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Abstract. This paper presents a new user-written STATA command called ivtreatreg for the estimation 
of five different (binary) treatment models with and without idiosyncratic (or heterogeneous) average 
treatment effect. Depending on the model specified by the user, ivtreatreg provides consistent estimation 
of average treatment effects both under the hypothesis of “selection on observables” and “selection on 
unobservables” by using Ordinary Least Squares (OLS) regression in the first case, and Intrumental-
Variables (IV) and Selection-model (à la Heckman) in the second one. Conditional on a pre-specified subset 
of exogenous variables x – thought of as driving the heterogeneous response to treatment – ivtreatreg 
calculates for each model the Average Treatment Effect (ATE), the Average Treatment Effect on Treated 
(ATET) and the Average Treatment Effect on Non-Treated (ATENT), as well as the estimates of these 
parameters conditional on the observable factors x, i.e., ATE(x), ATET(x) and ATENT(x). The five models 
estimated by ivtreatreg are: Cf-ols (Control-function regression estimated by OLS), Direct-2sls (IV 
regression estimated by direct two-stage least squares), Probit-2sls (IV regression estimated by Probit and 
two-stage least squares), Probit-ols (IV two-step regression estimated by Probit and ordinary least squares), 
and Heckit (Heckman two-step selection model). An extensive treatment of the conditions under which 
previous methods provide consistent estimation of ATE, ATET and ATENT can be found, for instance, in 
Wooldgrige (2002, Chapter 18). The value added of this new STATA command is that it allows for a 
generalization of the regression approach typically employed in standard program evaluation, by assuming 
heterogeneous response to treatment. 
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0. Introduction 
 
It is nowadays common practice, especially at policymaking level, to perform ex-post evaluation of 

economic and social programs via evidence-based statistical analysis. This effort in mainly devoted 

to measure “causal effects” of an intervention on the part of an external authority (generally, local 

or national Government) on a set of subjects (individuals, firms, etc.) undergoing the program. But 

also in an environment not characterized by a formal policy intervention, rethinking usual causal 

relations in a counterfactual stance is becoming an imperative of the modern micro-econometric 

practice. In this regard, several new user-written STATA commands to accomplish the task of 

enlarging the set of statistical tools to perform counterfactual causal analysis have been recently 

realized.  

This paper develops on this wake by presenting a new user-written STATA routine called 

ivtreatreg for the estimation of five different (binary) treatment models with and without 

idiosyncratic (or heterogeneous) average treatment effect. To our knowledge no previous STATA 

commands addressed this objective. Depending on the model specified by the user, ivtreatreg 

provides consistent estimation of average treatment effects both under the hypothesis of “selection 

on observables” and “selection on unobservables” by using Ordinary Least Squares (OLS) 

regression in the first case, and Intrumental-Variables (IV) and Selection-model (à la Heckman) in 

the second one. Conditional on a pre-specified subset of exogenous variables x – thought of as 

driving the heterogeneous response to treatment – ivtreatreg calculates for each model the 

Average Treatment Effect (ATE), the Average Treatment Effect on Treated (ATET) and the 

Average Treatment Effect on Non-Treated (ATENT), as well as the estimates of these parameters 

conditional on the observable factors x, i.e., ATE(x), ATET(x) and ATENT(x). The five models 

estimated by ivtreatreg are: Cf-ols (Control-function regression estimated by OLS), Direct-

2sls (IV regression estimated by direct two-stage least squares), Probit-2sls (IV regression estimated 

by Probit and two-stage least squares), Probit-ols (IV two-step regression estimated by Probit and 

ordinary least squares), and Heckit (Heckman two-step selection model). An extensive treatment of 

the conditions under which previous methods provide consistent estimation of ATE, ATET and 

ATENT can be found, for instance, in Wooldgrige (2002, Chapter 18). The value added of this new 

STATA command is that it allows for a generalization of the regression approach typically 

employed in standard program evaluation, by assuming heterogeneous response to treatment. 

 Section 1, 2 and 3 put forward a brief account of definitions and statistical background 

needed to present in section 4 the five treatment models estimated by ivtreatreg. Section 5 

presents and discusses the “help” of this routine, while section 6 ends the paper by providing a 

didactic application of ivtreatreg on real data for studying the relation between education and 

fertility on a set of women living in a developing country.     
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1. Treatment effect: definition and statistical set-up  

From a statistical point of view, our background is that of an analyst interested in the estimation of 

the so-called “treatment effect” of a given policy program in a “non-experimental” set-up, where 

the treatment variable w (taking value 1 for treated and 0 for untreated units) is expected to affect a 

specific target variable y (that can have a variety of forms: binary, count, continuous, etc.). In this 

context, we define the unit i’s Treatment Effect (TE) as: 

 

TEi = y1i  - y0i 

 

where y1i  is the outcome of unit i when it is treated, and y0i is the outcome of unit i when it is not 

treated. Identifying TEi is not possible: in fact, as this quantity refers to the same individual at the 

same time, it goes without saying that the analyst can observe just one of the two quantities feeding 

into TEi (i.e. y1i  or y0i) but never both. For instance, it might be the case that we can observe the 

investment behavior of a supported company, but we cannot know what the investment of this 

company would have been if this firm had not been supported, and vice versa. The analyst faces a 

fundamental missing observation problem (Holland, 1986) that needs to be overcome to recover 

reliably the causal effect (Rubin, 1974; 1977). What on the contrary is observable to the analyst is 

the actual status of unit i, that is:  
 

yi = y0i + wi (y1i  - y0i) 

 

This relation, called Potential Outcome Model, links together the treatment binary indicator, the 

observable and non observable outcomes. For identification purposes, the treatment evaluation 

literature suggests to see at a specific effect called the Average Treatment Effect (ATE) of a given 

policy intervention, defined (in the population) as1: 

 

Average Treatment Effect = ATE = E(y1-y0) 

 

Nevertheless, a policymaker might be interested also in knowing what is the effect on the subset of 

units actually treated. In this case, the parameter of interest is the so called Average Treatment 

Effect on Treated (ATET), defined as:  

 

Average Treatment Effect on Treated = ATET = E(y1-y0 | w=1) 

 

Similarly, it is also possible to define the Average Treatment Effect on Non Treated (ATENT) that 

is the average treatment effect calculated within the subsample of untreated units: 

Average Treatment Effect on Non Treated = ATENT = E(y1-y0 | w=0)  

