQuad, matrix(xQuad)
generate yQuad = weight ^ 2
mkmat yQuad, matrix(yQuad)
summarize price
scalar sumPrice = r(sum)
summarize weight
scalar sumWeight = r(sum)
summarize xy
scalar sumXy = r(sum)
summarize xQuad
scalar sumXQuad = r(sum)
summarize yQuad
scalar sumYQuad = r(sum)
correlate price weight
scalar correlation = r(rho)
@end

Plain text file: c:\sar libraries\checkcompute.txt

Appendix A – Automatic classwork

Step 12: Create a checker template which is linked to the students’ database

Appendix A – Automatic classwork

Step 13: Select the student’s ID and launch Sar

Appendix A – Automatic classwork

Conclusions about automatic schoolwork:

 You can discourage students from copying during classwork

 By using «mailings» functions of Word, you can send by e-
mail to your students:

• automatic homework

• automatic solutions with calculations and formulas

 You can manage exercises in the classroom encouraging
students to work on their own

Appendix B – Highlighting subgroups with few observations

The problem
If the number of observations on which an estimate is based falls below a
minimum criterion, a warning should accompany the estimate

The solution
An automatic document created with Sar where an asterisk is added to the
reported estimates which are based on a low number of observations

X Y

A 1.3

B 4.5*

C 3.2*
* The value is statistically unreliable

given the small sample size

Appendix B – Highlighting subgroups with few observations

Example:
A report with mean wage by industry

from the nlsw88.dta dataset. We want
to highlight estimates wich are based

on less then 30 observations

. sysuse nlsw88
(NLSW, 1988 extract)

. mean wage, over(industry)
(output suppressed)

. matrix N = e(_N)‘

. matrix list N

N[12,1]
 r1
 wage:_subpop_1 17
 wage:Mining 4
 wage:Construction 29
wage:Manufacturing 367
 wage:_subpop_5 90
 wage:_subpop_6 333
 wage:_subpop_7 192
 wage:_subpop_8 86
 wage:_subpop_9 97
 wage:_subpop_10 17
 wage:_subpop_11 824
 wage:_subpop_12 176

<30
<30
<30

<30

This matrix contains the number of
observations used in estimating

mean wages by industry

Appendix B – Highlighting subgroups with few observations

Step 1: create the genlownumbermatrix program and put it in a valid ADO path
(See the next slide to know how the genlownumbermatrix program works)

program genlownumbermatrix
 syntax namelist(min=2 max=2)
 local inputMatrix: word 1 of `namelist'
 local outputMatrix: word 2 of `namelist'
 confirm matrix `inputMatrix'
 local nRowsOfInputMatrix = rowsof(`inputMatrix')
 matrix `outputMatrix' = J(`nRowsOfInputMatrix', 1, .)
 forvalues i = 1/`nRowsOfInputMatrix' {
 if `inputMatrix'[`i', 1] < 30 {
 local rowNames `"`rowNames' "*" "'
 }
 else {
 // Void row name
 local rowNames `"`rowNames' " " "'
 }
 }
 matrix rownames `outputMatrix' = `rowNames'
end

Appendix B – Highlighting subgroups with few observations

How the genlownumbermatrix works

. matrix N = (12 \ 32 \ 8)

. genlownumbermatrix N lowN

. matrix list lowN

lowN[3,1]
 c1
* .
 .
* .

Syntax
genlownumbermatrix inputMatrix outputMatrix

Description
The genlownumbermatrix program creates an output matrix in which the matrix row
names are asterisks if the corresponding row value in the input matrix is less than 30

Example

asterisk
void

asterisk

Appendix B – Highlighting subgroups with few observations

Step 2: create a Sar automatic report which calls the genlownumbermatrix program

Appendix B – Highlighting subgroups with low number few observations

Conclusions about highlighting subgroups with low number of observations:

 Warning about statistics which are based on a small sample is a good practice

 Sar can be used to automate numbers and text as well (asterisks for example)

 You can improve the genlownumbermatrix program by:

• adding an argument which represents the threshold (a fixed threshold of
30 was used in the example)

• adding an argument which represents an alternative symbol to asterisk

Appendix C – Error management

Sar

!

Sar notifies you when an error occurred

Appendix C – Error management

The command in the
third paragraph of

comment 2 is wrong
(«@printtt» was typed

instead of «@print»)

Appendix C – Error management

Sar halts the execution of the commands where the error occurres:
you can open the Stata window to debug your Sar session

. count
 0
* Sar internally uses the previous command "count" to synchronize with Stata.
* Don't worry about it.
sysuse auto
(1978 Automobile Data)
summarize price

 Variable | Obs Mean Std. Dev. Min Max
-------------+--
 price | 74 6165.257 2949.496 3291 15906
confirm numeric format %5.1f
@printtt r(mean)
unrecognized command: @ invalid command name

Appendix C – Error management

Tip: use @viewlog and @interact to debug

 @viewlog

When used (it does not matter in which Sar comment) it
leaves the Stata window open after Sar is executed, so you
can see the log of your session

 @interact

It halts Sar execution and makes Stata at your disposal

Appendix D – Syntax and description of the Sar commands

@beginstring

Syntax
@beginstring #string#

Description
The @beginstring command sets the string of characters you want to put before the numerical outputs of the
@filltable command.
The string must be specified between two sharps (#).
See also the @endstring command.

@cleartable

Syntax
@cleartable

Description
The @cleartable command clears the table associated with the comment where the command is written. It can
only be used within Word comments associated with a single table.
The command has no arguments.

@do

Syntax
@do SarProgram

Description
The @do command executes a program previously loaded by the @loadlibrary command or defined in a Word
comment through the @program/@end paradigm.
The SarProgram argument specifies the program which has to be executed.

