Multilevel Regression and Poststratification in Stata

Maurizio Pisati and Valeria Glorioso

Department of Sociology and Social Research University of Milano-Bicocca (Italy) maurizio.pisati@unimib.it v.glorioso@campus.unimib.it

> 7th Italian Stata Users Group meeting Bologna, November 11-12, 2010

Outline

1 Introduction The problem The solution

Outline

1 Introduction The problem The solution

2 Program

Outline

1 Introduction The problem The solution

2 Program

3 Simulations

Outline

- 1 Introduction The problem The solution
- 2 Program
- **3** Simulations
- 4 Conclusion

Outline

- 1 Introduction The problem The solution
- 2 Program
- **3** Simulations
- 4 Conclusion
- **6** References

Introduction Program Simulations Conclusion References The problem The solution

INTRODUCTION

The problem The solution

A common research objective

• Sometimes social scientists are interested in determining whether, and to what extent, the distribution of a given variable of interest – which we will call the *criterion variable* and denote by symbol Y — varies across the categories of a second variable — which we will call the *discriminant variable* and denote by symbol D

The problem The solution

A common research objective

- Sometimes social scientists are interested in determining whether, and to what extent, the distribution of a given variable of interest – which we will call the *criterion variable* and denote by symbol Y — varies across the categories of a second variable — which we will call the *discriminant variable* and denote by symbol D
- Without loss of generality, *D* can be taken to represent either a single categorical variable or the combination of two or more categorical variables

The problem The solution

A common research objective

• The (conditional) distribution of Y within each category d of D can be described as follows:

$$Y_d \sim f(\theta_d, \phi_d) \quad \text{for } d = 1, \dots, J$$

where $f(\cdot)$ denotes a generic probability distribution; θ_d denotes the expected value of the distribution; and ϕ_d denotes one or more ancillary parameters of the distribution (e.g., its variance)

The problem The solution

A common research objective

• For the sake of simplicity, let us focus on the expected value of Y, so that our goal is to determine whether, and to what extent, the expected value of Y varies across the J categories of D

The problem The solution

A common research objective

- For the sake of simplicity, let us focus on the expected value of Y, so that our goal is to determine whether, and to what extent, the expected value of Y varies across the J categories of D
- In terms of regression analysis, this amounts to estimating the *J* possible values of the regression function E(Y|D = d), i.e., $E(Y|D = 1) \equiv \theta_1$, $E(Y|D = 2) \equiv \theta_2$, ..., $E(Y|D = J) \equiv \theta_J$

The problem The solution

A common research objective

- For the sake of simplicity, let us focus on the expected value of Y, so that our goal is to determine whether, and to what extent, the expected value of Y varies across the J categories of D
- In terms of regression analysis, this amounts to estimating the *J* possible values of the regression function E(Y|D = d), i.e., $E(Y|D = 1) \equiv \theta_1$, $E(Y|D = 2) \equiv \theta_2$, ..., $E(Y|D = J) \equiv \theta_J$
- Let us denote our estimand i.e., our quantity of interest by $\mathbf{\theta} \equiv \{\theta_d; d = 1, \dots, J\}$

The problem The solution

Estimating $\boldsymbol{\theta}$

• How do we get accurate – i.e., precise and unbiased – estimates of θ ?

The problem The solution

Estimating $\boldsymbol{\theta}$

- How do we get accurate i.e., precise and unbiased estimates of θ ?
- For the sake of simplicity, let us suppose that (a) observations are sampled from a given target population, and (b) the data of interest are collected without measurement error, so that the only source of random estimation error is the sampling variance, and the only (possible) source of systematic estimation error is the selection bias

The problem The solution

Estimating $\boldsymbol{\theta}$

- How do we get accurate i.e., precise and unbiased estimates of θ ?
- For the sake of simplicity, let us suppose that (a) observations are sampled from a given target population, and (b) the data of interest are collected without measurement error, so that the only source of random estimation error is the sampling variance, and the only (possible) source of systematic estimation error is the selection bias
- The expression "selection bias" is used here as a shorthand for the sum of coverage bias, nonresponse bias, and sampling bias (Groves 1989)