                                                 
1 For the sake of simplicity we avoid to write the subscript referring to unit i when we refer to the population 
parameters. 
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The combined knowledge of ATE, ATET and ATENT can provide relevant information on how the 

causal relation between w and y actually behaves. Furthermore an interesting relation links these 

parameters, as it can be proved that: 

 

ATE = ATET P(w=1) + ATENT P(w=0) 

 

where P(w=1) is the probability of being treated, and P(w=0) of being untreated. But another 

important ingredient is needed to go on with the analysis of program evaluation. Indeed, for each 

individual, besides the observation on y and w, analysts (normally) have access also to a certain 

number of observable covariates that can be collected in a row vector x. Usually, the x-variables 

represent various individual characteristics such as: age, gender, income, etc.. The knowledge of x-

variables, as we will see, is of primary usefulness in the estimation phase of previous parameters, as 

they represent essential observable confounding conditioning factors. It is then worth stressing that, 

under the knowledge of x, we can also define the previous parameters “conditional on x”, as: 

 

ATE(x) = E(y1-y0 | x) 

ATET(x) = E(y1-y0  | w=1,x) 

ATENT(x) = E(y1-y0 | w=0, x)  

   

These quantities are, by definition, no more single values as before but functions of x. It means that 

they can also be seen as “individual specific average treatment effects” as each individual owns a 

different and specific value of x. Furthermore, it comes from the Law of Iterated Expectations that:  

 

ATE =Ex{ATE( x)} 

ATET =Ex{ATET( x)} 

ATENT =Ex{ATENT( x)}  

   

The aim of the econometrician involved into program evaluation is to recover consistent (and, when 

possible efficient) estimators of the previous parameters from observational data, that is from an 

i.i.d. sample of observed variables for each individual i: 

 

{ yi, wi, xi} with i = 1, …, N 

 

Observe that, according to this set-up, we exclude the possibility that the treatment of one unit 

affects the outcome of another unit. In the literature this is called SUTVA (or stable unit treatment 

value assumption), and we will assume the validity of this hypothesis throughout this paper.  

 

 

 



5 

2. Random and non-random assignment  

If the sample were drawn at random (random assignment to program), it can be showed that 

ATE=ATET=ATENT and, more importantly, it is possible to estimate ATE as the difference 

between the sample mean of treated and the sample mean of untreated units: this is the well-known 

“difference-in-mean estimator” of classical statistics. Indeed, under random assignment, the so-

called Independence Assumption (IA), stating that “(y1; y0)  are  independent  of  w”, does hold and 

the “difference-in-mean” estimator is consistent, efficient and asymptotically normal. 

When the sample of treated and untreated units, as it is often the case, is not randomly 

drawn, but it depends on either individual observable as well as unobservable to analyst 

characteristics, the difference-in-mean estimator is no longer a consistent estimation strategy. In this 

case, in fact, it occurs that “(y1; y0) are dependent on w” so that a selection bias arises and it can be 

also proved that ATE≠ATET≠ATENT.  

What determines selection bias in program evaluation settings are basically to mechanisms: 

(i) the self-selection of individuals on the one hand, and (ii) the selection procedure from an external 

actor, on the other hand. Under “selection on observables” the knowledge of x may be sufficient to 

identify previous causal parameters. Self-selection regards the choice of the individuals to apply for 

a specific program. This entails a cost-benefit calculus, as applying for a policy program can be 

costly to some extent. This choice may not be assumed to be done at random, as firms are 

endogenously involved in this decision. The selection mechanism is more intuitively following a 

non random assignment, as a public agency is generally characterized by the pursuit of various 

objectives, such as direct (on the target-variable) and indirect (welfare) objectives. For instance , in 

order to maximize the final effect of an investment supporting program, the agency could apply the 

principle of “picking-the-winner”, that is choosing to support those units having an already high 

propensity to succeed. This is a sufficient condition to make the sample of beneficiaries far from 

being randomly built.  

 

 

3. Selection on observables and selection on unobservables  

3.1 Selection on observables 

On the part of the evaluator, the factors affecting the non random assignment of beneficiaries could 

have an observable or an unobservable nature. In the first case the analyst knows with precision 

what are the elements driving the self-selection of individuals and the selection of the agency. In 

this case the knowledge of x, the structural variables that are supposed to drive the non-random 

assignment to treatment, are sufficient to identify, as we will see later, the actual effect of the policy 

in question. Nevertheless, when other factors driving the non random assignment are impossible or 

difficult to observe, then the only knowledge of the vector x is not sufficient to identify the effect of 

the policy.  

These two situations faced by the evaluator are known in the literature as the case of 

“selection on observable” and “selection on unobservables”: they ask for different methodologies to 

identify the actual effect of policy programs, and the greatest effort of past and current econometric 



6 

literature has been that of dealing with these two situations and provide suitable solutions in both 

cases. 

Under selection on observables the knowledge of x, the factors driving the non-random 

assignment, may be sufficient to identify the causal parameters defined above. Of course, since the 

missing observation problem still holds, we need to rely on an assumption (or hypothesis) able to 

overcome that problem. Rosenbaum and Rubin (1983), introduced the so-called Conditional 

Independence Assumption (CIA), stating that - conditional on the knowledge of x - y1 and y0 are 

independent of w, formally: 

 

0 1( , ) |y y w⊥ x  
 

This assumption means that, once the knowledge of the factors affecting the sample selection are 

taken into account by the analyst, then the condition of randomization is restored. This assumption 

can be restricted to the so-called Conditional Mean Independence (CMI), stating that: 

 

E(y1 | x, w) = E(y1 | x)  and  E(y0 | x, w) = E(y0 | x)          

 

that restricts the independence only on the mean. The CMI is the basis for (consistent) estimation of 

ATE, ATET and ATENT by parametric and non parametric methods. Within the parametric 

approaches the regression analysis is the most known and applied, while within the non-parametric 

ones the Matching methods and Reweighting are the most popular. But also the Sharp Regression 

Discontinuity Design brings to consistent estimation under CMI.  

