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Introduction
I In recent years, machine learning (ML) has increasingly been

leveraged in social sciences and economics.
I One central question is how ML can be used for causal

inference. Two major approaches:
1. Exploring treatment effect heterogeneity (Causal Forests, GRF,

GATES)
2. Robust inference in the presence of high-dimensional controls

and/or instruments

←− Today’s focus

I We introduce ddml for Double-debiased machine learning and
pystacked for Stacking (a meta-learning algorithm).

I Requirement for fast ML implementations: Stata’s Python
integration means that we can utilize Python’s ML modules.

1 / 25



Introduction
I In recent years, machine learning (ML) has increasingly been

leveraged in social sciences and economics.
I One central question is how ML can be used for causal

inference. Two major approaches:
1. Exploring treatment effect heterogeneity (Causal Forests, GRF,

GATES)
2. Robust inference in the presence of high-dimensional controls

and/or instruments ←− Today’s focus

I We introduce ddml for Double-debiased machine learning and
pystacked for Stacking (a meta-learning algorithm).

I Requirement for fast ML implementations: Stata’s Python
integration means that we can utilize Python’s ML modules.

1 / 25



Introduction
I In recent years, machine learning (ML) has increasingly been

leveraged in social sciences and economics.
I One central question is how ML can be used for causal

inference. Two major approaches:
1. Exploring treatment effect heterogeneity (Causal Forests, GRF,

GATES)
2. Robust inference in the presence of high-dimensional controls

and/or instruments ←− Today’s focus
I We introduce ddml for Double-debiased machine learning and

pystacked for Stacking (a meta-learning algorithm).
I Requirement for fast ML implementations: Stata’s Python

integration means that we can utilize Python’s ML modules.

1 / 25



Background
Motivating example. The partial linear model:

yi = θdi︸︷︷︸
causal part

+ g(xi)︸ ︷︷ ︸
nuisance

+εi .

How do we account for confounding factors xi? — The standard
approach is to assume linearity g(xi) = x ′i β and consider
alternative combinations of controls.

Problems:
I Non-linearity & unknown interaction effects
I High-dimensionality: we might have “many” controls
I We don’t know which controls to include
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Background
Motivating example. The partial linear model:

yi = θdi︸︷︷︸
causal part

+ g(xi)︸ ︷︷ ︸
nuisance

+εi .

Post-double selection (Belloni, Chernozhukov, and Hansen, 2014)
and post-regularization (Chernozhukov, Hansen, and Spindler,
2015) provide data-driven solutions for this setting.

Both “double” approaches rely on the sparsity assumption and use
two auxiliary lasso regressions: yi  xi and di  xi . lasso PDS

Related approaches exist for optimal IV estimation (Belloni et al.,
2012) and/or IV with many controls (Chernozhukov, Hansen, and
Spindler, 2015).
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Background
These methods have been implemented for Stata in pdslasso
(Ahrens, Hansen, and Schaffer, 2019), dsregress (StataCorp)
and R (hdm; Chernozhukov, Hansen, and Spindler, 2016).

A quick example using AJR (2001):
. clear
. use https://statalasso.github.io/dta/AJR.dta
.
. pdslasso logpgp95 avexpr ///

(lat_abst edes1975 avelf temp* humid* steplow-oilres)
.
. ivlasso logpgp95 (avexpr=logem4) ///

(lat_abst edes1975 avelf temp* humid* steplow-oilres), ///
partial(logem4)

Example 1 (pdslasso) allows for high-dimensional controls.
Example 2 (ivlasso) treats avexpr as endogenous and exploits
logem4 as an instrument. (More details in the pds/ivlasso help
file.)
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Motivation
There are advantages of relying on lasso:
I intuitive assumption of (approximate) sparsity
I computationally relatively cheap (due to plugin lasso penalty;

no cross-validation needed)
I Linearity has its advantages (e.g. extension to fixed effects;

Belloni et al., 2016)

But there are also drawbacks:
I What if the sparsity assumption is not plausible?
I There is a wide set of machine learners at disposable—lasso

might not be the best choice.
I Lasso requires careful feature engineering to deal with

non-linearity & interaction effects.
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Our contribution
Double-debiased Machine Learning (DDML) due to Chernozhukov,
Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018)
has been suggested as an extension to Post-double selection.
DDML allows for a broad set of machine learners.