The problem The solution

Estimating $\boldsymbol{\theta}$

• The standard ML estimator of each element θ_d of θ is:

$$\hat{\theta}_d \equiv E(\widehat{Y|D} = d) = \frac{\sum_{i=1}^{n_d} Y_i}{n_d}$$

where n_d denotes the number of valid sample observations within category d of variable D

The problem The solution

Estimating $\boldsymbol{\theta}$

• When n_d is small, $\hat{\theta}_d$ tends to be very unprecise, i.e., to generate highly variable estimates of θ_d

The problem The solution

Estimating $\boldsymbol{\theta}$

- When n_d is small, $\hat{\theta}_d$ tends to be very unprecise, i.e., to generate highly variable estimates of θ_d
- The accuracy of $\hat{\theta}_d$ decreases further if the data object of analysis are affected by selection bias, i.e., if the valid observations are a nonrandom sample of the target population *and* the process of selection into the sample is associated with one or more variables that are also associated with variable Y

The problem The solution

Here's Mr. P

• For all those cases where the number of valid observations within one or more categories of D is small and/or collected data are affected by selection bias, relatively accurate estimates of θ can be obtained by using a proper combination of multilevel regression modeling and poststratification (henceforth MRP)

The problem The solution

Here's Mr. P

- For all those cases where the number of valid observations within one or more categories of D is small and/or collected data are affected by selection bias, relatively accurate estimates of θ can be obtained by using a proper combination of multilevel regression modeling and poststratification (henceforth MRP)
- This approach has been devised by Andrew Gelman and colleagues (Gelman and Little 1997; Park, Gelman and Bafumi 2004; Park, Gelman and Bafumi 2006; Gelman and Hill 2007) and recently elaborated on by Kastellec, Lax and Phillips (Lax and Phillips 2009a; Lax and Phillips 2009b; Kastellec, Lax and Phillips 2010)

The problem The solution

The MRP estimator

• The MRP estimator of θ – which we will denote by $\tilde{\theta}$ – can be described as a four-step procedure as follows:

The problem The solution

The MRP estimator

• The MRP estimator of θ – which we will denote by $\tilde{\theta}$ – can be described as a four-step procedure as follows:

• **First:** Identify one or more variables that might possibly be responsible for selection bias. Without loss of generality, we will treat the full cross-classification of these variables as a single categorical variable, which we will denote by *G*

The problem The solution

The MRP estimator

• Second: Define the new estimand $\gamma \equiv \{\gamma_{d,g}; d = 1, \dots, J; g = 1, \dots, K\}$, where $\gamma_{d,g} \equiv E(Y|D = d, G = g)$; d indexes the J categories of variable D as above; and g indexes the K categories of variable G

The problem The solution

The MRP estimator

- Second: Define the new estimand $\gamma \equiv \{\gamma_{d,g}; d = 1, \dots, J; g = 1, \dots, K\}$, where $\gamma_{d,g} \equiv E(Y|D = d, G = g)$; d indexes the J categories of variable D as above; and g indexes the K categories of variable G
- Third: Use a properly specified multilevel regression model to estimate γ

The problem The solution

The MRP estimator

• Fourth: Compute the estimate of each element θ_d of θ as a weighted sum of the proper subset of $\hat{\gamma}$:

$$\tilde{\theta}_d = \sum_{g=1}^G \hat{\gamma}_{d,g} w_{g|d}$$

where $w_{g|d} = N_{g,d}/N_d$; N_d denotes the number of members of the target population who belong in category d of variable D; and $N_{g,d}$ denotes the number of members of the target population who belong in category d of variable Dand in category g of variable G

The problem The solution

The MRP estimator: Advantages

• The use of multilevel regression modeling (step 3 above) helps to increase precision

The problem The solution

The MRP estimator: Advantages

- The use of multilevel regression modeling (step 3 above) helps to increase precision
- If variable G is carefully defined, poststratification (step 4 above) helps to decrease bias

The problem The solution

The MRP estimator: Advantages

- The use of multilevel regression modeling (step 3 above) helps to increase precision
- If variable G is carefully defined, poststratification (step 4 above) helps to decrease bias
- In sum, we expect MRP to be a relatively accurate estimator of $\boldsymbol{\theta}$