 

3.2 Selection on unobservables 

When the selection into program is governed not only by observable-to-analyst factors, but also by 

unobservable variables, the CMI is not sufficient to identify causal parameters. Other assumptions 

are needed. Two classes of models are particularly suitable in this case: Selection model (à la 

Heckman) also known as Heckit Model and the Instrumental Variables (IV) approach2. Before 

going on, it is worth to distinguish between “genuine unobservables” and “contingent 

unobservables”: the first type refers to factors that are intrinsically unknowable to the analyst as, for 

instance, some individual specific characteristics such as personal ability, propensity to bear risk, 

etc.; the second type refers to factors that, in principle, would be knowable, but that the available set 

of information prevents to employ. In many policy contexts the presence of contingent 

                                                 
2 Furthermore, also the Fuzzy Regression Discontinuity Design can deal with selection on unobservables, as it can be 
proved that it is a particular kind of IV estimator. Finally, also the Difference-In-Differences (DID) estimator is able to 
treat unobservable selection, but it needs the availability of longitudinal data. 
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unobservables could be very problematic, as many (potentially observable) elements driving the 

selection into program could be overlooked, thus leaving the selection bias still present3.  

 

 

4. Estimation methods 

The new STATA routine ivtreaterg implements the estimation of five models, where three of 

them are particular IV estimators. These methods are called: cf-ols (Control-function regression 

estimated by OLS), direct-2sls (IV regression estimated by direct two-stage least squares), probit-

2sls (IV regression estimated by Probit and two-stage least squares), probit-ols (IV two-step 

regression estimated by Probit and ordinary least squares), and heckit (Heckman two-step selection 

model). Each of these can be estimated either by assuming homogenous or heterogeneous response 

to treatment (for a total of ten models). Before presenting how ivtreaterg actually works, the 

identification conditions, procedures and formulas of each model are briefly set out.   

 

4.1 Control-function regression 

To estimate Rosenbaum and Rubin (1983), introduced the so-called Conditional Independence 

Assumption (CIA), stating that - conditional on the knowledge of x - y1 and y0 are independent of w. 

This assumption means that, once the knowledge of the factors affecting the sample selection are 

taken into account, the condition of randomization is restored. This assumption can be restricted to 

the so-called Conditional Mean Independence (CMI), stating that:  

   

E(y1 | x, w) = E(y1 | x)     and       E(y0 | x, w) = E(y0 | x)                    

 

that restricts the independence only on the mean. Suppose to modeling the potential outcomes as 

follows: 

 

(a)  y0 = µ0  + v0  ,   E(v0) =0  , µ0 = parameter  

(b)  y1 = µ1  + v1  ,   E(v1) =0  , µ1 = parameter  

(c)  y = y0  + w (y1 – y0 ) 

(d)  CMI holds 

 

By substituting (a) and (b) into (c) we get: 

 

y = µ0 + w (µ1 – µ0 ) + v0 + w (v1 - v0) 

 

By assuming E(v0 | x) = g0(x) = xβ0   and  E(v1 | x) = g1(x) = xβ1 we can distinguish two case: 

 

                                                 
3 In the case of firm R&D and fixed investment support, many studies have a lot of information about firm 
characteristics, but very little about R&D projects’ quality. As selection is led by both these aspects, these studies run 
the risk to be severely biased (Cerulli, 2010).  
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Case 1. Homogenous reaction function of  y0 and y1 to x: E(v1| x) = E(v0| x) 

In Case 1 we can show that: 

 

(1)  E(y| w, x) =  µ0 + w ATE +  xβ 

(2)  ATE = ATE(x) = ATET = ATET(x) = ATENT = ATENT(x) = µ1 – µ0  

 

Thus, no heterogeneous average treatment effect (over x) does exist. 

Case 2. Heterogeneous reaction function of y0 and y1 to x: E(v1| x) ≠ E(v0| x)  

In this second case it can be showed that: 

 

(1)  E(y| w, x) =  µ0 + w ATE +  xβ0 + w (x – µx)β 

(2)  ATE ≠ATET ≠ ATENT 

 

where an estimator for µx=E(x) can be the simple sample mean of x. In this case, heterogeneous 

average treatment effects (over x) exists and the population causal parameters take on the following 

form:   

 

ATE = (µ1 – µ0) + µxβ 

ATE(x) = ATE + (x – µx)β 

ATET = ATE + Ex{ x – µx | w=1}β 

ATET(x) = [ATE + (x – µx)β| w=1] 

ATENT = ATE + Ex{ x – µx | w=0}β 

ATENT(x) = [ATE + (x – µx)β| w=0] 

 

whose sample equivalents are: 

 

1

1

( 1)

1

1

( 0)

ˆ ˆATE

ˆˆ ˆATE( ) ( )

1 ˆˆ ˆATET ( )

ˆˆ ˆATET( ) ( )

1 ˆˆ ˆATENT (1 )( )
(1 )

ˆˆ ˆATENT( ) ( )

α
α

α

α

α

α

=

=

=

=

=

=

=

= + −

= + −

 = + − 

= + − −
−

 = + − 

∑
∑

∑
∑

N

N
i

i
i

w

N

i iN
i

i
i

i i
w

w
w

w
w

x x x β

x x β

x x x β

x x β
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Operationalizing regression  in  Case 2 is fairly straightforward:  
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1.  estimate   yi =  µ0 + wi α+  xiβ0 + wi (xi – µx)β + errori  by OLS,  thus getting consistent   

estimates of µ0 , α, β0 and β; 

2.  plug these estimated parameters into the sample formulas and recover all the causal 

effects.  

3.  Obtain standard errors for ATET and ATENT via bootstrapping. 

 

4.2 Instrumental variables  

When the CMI hypothesis does not hold, Control-function regression brings to biased estimates of 

ATE, ATET and ATENT. This happens when the selection-into-treatment is due not only to 

observable, but also “unobeservable-to-analyst” factors. In this case, w becomes endogenous, that is 

correlated with the regression error term. Instrumental-variables estimation (hereafter, IV) solves 

this problem by restoring costincency also under the hypothesis of selection on unobservables. 

Nevertheless, the application of IV requires the availability of at least one variable z, called 

“instrumental variable”, assumed to have the following two properties: 

 

(1)  z is (directly) correlated with treatment w  

(2)  z is (directly) uncorrelated with outcome y.  

 

This means that the selection into program depends on the same factors affecting the outcome plus z 

that does not affect directly the outcome (but only indirectly via its effect on w). This is the basic 

exclusion restriction under which IV is able to identify casual parameters.  

Now, consider again the switching random coefficient model: 

 

y = µ0 + w (µ1 – µ0 ) + v0 + w (v1 - v0) 

 

when CMI does not hold we have that E(v1| w, x) ≠ E(v1| x)  and E(v0| w, x) ≠ E(v0| x). As in the 

case of control-function, we can distinguish these two cases. 

 

Case 1.  v1 = v0  (homogenous case) 

In this case v1 = v0 so that y = µ0 + w (µ1 – µ0 ) + v0 implying that ATE=ATET=ATENT= µ1 – µ0. 