Appendix D – Syntax and description of the Sar commands

@endstring

Syntax
@endstring #string#

Description
The @endstring command sets the string of characters you want to place after the numerical outputs of the
@filltable command.
The string must be specified between two sharps (#).
See also the @beginstring command syntax and description.

@filltable

Syntax
@filltable StataData startingRow startingCol [rowStep colStep]

Description
The @filltable command inserts values from matrices in a table, Stata results, scalars and macros given by the
StataData argument in a Word table. It can be used only in Word comments associated with a single table.
StataData is the data retrieved from the Stata environment used by the command to fill the table. It can be a
matrix, a Stata result, a scalar or a macro.
startingRow and startingCol indicate, respectively, the row and the column of the table cell from which StataData
begins to be printed. They have to be nonzero integers. If these values are negative, -1 means last row/column, -2
means second-last row/second-last column and so on.
rowStep and colStep indicate, respectively, how many rows (columns) have to be skipped, between a row (column)
and the next row (column), filling the table. When rowStep/colStep equals 0, no blank row/column is left between
printed rows/columns. When rowStep/colStep equals 1, a blank row/column is left between printed rows/columns.
Generally, if rowStep/colStep equals n, then n blank rows/columns are left between printed rows/columns. These
arguments are optional and they have to be non-negative integers.

Appendix D – Syntax and description of the Sar commands

@format

Syntax
@format %fmt

Description
The @format command sets the numerical format of the output obtained by @print and @filltable commands.
The set numerical format is preserved for the following @print and @filltable commands.
The %fmt argument has to be a numerical format written using the same rules used in the Stata format command
(See help format in Stata).

@interact

Syntax
@interact

Description
The @interact command haltes the execution of Sar to make Stata at your disposal. So you can use Stata, interact
with it and create data objects (like scalars or matrices) that will be available in the Sar environment after your
Stata session has been closed. Remember to not manually close the Stata window: this will cause the crash of Sar.
You have to return to Word, where you will find a dialog window with a button to close Stata.
The command has no arguments.

@loadlibrary

Syntax
@loadlibrary "pathOfTheLibraryFile"

Description
The @loadlibrary command loads programs defined in a Sar library file.
The path of the Sar library file has to be specified in the pathOfTheLibraryFile argument.

Appendix D – Syntax and description of the Sar commands

@matrixcolnames and @matrixrownames

Syntax
@matrixcolnames StataMatrix stratingRow startingCol [colStep]
@matrixrownames StataMatrix startingRow startingCol [rowStep]

Description
The @matrixcolnames and @matrixrownames commands fill a Word table with, respectively, row-names and
column-names of a Stata matrix. They can be used only in Word comments associated with a single table.
StataData is the matrix retrieved from the Stata environment whose matrix row-names are printed by
@matrixrownames and whose matrix column-names are printed by @matrixcolnames. This argument has to be a
matrix.
startingRow and startingCol indicate, respectively, the row and the column of the table cell from which the row-
names/column-names of StataMatrix begin to be printed. They have to be nonzero integers. If these values are
negative, -1 will indicate the last row/column, -2 will indicate the second-last row/second-last column and so on.
colStep is an optional argument for @matrixcolnames. It indicates the column step according to the table is filled.
The default value is 0. It has to be a non-negative integer.
rowStep is an optional argument of @matrixrownames. It indicate the row step according to the table is filled. The
default value is 0. It has to be a non-negative integer.

@print

Syntax
@print StataValue

Description
The @print command, launched from a Word comment associated with a portion of text (a temporary text
placeholder in the Sar jargon), replaces its placeholder with the value of a Stata result, a scalar or a macro retrieved
from the Stata environment. The @print command can not be used in a Word comment associated with a table.
The StataValue argument must be a Stata result, a scalar or a macro.

Appendix D – Syntax and description of the Sar commands

@program/@end paradigm

Syntax
@program programName [arg1 arg2 … argN]
[…]
[Sar and Stata commands]
[…]
@end

Description
The @program/@end paradigm is used to define a Sar program. This paradigm can be used in a Word comment or in
a Sar library. Sar programs are, roughly speaking, a list of Sar and Stata commands. This list of commands is defined
between the @program and the @do commands. After the commands are loaded in the Sar environment, they can
be executed through the @do command.
The programName argument is used to set the name of the program.
The optional arguments arg1, arg2, …, argN specify the arguments of the program defined by the @program/@end
paradigm. When you want to use the values passed as arguments in your program, you have to use the §arg1§,
§arg2§, …, §argN§ callbacks inside your program code: before executing the program Sar replaces every callback
with the corresponding values of arguments.
The @end command closes a program definition. It has no arguments.
The following commands can not be used in a Sar program: @do, @loadlibrary, @interact and the
@program/@end paradigm.

Appendix D – Syntax and description of the Sar commands

@resetstring

Syntax
@resetstring

Description
The @resetstring command sets to an empty string the string of characters which is putted before and after the
numerical outputs of the @print and @filltable commands: when the @resetstring command is used no
characters are added before or after the numerical output. It’s equivalent to the couple of command
@beginstring ## and @endstring ##.
The command has no arguments.
See also @beginstring and @endstring syntax and description.

@viewlog

Syntax
@viewlog

Description
The @viewlog command asks Sar to leave the Stata window open after the Sar macro was executed. This can be
useful to look at the log created by Stata computations.When @viewlog is used, in whatever word comment, a
dialog window is opened after the execution of the Sar macro, allowing you to close the Stata Window and
terminate the Sar macro.
The command has no arguments.

Disclaimer

The user is the only responsible for the accuracy of
the statistical analysis and for possible damages
caused by Sar. It’s strongly recommended to save the
Word document before you launch Sar.