The problem The solution

The MRP estimator: Disadvantages

• We need to have population data for the full $D \times G$ cross-classification; this might limit the definition of G

The problem The solution

The MRP estimator: Disadvantages

- We need to have population data for the full $D \times G$ cross-classification; this might limit the definition of G
- To get good estimates of γ , the multilevel regression model must be specified very carefully – but this caveat applies to any kind of regression model

Program

Using mrp: An example Example dataset

. describe					
Contains dat obs: vars: size:	a from /Us 1,000 10 17,000 (sers/Tonzo (99.9% of n	lo/Lavori/MRP/ nemory free)	'Simul/xsamp.dta 16 Oct 2010 09:13	
variable nam	storage e type	display format	value label	variable label	
region area	byte byte	%21.0g %17.0g	reg area	Region of residence Area of residence	
relmar sex	float byte	%4.1f %9.0g	sex	Religious marriages () Sex	%)
age edu	byte byte	%9.0g %21.0g	age educ	Age Level of education	
sex_age sex_edu age_edu	byte byte byte	%12.0g %28.0g %27.0g	sex_age sex_edu age_edu	Interaction sex*age Interaction sex*edu Interaction age*edu	
church	byte	%9.0g	church	Church attendance	

Sorted by:

Note: dataset has changed since last saved

Maurizio Pisati and Valeria Glorioso

Using mrp: An example Cross-tabulation $D \times Y$ - Absolute frequencies

. tab region church

	Church attendance				
Region of residence	Irregular	Regular	Total		
Piemonte	63	34	97		
Lombardia	58	37	95		
Trentino-Alto Adige	40	19	59		
Veneto	33	29	62		
Friuli-Venezia Giulia	30	9	39		
Liguria	37	14	51		
Emilia-Romagna	32	19	51		
Toscana	47	11	58		
Umbria	24	9	33		
Marche	26	9	35		
Lazio	39	25	64		
Abruzzo	21	13	34		
Molise	16	11	27		
Campania	36	27	63		
Puglia	35	26	61		
Basilicata	19	7	26		
Calabria	16	17	33		
Sicilia	36	25	61		
Sardegna	38	13	51		
Total	646	354	1,000		

Maurizio Pisati and Valeria Glorioso

Using mrp: An example E(Y|D = d) – Standard ML estimator and MRP estimator

. tab region church, row nofre

	Church at	tendance	
Region of residence	Irregular	Regular	Total
Piemonte	64.95	35.05	100.00
Lombardia	61.05	38.95	100.00
Trentino-Alto Adige	67.80	32.20	100.00
Veneto	53.23	46.77	100.00
Friuli-Venezia Giulia	76.92	23.08	100.00
Liguria	72.55	27.45	100.00
Emilia-Romagna	62.75	37.25	100.00
Toscana	81.03	18.97	100.00
Umbria	72.73	27.27	100.00
Marche	74.29	25.71	100.00
Lazio	60.94	39.06	100.00
Abruzzo	61.76	38.24	100.00
Molise	59.26	40.74	100.00
Campania	57.14	42.86	100.00
Puglia	57.38	42.62	100.00
Basilicata	73.08	26.92	100.00
Calabria	48.48	51.52	100.00
Sicilia	59.02	40.98	100.00
Sardegna	74.51	25.49	100.00
Total	64.60	35.40	100.00

Maurizio Pisati and Valeria Glorioso

Program

Using mrp: An example E(Y|D=d) – Standard ML estimator and MRP estimator

. tab region church, row nofre

	Church at		
Region of residence	Irregular	Regular	Total
Piemonte	64.95	35.05	100.00
Lombardia	61.05	38.95	100.00
Trentino-Alto Adige	67.80	32.20	100.00
Veneto	53.23	46.77	100.00
Friuli-Venezia Giulia	76.92	23.08	100.00
Liguria	72.55	27.45	100.00
Emilia-Romagna	62.75	37.25	100.00
Toscana	81.03	18.97	100.00
Umbria	72.73	27.27	100.00
Marche	74.29	25.71	100.00
Lazio	60.94	39.06	100.00
Abruzzo	61.76	38.24	100.00
Molise	59.26	40.74	100.00
Campania	57.14	42.86	100.00
Puglia	57.38	42.62	100.00
Basilicata	73.08	26.92	100.00
Calabria	48.48	51.52	100.00
Sicilia	59.02	40.98	100.00
Sardegna	74.51	25.49	100.00
Total	64.60	35.40	100.00