Suppose to have access to a variable z (instrumental variable) having these two properties: 

 

(1)  E(v0| x, z) = E(v0| x)   <=>   z  is uncorrelated with v0 

(2)  E(w| x, z) ≠ E(w| x)    <=>   z  is correlated with w  

 

Taking (1), we assume that: E(v0| x, z) = E(v0| x) = g(x) = xβ meaning means that E(v0| x, z) ≠ 0. 

After simple manipulations, we get a regression model having a error term with zero unconditional 

mean of this type: 

y =  µ0 + w ATE + xβ + u0  
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that is a regression model in which (x, z) are uncorrelated with the error term u0 (i.e., (x, z) are 

exogenous) but the error term u0  is correlated with w. These conditions bring to the following 

Structural System of (two) Equations: 

 

0 0

*

*

*

(a)    ATE

(b)    

1     0
(c)     

0     0

(d)     ( , )

i i i i

i i i

i
i

i

i i i

y w u

w

if w
w

if w

z

µ
η ε

= + + +
 = + +


 ≥ =  <
 =

x β

q δ

q x

         

 

where ATE cannot be consistently estimated by OLS because conditions Cov(u0i ; εi ) ≠ 0 i.e., w is 

endogenous in equation (a). Equation (a) is known as the outcome equation, equation (b) and (c) is 

known as the selection equation and relation (d) is the exclusion restriction. How can we estimate 

consistently ATE in System (11)? We may rely on three (consistent, but differently efficient) 

methods: 

 

1. Direct Two-Stage-Least-Squares (2SLS) 

2. Probit-2SLS 

3. Probit-OLS     

 

Direct Two-Stage-Least-Squares (Direct-2SLS)  

By using direct-2SLS the analyst does not consider at all the binary nature of w. It follows two 

steps: 

 

1. run an OLS regression of w on x and z of the type: i i i z iw z errorη δ= + + +xx δ , thus 

getting the “predicted values” of  wi , that we indicate with wfv,i; 

2.  run a second OLS of y on x and wfv,i. The coefficient of wfv,i  is a consistent estimation of      

ATE. 

 

Probit-2SLS 

In this case, the analyst exploits suitably the binary nature of w: first he applies a Probit of w on x 

and z, getting the “predicted probability of w”, and then he uses these probabilities by applying a 

2SLS with predicted probabilities as instrument for w. 

Probit-2SLS is generally more efficient than Direct-2SLS. Among all the possible instruments for 

w, the optimal one is the orthogonal projection of w in the vector space generated by (x, z). Why 

and which is this projection? E(w | x, z ) is the orthogonal projection of w in the vector space 

generated by (x, z). Among all the projections, the orthogonal one produces the “smallest error”. 

But we know that E(w | x, z) = P(w=1 | x, z) = Probit selection equation. It means that the 

“probabilities of getting treated” (i.e., the propensity scores) estimated from the Selection Equation 
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is the best instrument for w (because it generates the smallest projection error). Operationally, 

Probit-2SLS follows these three steps:  

 

 

1.  apply a Probit of w on x and z, getting pw, i.e., the “predicted probability of w”;  

2.  run OLS of w on (1, x, pw ), thus getting the fitted values w2fv,i ; 

3.  run a second OLS of y on (1, x, w2fv,i ).  

 

The coefficient of w2fv,i is the most efficient estimator of ATE in the class of linear instruments for 

w. Furthermore, this procedure does not require for consistency that the process generating w is 

correctly specified. 

 

Probit-OLS 

This method exploits the previous relation E(w | x, z) = P(w=1 | x, z). By tacking the expectation of 

y conditional on (x, z), we get: 

 

0E( | , ) ATE E( | , )y z w zµ= + ⋅ +x x xβ  

 

Since we saw that E(u0| x, z) = 0. By plug-in (12) into the previous equation we have: 

 

0E( | , ) ATE ( 1| , )y z P w zµ= + ⋅ = +x x xβ  

 

This relation suggests to estimate consistently ATE with a simple OLS regression of y on (1, pw, x).  

This model, however, is less efficient than Probit-2SLS and requires for consistency that the Probit 

is “correctly” specified. Standard errors have to be corrected for the presence of a “generated 

regressor” and “heteroscedasticity”.  

From a technical point of view, in order to identify (µ0, ATE, β) in equation (1), it not 

necessary to introduce z in the selection equation (2). It is sufficient that the selection equation (2) 

contains just x. Indeed, since G(x, δ) is a non-linear function of x, then it is not perfectly collinear 

with x. Therefore, G(x, δ) can be used as instrument besides x, as it does not produce problems of 

collinearity (as it occurs, conversely, if G is a linear probability model). Nevertheless, since x and 

G(x, δ) are strongly correlated and are used jointly as instruments, it can be proved that the IV 

estimator gets larger variances, thereby becoming more imprecise.  

 

Case 2. v1 ≠ v0 

Consider now the case in which: v1 ≠ v0 so that: y = µ0 + w (µ1 – µ0 ) + v0 + w (v1 - v0). As in the 

case of Control-Function, it implies that ATE ≠ ATET ≠ ATENT. We are in the case of observable 

heterogeneity and ATE(x), ATET(x) and ATENT(x) can be defined and estimated. Suppose that v1 

and v0 are independent on z: it means that z is assumed to be endogenous in this model, that is: 
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E(v0| x, z) = E(v0| x) = g0(x)  

E(v1| x, z) = E(v1| x) = g1(x) 

 

It is equivalent to write: 

 

v0 = g0(x) + e0    with    E(e0 | x, z) = 0 

v1 = g1(x) + e1    with    E(e1 | x, z) = 0 

 

By substituting these expressions for v0 and v1 into the previous switching regression for y, we get:  

 

y = µ0 + αw + g0(x) + w[g1(x) - g0(x)] + e0 + w(e1 – e0) 

 

Now, by assuming in the previous equation: g0(x) = xβ0 , g1(x) = xβ1, ε = e0 + w(e1 – e0) and by 

applying the same procedure of case 1, we finally get:    

 

y =  µ0 + ATEw + xβ0 + w (x – µx)β + ε  

 

In this model we have two endogenous variables:  w  and  w(x – µx). Intuitively, if q = q(x, z) is an 

instrument for w, then a suitable instrument for w(x – µx) is: q·(x – µx).  Nevertheless, before 

applying IV, we have to distinguish twosub-cases: 

 

Case 2.1:   e1 = e0  (only observable heterogeneity) 

Case 2.2:   e1 ≠ e0   (both  observable and unobservable heterogeneity) 

 

In what follows we examine the two cases separately. 