We introduce ddml for Stata:
I Compatible with various ML programs in Stata (e.g. lassopack,

pylearn, randomforest).
→ Any program with the classical “reg y x” syntax and

post-estimation predict will work.
I Short (one-line) and flexible multi-line version
I Uses Stacking Regression as the default machine learner

(implemented via separate program pystacked)
I 5 models supported: partial linear model, interactive model, LATE,

partial IV model, optimal IV.
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Review of DDML
The partial linear model:

yi = θdi + g(xi) + εi

di = m(xi) + vi

Naive idea: We estimate conditional expectations `(xi) = E [yi |xi ]
and m(xi) = E [di |xi ] using ML and partial out the effect of xi (in
the style of Frisch-Waugh-Lovell):

θ̂DDML =
(
1
n
∑

i
v̂2

i

)−1 1
n
∑

i
v̂i(yi − ˆ̀),

where v̂i = di − m̂i .
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Review of DDML
Yet, there is a problem: The estimation error `(xi)− ˆ̀ and vi may
be correlated due to over-fitting, leading to poor performance.

DDML, thus, relies on cross-fitting. Cross-fitting is sample splitting
with swapped samples.

DDML with the partial linear model
We split the sample in K random folds of equal size denoted by Ik :
I For k = 1, . . . ,K , estimate `(xi) and m(xi) using sample Ick and

form out-of-sample predictions ˆ̀i and m̂i for all i in Ik .
I Construct estimator θ̂ as(

1
n
∑

i
v̂2

i

)−1
1
n
∑

i
v̂i(yi − ˆ̀),

where v̂i = di − m̂i . m̂i and ˆ̀i are the cross-fitted predicted values.
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DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

Interactive model

yi = g(di , xi) + ui E [ui |xi , di ] = 0
zi = m(xi) + vi E [ui |xi ] = 0

As in the Partial Linear Model, we are interested in the ATE, but
do not assume that di (a binary treatment variable) and xi are
separable.

We estimate the conditional expectations E [yi |xi , di = 0] and
E [yi |xi , di = 1] as well as E [di |xi ] using a supervised machine
learner.
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DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

Partial linear IV model

yi = diθ + g(xi) + ui E [ui |xi , zi ] = 0
zi = m(xi) + vi E [vi |xi ] = 0

where the aim is to estimate the average treatment effect θ using
observed instrument zi in the presence of controls xi . We estimate
the conditional expectations E [yi |xi ], E [di |xi ] and E [zi |xi ] using a
supervised machine learner.
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DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

Optimal IV model

yi = diθ + g(xi) + ui

di = h(zi) + m(xi) + vi

where the estimand of interest is θ. The instruments and controls
enter the model through unknown functions g(), h() and f ().

We estimate the conditional expectations E [yi |xi ], E [d̂i |xi ] and
d̂i := E [di |zi , xi ] using a supervised machine learner. The
instrument is then formed as d̂i − Ê [d̂i |xi ] where Ê [d̂i |xi ] denotes
the estimate of E [d̂i |xi ].
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DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

LATE model

yi = µ(xi , zi) + ui E [ui |xi , zi ] = 0
di = m(zi , xi) + vi E [vi |xi , zi ] = 0
zi = p(xi) + ξi E [ξi |xi ] = 0

where the aim is to estimate the local average treatment effect.

We estimate, using a supervised machine learner, the following
conditional expectations: E [yi |xi , zi = 0] and E [yi |xi , zi = 1];
E [D|xi , zi = 0] and E [D|xi , zi = 1]; E [zi |xi ].
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Stacking regression
Which machine learner should we use?

ddml supports a range of ML programs: pylearn, lassopack,
randomforest. — Which one should we use?

We don’t know whether we have a sparse or dense problem; linear
or non-linear; etc.
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Stacking regression
Which machine learner should we use?

We suggest Stacking regression (Wolpert, 1992) as the default
machine learner, which we have implemented in the separate
program pystacked using Python’s scikit learn.