. mr	p church region using PostStrat.dta,	111
>	yvartype(categorical)	111
>	group(sex age edu)	111
>	psw(N)	111
>	model(linear)	111
>	linpred(c.relmar R.area R.region R.sex_age R.sex_edu	111
>	R.age_edu)	111

- 2
- k.age_eau; percent tableopt(format(%5.1f) row)

Region of residence	Church att Irregular	endance Regular
Piemonte	66.7	33.3
Lombardia	63.1	36.9
Trentino-Alto Adige	66.8	33.2
Veneto	60.4	39.6
Friuli-Venezia Giulia	72.8	27.2
Liguria	71.5	28.5
Emilia-Romagna	71.2	28.8
Toscana	71.6	28.4
Umbria	65.9	34.1
Marche	60.9	39.1
Lazio	67.5	32.5
Abruzzo	59.6	40.4
Molise	58.6	41.4
Campania	59.2	40.8
Puglia	56.9	43.1
Basilicata	58.8	41.2
Calabria	57.6	42.4
Sicilia	59.7	40.3
Sardegna	69.5	30.5
Total	64.2	35.8

SIMULATIONS

Some preliminary simulations: Scenarios

• Scenario 1: n = 1,000; no selection bias

Some preliminary simulations: Scenarios

- Scenario 1: n = 1,000; no selection bias
- Scenario 2: n = 2,000; response rate $\approx 50\%$; selection bias due to differential nonresponse rate by sex, age, and educational level

Some preliminary simulations: Scenarios

- Scenario 1: n = 1,000; no selection bias
- Scenario 2: n = 2,000; response rate $\approx 50\%$; selection bias due to differential nonresponse rate by sex, age, and educational level
- 1,000 simulations for each scenario

Simulations results – Scenario 1 Mean n_d (n), θ_d (True), empirical standard error of $\hat{\theta}_d$ (Std), e.s.e. of $\tilde{\theta}_d$ (MrP)

Region	n	True	Std	MrP	MrP/Std %
Piemonte	93	33.2	4.9	2.6	52.9
Lombardia	95	37.9	4.9	2.9	59.9
Trentino-Alto Adige	51	45.3	6.8	5.4	80.4
Veneto	64	43.7	6.1	4.9	79.0
Friuli-Venezia Giulia	37	29.5	7.3	4.1	56.1
Liguria	38	26.7	7.3	3.6	49.8
Emilia-Romagna	59	25.7	5.8	3.5	59.5
Toscana	62	25.3	5.6	3.4	60.8
Umbria	30	30.3	8.4	3.9	45.9
Marche	39	38.8	7.8	3.3	42.5
Lazio	57	31.4	6.3	2.7	43.4
Abruzzo	43	38.8	7.8	2.9	37.3
Molise	29	39.6	9.4	2.8	29.5
Campania	60	43.0	6.5	2.9	45.1
Puglia	60	42.8	6.5	3.3	50.6
Basilicata	32	39.8	8.8	2.9	33.0
Calabria	46	40.0	7.1	3.1	43.1
Sicilia	61	40.9	6.2	2.7	44.5
Sardegna	44	31.2	6.9	2.6	37.3

Maurizio Pisati and Valeria Glorioso

Simulations results – Scenario 1 θ_d (True), bias of $\hat{\theta}_d$ (Std), bias of $\tilde{\theta}_d$ (MrP)