 

Case 2.1:   e1 = e0  (only observable heterogeneity) 

In this case we have ε = e0. By remembering that E(e0 | x, z) = 0 we can conclude that:  

 

y =  µ0 + αw + xβ0 + w (x – µx)β + e0  ,  with   E(e0 | x, z, w) = E(e0 | w)  

 

meaning that what is remaining is just the endogeneity due to w. Therefore, the following procedure 

provides consistent estimation: 

 

1. apply a Probit of w on x and z, getting pw, i.e., the “predicted probability of w”; 

2. estimate the following equation:  yi =  µ0 + αwi + xiβ0 + wi (xi – µx)β + errori   using as  

instruments: 1, pw, xi, pw (xi – µx).  
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This procedure provides consistent and efficient estimations. Moreover, various functions and 

interactions of (x, z) can be used to generate additional instruments, in order to get over-

identification, and thus test the (joint) exogeneity of instruments.  

 

 

Case 2.2:   e1 ≠ e0 (both  observable and unobservable heterogeneity) 

In this case, as seen, the full (and more general) model is: 

 

y = µ0 + αw + g0(x) + w[g1(x) - g0(x)] + e0 + w(e1 – e0) 

 

and we have to find a condition to restore consistent estimation. A possible condition could be: 

E[w(e1 – e0) | x, z] = E[w(e1 – e0)]. Given this condition, and by applying previous procedures, we 

arrive to the following parametric equation for y: 

 

y =  µ0 + αw + xβ0 + w (x – µx)β + e0 + w(e1 – e0) 

 

By defining: 

 

r = w(e1 – e0) - E[w(e1 – e0)] 

 

and by adding and subtracting E[w(e1 – e0)] in the previous equation for y, we get: 

 

y =  η + αw + xβ0 + w (x – µx)β + e0 + r 

 

where η = µ0 + E[w(e1 – e0)]. It is immediate to see that E(e0+r | x, z) = 0. It means that any function 

of (x, z) can be used as instrument in the y-equation. It brings to apply the IV procedure identical to 

that for Case 2.1, that is, estimate: 

 

yi =  η + αwi + xiβ0 + wi (xi – µx)β + errori  

 

using as instruments: 1, pw, xi, pw (xi – µx). This IV estimator is consistent, but not efficient. To get 

an efficient estimation it needs to introduce additional hypotheses. There are recent contributions, 

using more or less parametric approaches, to restore efficiency. In what follow we focus on the 

Heckit model with unobservable heterogeneity. It is a strong parametric model, but it may be useful 

sometimes to get efficient estimation. We will treat this model in the part on “Selection Models”.  

 

Problems with IV 

The main drawback of IV approaches regards the availability of good instruments. To be good an 

instrument has to be: 
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1. exogenous for the outcome y  

2. sufficiently well correlated with w 

 

If one of these two conditions is not met, the correctness of IV estimation is questionable. Usually, 

it is fairly difficult to find a variable that explains the selection-into-program having, at the same 

time, no relation with the outcome. When such a variable is available, anyways, its exogeneity is not 

easily testable. Indeed, testing instruments’ exogeneity requires to rely on an over-identified setting, 

that is, to get access to more than one instrument for w (at least two). Observe that, in this case, the 

analyst can test only the joint exogeneity of all the instruments used and not that of each single 

instrument. In the case of just-identified settings (only one instrument for w), testing instrument’s 

exogeneity is not possible, and analysts normally have to discuss very carefully the suitability of the 

instrument adopted.  

 

4.3 Selection model  

From the IV-estimation section, in the Case 2.2, we had that: 

 

y = µ0 + αw + g0(x) + w[g1(x) - g0(x)] + e0 + w(e1 – e0) 

 

and after some manipulations: 

 

y = µ0 + αw + xβ0 + w (x – µx)β + e0 + w(e1 – e0)  

 

This model, as said, presents both observable and unobservable heterogeneity, and a consistent 

estimation in this case requires strong hypotheses (see the IV section). Nevertheless, we ca use a 

generalized Heckit model to estimate consistently and efficiently such a model. The prize is that of 

relying on some distributional hypotheses.   

The model is made of these assumptions: 

 

1.  y = µ0 + αw + xβ0 + w (x – µx)β + u 

2.  E(e1 | x, z) = E(e0 | x, z) = 0 

3.  w = 1[θ0 + θ1x + θ2z + a ≥ 0] 

4.  E(a| x, z) = 0 

5.  (a, e0, e1 ) ~ 3N 

6.  a ~ N(0,1)  => σa=1 

7.  u = e0 + w(e1 – e0) 

 

Given these starting conditions, we can directly calculate to what is equal E(y | x, z, w). To that end, 

write the y-equation as y = A + u, with  A = µ0 + αw + xβ0 + w (x – µx)β and u = e0 + w(e1 – e0).  

It can be proved that: 
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0 0 1 0
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where 
1 11 ,e a eρ σ σ=   and 

0 00 ,e a eρ σ σ= . For the estimation of this equation a two-step procedure can 

be performed: 

 

1. run a Probit regression of wi on (1, xi, zi) and gets: ˆ ˆ( ,   )i iφ Φ ; 

2. run an OLS of 
ˆ ˆ

   on  1, , ,  ( ) ,  , (1- )  ˆ ˆ1
i i

i i i i i i i i

i i

y w w w w
φ φ 

 Φ − Φ 
xx x - µ  

The previous two-step procedure produces  consistent and  efficient estimations. Given estimations, 

we can also test the hypothesis: 

 

0 1 0H :   0ρ ρ= =  

 

that, if accepted, brings to the conclusion of no selection on unobservables. Finally, by putting: 

 

1 0

( ) ( )
( )      and    ( )

( ) 1 ( )
φ φλ λ= =
Φ − Φ

qθ qθ
qθ qθ

qθ qθ
 

 

we can write the regression as: 

 

0 0 1 1 0 0E(  | , ) =  +  +  +  ( ) + ( ) (1 ) ( )y z, w µ w w w wα ρ λ ρ λ+ −xx xβ x - µ β qθ qθ  

 

Given the two-step estimation of the previous equation, once recovered all the parameters , it is 

possible to calculate the usual causal parameters. It is immediate to see, that: 

 

( ) ( )

ATE

ATE

α
α

=
= + −x x x β

 

 

Since it follows the same procedure as seen in the case of Control-function Case 2. Nevertheless, 

ATET(x), ATET, ATENT(x) and ATENT assume a different form compared to Control-function 

Case 2. It is immediate to show that: 
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x x x β qθ
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and: 

1 0 0 ( 1)

1 0 0
1 1

1 1

ˆ ˆ( ) ( ) ( ) ( )

1 1
(1 )( ) ( ) (1 ) ( )

(1 ) (1 )

w

N N

i i i iN N
i i

i i
i i

ATENT

ATENT w w
w w

α ρ ρ λ

α ρ ρ λ

=

= =

= =

 = + − + + ⋅ 
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− −

∑ ∑
∑ ∑

x x x β qθ

x x β qθ  

 

Given the estimation of  α, ρ1, ρ0, β, λ1, λ0 from the previous two-step procedure, all these causal 

effects can be calculated. Standard errors for ATET and ATENT can be obtained by bootstrapping. 