Stacking is an ensemble method that combines multiple base
learners into one model. As the default, we use non-negative least
squares:

w = arg min
wj≥0

n∑
i=1

(
yi −

M∑
m=1

wm f̂ −i
m (xi)

)2

,

where f̂ −i
m (xi) are cross-validated predictions of base learner m.
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pystacked
pystacked implements stacking regression (Wolpert, 1992) via
scikit learn’s StackingRegressor and StackingClassifier.

Syntax:

pystacked depvar
[
indepvars

] [
if
] [

in
] [

type(string)

methods(string) finalest(string) folds(integer) voting ...
]

methods() list of ML algorithms in any order separated by spaces
type() reg(ress) for regression problems or class(ify) for classification

problems.

pystacked supports lasso, elastic net, random forest, gradient
boosting and support vector machines.

15 / 25
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A brief pystacked example
. insheet using https://statalasso.github.io/dta/housing.csv, comma
(14 vars, 506 obs)
.
. pystacked medv crim-lstat, ///
> type(regress) pyseed(243) method(lassoic rf gradboost)

Method Weight

lassoic 0.0768684
rf 0.0000000
gradboost 0.9231316

The method() argument can be used to specify the base learners.
Here, we use lasso with AIC (lassoic), random forest (rf) and
gradient boosting (gradboost).

Due to the non-negativity constraint some base learners are
assigned a weight of zero. Also note that weights are standardized
to sum to 1.
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Back to DDML
The one-line syntax:

qddml depvar
[
indepvars

] [
(controls)

] [
(endog=instruments)

] [
if
][

in
] [

weight
]
, model(string)

[
cmd(string) cmdopt(string)

kfolds(integer) ...
]

cmd() selects the machine learner (default pystacked). cmdopt()
allows to pass options to the ML program.

Examples:
Partial linear Interactive model IV model Optimal IV model LATE
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qddml example: Partial linear model
qddml is the one-line (‘quick’) version of ddml and uses a syntax
similar to pds/ivlasso.

. use https://statalasso.github.io/dta/AJR.dta, clear

.

. global Y logpgp95

. global X lat_abst edes1975 avelf temp* humid* steplow-oilres

. global D avexpr

.

. qddml $Y $D ($X), model(partial) cmdopt(method(rf gradboost))
DML with Y=m0_y and D=m0_d1:

m0_y Coef. Std. Err. z P>|z| [95% Conf. Interval]

m0_d1 .3391897 .0621291 5.46 0.000 .217419 .4609604
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Extended ddml syntax
Step 1: Initialise ddml and select model:

ddml init model
where model is either ‘partial’, ‘iv’, ‘interactive’, ‘optimaliv’, ‘late’.

Step 2: Add supervised ML programs for estimating conditional
expectations:

ddml eq newvarname
[

, eqopt
]
: command depvar indepvars

[
,

cmdopt
]

where eq selects the conditional expectations to be estimated. command
is a ML program that supports the standard reg y x-type syntax. cmdopt
are specific to that program.

Multiple estimation commands per equation are allowed.
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Extended ddml syntax
Step 3: Cross-fitting

ddml crossfit
[

, kfolds(integer) ...
]

This allows to set the number of folds.

Step 4: Estimation of causal effects

ddml estimate
[

, robust ...
]

Additional auxiliary commands:

ddml describe (describe current model set up), ddml save, ddml use,
ddml export (export in csv format ).
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Extended ddml syntax: Example
. global Y logpgp95
. global X lat_abst edes1975 avelf temp* humid* steplow-oilres
. global D avexpr
.
. *** initialise ddml and select model;
. ddml init partial
.
. *** specify supervised machine learners for E[Y|X] ("yeq") and E[D|X] ("deq")
. * y-equation:
. ddml yeq, gen(pyy): pystacked $Y $X, type(reg) method(rf gradboost)
Equation successfully added.
.
. * d-equation:
. ddml deq, gen(pyd): pystacked $D $X, type(reg) method(rf gradboost)
Equation successfully added.
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Extended ddml syntax: Example (cont’d.)
. *** cross-fitting and display mean-squared prediction error
. ddml crossfit
Model: partial
Number of Y estimating equations: 1
Number of D estimating equations: 1
Cross-fitting equation 1 2
Mean-squared error for y|X:
Name Orthogonalized Command N MSPE