Region	True	Std	MrP
Piemonte	33.2	-0.2	0.5
Lombardia	37.9	0.1	-0.8
Trentino-Alto Adige	45.3	-0.1	-6.0
Veneto	43.7	0.1	-0.3
Friuli-Venezia Giulia	29.5	0.4	0.1
Liguria	26.7	-0.2	0.8
Emilia-Romagna	25.7	0.1	1.7
Toscana	25.3	0.1	1.9
Umbria	30.3	-0.1	1.5
Marche	38.8	0.1	-0.2
Lazio	31.4	0.2	1.5
Abruzzo	38.8	0.1	1.2
Molise	39.6	0.3	1.4
Campania	43.0	-0.4	-2.2
Puglia	42.8	-0.0	-0.5
Basilicata	39.8	0.1	1.0
Calabria	40.0	-0.1	1.4
Sicilia	40.9	0.0	-0.7
Sardegna	31.2	0.1	0.4

Maurizio Pisati and Valeria Glorioso

Simulations results – Scenario 1 θ_d (True), root mean square error of $\hat{\theta}_d$ (Std), rmse of $\tilde{\theta}_d$ (MrP)

Region	True	Std	MrP	MrP/Std %
Piemonte	33.2	4.9	2.7	54.0
Lombardia	37.9	4.9	3.0	62.3
Trentino-Alto Adige	45.3	6.8	8.1	120.0
Veneto	43.7	6.1	4.9	79.1
Friuli-Venezia Giulia	29.5	7.4	4.1	56.0
Liguria	26.7	7.3	3.7	51.0
Emilia-Romagna	25.7	5.8	3.9	66.0
Toscana	25.3	5.6	3.9	69.7
Umbria	30.3	8.4	4.2	49.4
Marche	38.8	7.8	3.3	42.6
Lazio	31.4	6.3	3.1	49.3
Abruzzo	38.8	7.8	3.2	40.5
Molise	39.6	9.4	3.1	33.0
Campania	43.0	6.5	3.7	56.4
Puglia	42.8	6.5	3.3	51.1
Basilicata	39.8	8.8	3.1	34.9
Calabria	40.0	7.1	3.4	47.3
Sicilia	40.9	6.2	2.8	45.8
Sardegna	31.2	6.9	2.6	37.8

Maurizio Pisati and Valeria Glorioso

Simulations results – Scenario 2 Mean n_d (n), θ_d (True), empirical standard error of $\hat{\theta}_d$ (Std), e.s.e. of $\tilde{\theta}_d$ (MrP)

Region	n	True	Std	MrP	MrP/Std %
Piemonte	89	33.2	5.0	2.7	53.5
Lombardia	93	37.9	5.2	3.0	58.1
Trentino-Alto Adige	48	45.3	7.4	5.8	77.5
Veneto	61	43.7	6.6	5.1	77.5
Friuli-Venezia Giulia	36	29.5	7.9	4.3	53.6
Liguria	39	26.7	7.2	3.6	50.3
Emilia-Romagna	60	25.7	6.0	3.5	58.0
Toscana	62	25.3	5.8	3.5	59.8
Umbria	31	30.3	8.6	4.1	47.7
Marche	38	38.8	7.9	3.5	44.6
Lazio	57	31.4	6.7	2.8	42.4
Abruzzo	42	38.8	8.1	2.9	35.6
Molise	28	39.6	9.4	2.9	30.4
Campania	58	43.0	6.7	3.0	45.1
Puglia	56	42.8	6.8	3.4	49.9
Basilicata	30	39.8	9.6	3.0	31.4
Calabria	44	40.0	7.7	3.2	41.5
Sicilia	57	40.9	6.6	3.0	44.8
Sardegna	40	31.2	7.5	2.8	36.9

Maurizio Pisati and Valeria Glorioso

Simulations results – Scenario 2 θ_d (True), bias of $\hat{\theta}_d$ (Std), bias of $\tilde{\theta}_d$ (MrP)