 
 
5. The STATA command ivtreatreg 
 
The STATA routine ivtreatreg estimates the five binary treatment models presented above, 
with and without idiosyncratic (or heterogeneous) average treatment effect. Depending on the model 
specified, ivtreatreg provides consistent estimation of Average Treatment Effects either under 
the hypothesis of "selection on observables" (using the Control-function regression) or "selection on 
unobservables" (by using one of the three Intrumental-Variables (IV) models or the Heckman’s 
Selection-Model). Conditional on a pre-specified subset of exogenous variables - thought of as 
those driving the heterogeneous response to treatment - ivtreatreg calculates for each specific 
model the Average Treatment Effect (ATE), the Average Treatment Effect on Treated (ATET) and 
the Average Treatment Effect on Non-Treated (ATENT), as well as the estimates of these 
parameters conditional on the observable factors x (i.e., ATE(x), ATET(x) and ATENT(x)). 
 
The syntax of the command is fairly simple and takes on this form: 
 
Syntax of ivtreatreg 
 
ivtreatreg outcome treatment [varlist] [if] [in] [weight], model(modeltype) 
[hetero(varlist_h) iv(varlist_iv) conf(number) graphic vce(robust) const(noconstant) 
head(noheader)] 
 
fweights, iweights, and pweights are allowed; see weight. 

 
where: 
 
outcome specifies the target variable that is the object of the evaluation. 
 
treatment specifies the binary (i.e. taking 0=treated or 1=untreated) treatment 
variable. 
 
varlist defines the list of exogenous variables that are considered as observable 
confounders.   
 

The present routine allows for specifying a series of convenient options of different importance:    
 
Options of ivtreatreg 
 
model(modeltype) specifies the treatment model to be estimated, where modeltype must be 
one of the following (and abovementioned) five models: "cf-ols", "direct-2sls", "probit-
2sls", "probit-ols", "heckit". It is always required to specify one model. 
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modeltype_options     description 
---------------------------------------------------------------------------------------- 
Modeltype 
cf-ols                Control-function regression estimated by ordinary least squares 
direct-2sls           IV regression estimated by direct two-stage least squares 
probit-2sls           IV regression estimated by Probit and two-stage least squares 
probit-ols            IV two-step regression estimated by Probit and ordinary least squares 
heckit                Heckman two-step selection model 
---------------------------------------------------------------------------------------------- 
 
hetero(varlist_h) specifies the variables over which to calculate the idyosincratic 
Average Treatment Effect ATE(x), ATET(x) and ATENT(x), where x=varlist_h. It is optional 
for all models. When this option is not specified, the command estimates the specified 
model without heterogeneous average effect. Observe that varlist_h should be the same 
set or a subset of the variables specified in varlist. 
 
iv(varlist_iv) specifies the variable(s) to be used as instruments.  This option is 
strictly required only for "direct-2sls", "probit-2sls" and "probit-ols", while it is 
optional for "heckit". 
 
graphic allows for a graphical representation of the density distributions of ATE(x), 
ATET(x) and ATENT(x). It is optional for all models and gives an outcome only if 
variables into hetero() are specified. 
 
vce(robust) allows for robust regression standard errors. It is optional for all models. 
 
beta reports standardized beta coefficients. It is optional for all models. 
 
const(noconstant) suppresses regression constant term. It is optional for all models. 
 
conf(number) sets the confidence level equal to the specified number. The default is 
number=95. 
 

  
The routine creates also a number of variables that can be fruitfully used to inspect further into data:  
 

_ws_varname_h are the additional regressors used in model's regression when 
hetero(varlist_h) is specified. They are created for all models. 
 
_z_varname_h are the instrumental-variables used in model's regression when 
hetero(varlist_h) and iv(varlist_iv) are specified. They are created only in IV models. 
 
ATE(x) is an estimate of the idiosyncratic Average Treatment Effect. 
 
ATET(x) is an estimate of the idiosyncratic Average Treatment Effect on treated. 
 
ATENT(x) is an estimate of the idiosyncratic Average Treatment Effect on Non-Treated. 
 
G_fv is the predicted probability from the Probit regression, conditional on the 
observable confounders used. 
 
_wL0, wL1 are the Heckman correction-terms. 

 
Interestingly, ivtreatreg returns also some useful scalars: 
 
r(N_tot) is the total number of (used) observations. 
 
r(N_treated) is the number of (used) treated units. 
 
r(N_untreated) is the number of (used) untreated units. 
 
r(ate) is the value of the Average Treatment Effect. 
 
r(atet) is the value of the Average Treatment Effect on Treated. 
 
r(atent) is the value of the Average Treatment Effect on Non-treated. 
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Finally, some remarks are useful before using this routine: 
 
The treatment has to be a 0/1 binary variable (1 = treated, 0 = untreated). 
 
The standard errors for ATET and ATENT may be obtained via bootstrapping. 
 
When option hetero() is not specified, ATE(x), ATET(x) and ATENT(x) are one singleton 
number equal to 
ATE=ATET=ATENT. 
 

Since when hetero is not specified in model "heckit" ivtreatreg uses the in-built 
command treatreg, the following has to be taken into account:  (i) option beta and 
option head(noheader) are not allowed; (ii) option vce takes this sintax: vce(vcetype), 
where vcetype may be "conventional", "bootstrap", or "jackknife". 
 
Please remember to use the update query command before running this program to make sure 
you have an up-to-date version of Stata installed. 