Region	True	Std	MrP
Piemonte	33.2	4.2	1.0
Lombardia	37.9	3.5	-0.5
Trentino-Alto Adige	45.3	2.8	-6.7
Veneto	43.7	3.4	-0.7
Friuli-Venezia Giulia	29.5	3.3	-0.1
Liguria	26.7	3.6	0.9
Emilia-Romagna	25.7	3.2	1.7
Toscana	25.3	3.6	1.9
Umbria	30.3	3.4	2.0
Marche	38.8	3.8	0.4
Lazio	31.4	3.8	1.7
Abruzzo	38.8	4.1	2.1
Molise	39.6	4.5	2.4
Campania	43.0	4.5	-1.2
Puglia	42.8	4.7	0.7
Basilicata	39.8	4.6	2.1
Calabria	40.0	4.5	2.5
Sicilia	40.9	4.1	0.2
Sardegna	31.2	5.2	0.9

Maurizio Pisati and Valeria Glorioso

Simulations results – Scenario 2 θ_d (True), root mean square error of $\hat{\theta}_d$ (Std), rmse of $\tilde{\theta}_d$ (MrP)

Region	True	Std	MrP	MrP/Std %
Piemonte	33.2	6.6	2.9	43.9
Lombardia	37.9	6.3	3.1	48.9
Trentino-Alto Adige	45.3	7.9	8.8	111.1
Veneto	43.7	7.4	5.1	69.6
Friuli-Venezia Giulia	29.5	8.6	4.3	49.5
Liguria	26.7	8.1	3.8	46.5
Emilia-Romagna	25.7	6.8	3.9	57.3
Toscana	25.3	6.8	4.0	58.3
Umbria	30.3	9.2	4.6	49.3
Marche	38.8	8.7	3.5	40.5
Lazio	31.4	7.7	3.3	42.7
Abruzzo	38.8	9.0	3.6	39.4
Molise	39.6	10.4	3.7	35.6
Campania	43.0	8.1	3.3	40.5
Puglia	42.8	8.3	3.5	42.1
Basilicata	39.8	10.7	3.7	34.4
Calabria	40.0	8.9	4.0	45.5
Sicilia	40.9	7.8	3.0	38.2
Sardegna	31.2	9.1	2.9	31.8

Maurizio Pisati and Valeria Glorioso

Some preliminary simulations: Results

• Scenario 1: compared to the standard ML estimator, the MRP estimator is more precise, even when n_d is relatively small

Some preliminary simulations: Results

- Scenario 1: compared to the standard ML estimator, the MRP estimator is more precise, even when n_d is relatively small
- Scenario 2: compared to the standard ML estimator, the MRP estimator is both more precise and less biased

CONCLUSION

Conclusion

• mrp is still at a very preliminary stage and it will take some time before it reaches a publishable form

Conclusion

- **mrp** is still at a very preliminary stage and it will take some time before it reaches a publishable form
- A second version of mrp will be submitted for presentation at the 2011 North American Stata Users Group Meeting

Conclusion

- **mrp** is still at a very preliminary stage and it will take some time before it reaches a publishable form
- A second version of mrp will be submitted for presentation at the 2011 North American Stata Users Group Meeting
- We also plan to write an article describing mrp and to submit it to *The Stata Journal*

References

References

- Gelman, A. and J. Hill. 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge: Cambridge University Press.
- Gelman, A. and T.C. Little. 1997. Poststratification into many categories using hierarchical logistic regression. *Survey Methodology* 23: 127–135.
- Groves, R.M. 1989. Survey Errors and Survey Costs. New York: Wiley.
- Kastellec, J., Lax, J.R. and J.H. Phillips. 2010. Public opinion and Senate confirmation of Supreme Court nominees. *Journal of Politics* 72: 767–784.
- Lax, J.R. and J.H. Phillips. 2009a. How should we estimate public opinion in the States?. *American Journal of Political Science* 53: 107–121.
- Lax, J.R. and J.H. Phillips. 2009b. Gay rights in the States: Public opinion and policy responsiveness. *American Political Science Review* 103: 367–386.
- Park, D.K., Gelman, A. and J. Bafumi. 2004. Bayesian multilevel estimation with poststratification: State-level estimates from national polls. *Political Analysis* 12: 375–385.
- Park, D.K., Gelman, A. and J. Bafumi. 2006. State level opinions from national surveys: Poststratification using multilevel logistic regression. In *Public Opinion in State Politics*. Ed. J.E. Cohen. Stanford, CA: Stanford University Press, 209–228.