 
 
6. Using ivtreatreg  in practice: an application to the relation between education and 
fertility 
 
In order to see how ivtreatreg actually works, we consider an instructional dataset called 
FERTIL2.DTA accompanying the manual  Introductory Econometrics: A Modern Approach, by 
Wooldridge (2000) collecting cross-sectional data on 4,361 women of childbearing age in 
Botswana. It is freely downloadable at http://fmwww.bc.edu/ec-p/data/wooldridge/FERTIL2.dta 
and a description of this dataset is presented below. 
 
Table 1. Description of the dataset FERTIL2.DTA. 
--------------------------------------------------- -------------------------------------- 
Name of the dataset:     FERTIL2.DTA  
Number of observations:  4,361                           
Number of variables:     28                           
--------------------------------------------------- -------------------------------------- 
Variable        Variable  
name            label 
--------------------------------------------------- -------------------------------------- 
mnthborn        month woman born 
yearborn        year woman born 
age             age in years 
electric        =1 if has electricity 
radio           =1 if has radio 
tv              =1 if has tv 
bicycle         =1 if has bicycle 
educ            years of education 
ceb             children ever born 
agefbrth        age at first birth 
children        number of living children 
knowmeth        =1 if know about birth control 
usemeth         =1 if ever use birth control 
monthfm         month of first marriage 
yearfm          year of first marriage 
agefm           age at first marriage 
idlnchld        'ideal' number of children 
heduc           husband's years of education 
agesq           age^2 
urban           =1 if live in urban area 
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urb_educ        urban*educ 
spirit          =1 if religion == spirit 
protest         =1 if religion == protestant 
catholic        =1 if religion == catholic 
frsthalf        =1 if mnthborn <= 6 
educ0           =1 if educ == 0 
evermarr        =1 if ever married 
educ7           =1 if educ >= 7 
--------------------------------------------------- --------------------------------------  

 
This dataset contains 28 variables on various woman and family characteristics. In this exercise, we 
are in particular interested in evaluating the impact of the variable educ7 (taking value 1 if a 
woman has more than or exactly seven years of education and 0 otherwise) on the number of family 
children (children). Several conditioning (or confounding) observable factors are included in the 

dataset, such as: the age of the woman (age), whether or not the family owns a TV (tv), whether 

or not the woman lives in a city (urban), and so forth. In order to inquiry into the relation between 
education and fertility and according to Wooldridge (2002, example 18.3, p. 624) we estimate the 
following specification for each of the five models implemented by ivtreatreg: 
 
set more off 
xi: ivtreatreg  children  educ7 age agesq evermarr urban electric t v  ,   /// 
hetero(age agesq evermarr urban) iv(frsthalf) model (modeltype ) graphic 

 
As proposed by Wooldridge (2002) this specification adopts - as instrumental variable - the 
covariate frsthalf taking value 1 if the woman was born in the first six month of the year and 

zero otherwise. This variable is (partially) correlated with educ7, but should not have any direct 
relation with the number of family children. 

The simple difference-in-mean estimator (the mean of children in the group of more 
educated women, the treated ones, minus the mean of children in the group of less educated women, 
the untreated ones) is -1.77 with a t-value of -28.46. It means that more educated women show – 
without ceteris paribus conditions – about two children less than lower educated ones. By adding 
confounding factors in the regression specification, we get the OLS estimate of ATE that, again in 
absence of heterogeneous treatment, is -0.394 with a t-value of -7.94: it is still significant, but the 
magnitude, as expected, reduces considerably compared to the difference-in-mean estimation thus 
showing that confounders are relevant. When we consider OLS estimation with heterogeneity, we 
get an ATE equal to 0.67 still significant at 1% (see column on CF-OLS in Table 4).  

When we consider IV estimation, results change dramatically. As working example of how 
to use ivtreatreg, we estimate previous specification in the case of probit-2sls (with 
heterogeneous treatment response). The main outcome is reported in Table 2, where both results 
from the probit first-step and the IV regression of the second-step are set out. Results on the probit 
show that frsthalf is partially fairly correlated with educ7, thus it can be reliably used as 

instrument for this variable. Step 2 shows that the ATE (again, the coefficient of educ7) is no 
more significant and, above all, it changes the sign by becoming positive and equal to 0.30. 
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Table 2. Results form ivtreateg  when probit-2SLS is the specified model and treatment heterogeneous 
response is assumed.   
--------------------------------------------------- -------------------------------------- 
Step 1. Probit regression                         N umber of obs   =       4358 
                                                  L R chi2(7)      =    1130.84 
                                                  P rob > chi2     =     0.0000 
Log likelihood =  -2428.384                       P seudo R2       =     0.1889 
 
--------------------------------------------------- -------------------------------------- 
       educ7 |      Coef.   Std. Err.      z    P>| z|     [95% Conf. Interval] 
-------------+------------------------------------- -------------------------------------- 
    frsthalf |  -.2206627   .0418563    -5.27   0.0 00    -.3026995   -.1386259 
         age |  -.0150337   .0174845    -0.86   0.3 90    -.0493027    .0192354 
       agesq |  -.0007325   .0002897    -2.53   0.0 11    -.0013003   -.0001647 
    evermarr |  -.2972879   .0486734    -6.11   0.0 00     -.392686   -.2018898 
       urban |   .2998122   .0432321     6.93   0.0 00     .2150789    .3845456 
    electric |   .4246668   .0751255     5.65   0.0 00     .2774235      .57191 
          tv |   .9281707   .0977462     9.50   0.0 00     .7365915     1.11975 
       _cons |    1.13537   .2440057     4.65   0.0 00     .6571273    1.613612 
--------------------------------------------------- -------------------------------------- 
Step 2. Instrumental variables (2SLS) regression 
 
      Source |       SS       df       MS              Number of obs =    4358 
-------------+------------------------------           F( 11,  4346) =  448.51 
       Model |  10198.4139    11  927.128534           Prob > F      =  0.0000 
    Residual |  11311.6182  4346  2.60276536           R-squared     =  0.4741 
-------------+------------------------------           Adj R-squared =  0.4728 
       Total |  21510.0321  4357  4.93689055           Root MSE      =  1.6133 
 
--------------------------------------------------- -------------------------------------- 
    children |      Coef.   Std. Err.      t    P>| t|     [95% Conf. Interval] 
-------------+------------------------------------- -------------------------------------- 
       educ7 |   .3004007   .4995617     0.60   0.5 48    -.6789951    1.279797 
     _ws_age |  -.8428913   .1368854    -6.16   0.0 00    -1.111256   -.5745262 
   _ws_agesq |    .011469   .0019061     6.02   0.0 00      .007732    .0152059 
_ws_evermarr |  -.8979833   .2856655    -3.14   0.0 02    -1.458033   -.3379333 
   _ws_urban |   .4167504   .2316103     1.80   0.0 72     -.037324    .8708247 
         age |    .859302   .0966912     8.89   0.0 00      .669738    1.048866 
       agesq |    -.01003   .0012496    -8.03   0.0 00    -.0124799   -.0075801 
    evermarr |   1.253709   .1586299     7.90   0.0 00     .9427132    1.564704 
       urban |  -.5313325   .1379893    -3.85   0.0 00     -.801862    -.260803 
    electric |  -.2392104   .1010705    -2.37   0.0 18      -.43736   -.0410608 
          tv |  -.2348937   .1478488    -1.59   0.1 12    -.5247528    .0549653 
       _cons |   -13.7584   1.876365    -7.33   0.0 00    -17.43704   -10.07977 
--------------------------------------------------- -------------------------------------- 
Instrumented:  educ7 _ws_age _ws_agesq _ws_evermarr  _ws_urban 
Instruments:   age agesq evermarr urban electric tv  G_fv _z_age _z_agesq 
               _z_evermarr _z_urban 
--------------------------------------------------- -------------------------------------- 
 

This result is in line with the IV estimation obtained by Wooldridge. Nevertheless, having assumed 
heterogeneous response to treatment allows now to calculate also the ATET and ATENT and to 
inspect into the cross-unit distribution of these effects. First of all, ivtreateg  returns these 
parameters as scalars (along with treated and untreated sample size):     
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. return list 
scalars: 
          r(N_untreat) =  1937 
            r(N_treat) =  2421 
              r(N_tot) =  4358 
              r(atent) =  -.4468834318603838 
               r(atet) =  .898290019555276 
                r(ate) =  .3004007408742051 
 

In order to get the standard errors for testing ATET and ATENT significance, a bootstrap procedure 
can be easily implemented as follows:  

 
. xi: bootstrap atet=r(atet) atent=r(atent), rep(10 0): /// 
> ivtreatreg  children  educ7 age agesq evermarr urban electric t v  , /// 
> hetero(age agesq evermarr urban) iv(frsthalf) mod el(probit-2sls) 

 

Table 3 shows the result. As it can be immediate to see, both ATET and ATENT are not significant 
and show values quite different but not too much far from that of ATE.   
 
 Table 3. Bootstrap standard errors for ATET(x) and ATENT(x) using ivtreateg  with model probit-2sls.  
--------------------------------------------------- -------------------------------------- 
Bootstrap results                               Num ber of obs      =      4358 
                                                Rep lications       =       100 
 

command:  ivtreatreg children educ7 age agesq evermarr urban electric tv ,  
          hetero(age agesq evermarr urban) iv(frsth alf) model(probit-2sls) 
 

         atet:  r(atet) 
        atent:  r(atent) 
--------------------------------------------------- -------------------------------------- 
             |   Observed   Bootstrap                         Normal-based 
             |      Coef.   Std. Err.      z    P>| z|     [95% Conf. Interval] 
-------------+------------------------------------- -------------------------------------- 
        atet |     .89829   .5488267     1.64   0.1 02    -.1773905    1.973971 
       atent |  -.4468834   .4124428    -1.08   0.2 79    -1.255257    .3614897 
--------------------------------------------------- -------------------------------------- 

 
Furthermore, a simple check should show that ATE = ATET P(w=1) + ATENT P(w=0): 
 
. di "ATE= " (r(N_treat)/r(N_tot))*r(atet)+(r(N_untreat)/r(N_tot))*r(atent) 
ATE= .30040086 

 
that confirms the expected result. Finally, we may analyze the distribution of ATE(x), ATET(x) and 
ATENT(x) in this case and Figure 2 shows the result.  
 
 
 
 
 
 
 
 
 

 



22 

Figure 1. Distribution of ATE(x), ATET(x) and ATENT (x) in model probit-2sls. 

 
 
 
What emerges is that ATET(x) shows a substantially uniform distribution, while both ATE(x) and 
ATENT(x) a distribution more concentrated on negative values. In particular ATENT(x) shows the 
highest modal value around -2.2 children, thus predicting that less educated women would have 
been less fertile if they had been more educated.       
 Table 4 shows ATE results for all the five models, and also for the simple “Difference-in-
Mean” (t-test). The ATE obtained by IV methods is always not significant, but it has a positive 

sign only for probit-2sls. The rest of ATEs present always negative sign: it means that more 

educated women would have been more fertile if they had been less educated. The case of heckit 
is a little more puzzling as the result is significant and very close to the difference-in-mean 
estimation that is highly suspected to be bias. This could be due to the fact that the identification 
condition of heckit are not met in this dataset. 
 
Table 4. Estimation of the ATE for the five models estimated by ivtreatreg.  
--------------------------------------------------- ------------------------------------------------- 
Variable     |     T-TEST       CF-OLS       PROBIT -OLS     DIRECT-2SLS    PROBIT_2SLS     HECKIT 
-------------+------------------------------------- ------------------------------------------------- 
       educ7 |    -1.770***    -0.372***                   -1.044          0.300          -1.915***   
             |     0.06219      0.05020                     0.66626        0.49956         0.39871   
             |    -28.46       -7.42                       -1.57           0.60           -4.80   
        G_fv |                               -0.113 95                                       
             |                                0.503 30                                       
             |                               -0.23                                       
--------------------------------------------------- ------------------------------------------------- 
                                                                          legend: b/se/t 

 

Figure 2, finally, shows the plot of the average treatment effect distribution for each method. By 

and large, these distributions follow a similar pattern, although direct-2sls and heckit show 

some appreciable differences. The heckit, in particular, shows a pattern very different with a 

strong demarcation between the plot of treated and untreated units. As such, it seems not to a 

reliable estimation procedure and this should deserve further inspection. Observe, finally, that the 

distributions for direct-2sls are largely more uniform than in the other cases where a strong 

left-side inflation dominates with the ATENT(x) more concentrated on negative values that 
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ATET(x) on positive ones. What this might mean? It seems that the counterfactual condition of 

these women is not the same: on average, if a less educated woman became more educated, then 

their fertility would decrease more than the increase in fertility of more educated women becoming 

(in a virtual sense) less educated.        
 

Figure 2. Distribution of ATE(x), ATET(x) and ATENT (x) for the five models estimated by ivtreatreg . 
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