logpgp95 m0_pyy pystacked 64 0.573751
Mean-squared error for D|X:
Name Orthogonalized Command N MSPE

avexpr m0_pyd pystacked 64 1.648804
.
. *** estimation of parameter of interest
. ddml estimate
DML with Y=m0_pyy and D=m0_pyd (N=):

m0_pyy Coef. Std. Err. z P>|z| [95% Conf. Interval]

m0_pyd .3794184 .0569073 6.67 0.000 .2678821 .4909546
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Simulation example
How does DDML perform compared to PDS-lasso?

The simulation is based on an approximate sparse design with
βj = (1/j)2 and p = 100 (which should favor the lasso). DGP
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Replication & transparency
Stata’s Python integration allows for fast computing and to make
use of existing ML programs.

But there are also additional set-up cost and, in particular,
challenges for replications.

We have to set the seed in both Stata (due to randomization of
folds) and Python (due to randomization specific to ML algorithm).

Randomization is involved in the estimation of conditional
expectations. To facilitate transparency and replication, estimated
conditional expectations can be saved for later inspection or use.

We also need to keep track of package versions of all programs
involved (ddml, pystacked, Python, scikit-learn, etc.)
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Summary
I ddml implements Double/Debiased Machine Learning for

Stata:
I Compatible with various ML programs in Stata
I Short (one-line) and flexible multi-line version
I Uses Stacking Regression as the default machine learner;

implemented via separate program pystacked
I 5 models supported

I The advantage to pdslasso is that we can make use of
almost any machine learner.

I But which machine learner should we use? – We suggest
Stacking as it combines multiple ML methods into one
prediction.

I More testing & de-bugging needed; hopefully we can make
ddml available soon (following your feedback)
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qddml example: Interactive model
. webuse cattaneo2, clear
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
.
. global Y bweight
. global D mbsmoke
. global X c.(mmarried mage fbaby medu)#c.(mmarried mage fbaby medu)
.
. qddml $Y $D ($X), model(interactive) cmdopt(method(rf gradboost))
DML with Y0=m0_y, Y1=m0_y and D=m0_d:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

mbsmoke -1533.568 45.91291 -33.40 0.000 -1623.556 -1443.581

Back



qddml example: IV model
. use https://statalasso.github.io/dta/AJR.dta, clear
.
. global Y logpgp95
. global X edes1975 avelf temp* humid* steplow-oilres
. global D avexpr
. global Z logem4
.
. *** now, using one-line command:
. qddml $Y ($X) ($D = $Z), model(iv) cmdopt(method(rf gradboost))
DML with Y=m0_y and D=m0_d1, Z=m0_z1:

m0_y Coef. Std. Err. z P>|z| [95% Conf. Interval]

m0_d1 .8975094 .2329957 3.85 0.000 .4408462 1.354173
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qddml example: LATE
. use "http://fmwww.bc.edu/repec/bocode/j/jtpa.dta",clear
.
. gen lnearnings = log(earnings)
(1,332 missing values generated)
. global Y lnearnings
. global D training
. global Z assignmt
. global X sex-age4554
.
. *** now, do the same using one-line command
. qddml $Y ($X) ($D=$Z), model(late) cmdopt(method(rf gradboost))
DML with Y0=m0_y, Y1=m0_y, D0=m0_d, D1=m0_d:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

training 13.17984 .1269613 103.81 0.000 12.931 13.42868
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Simulation example
Approximate sparsity:

yi = 0.5di + x ′i (cy β) + εi , εi ∼ N(0, 1)
di = x ′i (cdβ) + νi , νi ∼ N(0, 1)

where βj is approximately sparse: βj = (1/j)2. cy and cd are
chosen such that R2

y and R2
d are 0.8 and 0.2, respectively.

N = 500, number of cross-fitting folds=5, p = 100.
Back



The LASSO

The LASSO (Least Absolute Shrinkage and Selection
Operator, Tibshirani, 1996), “`1 norm”.

Minimize: 1
n

n∑
i=1

(
yi − x ′i β

)2 + λ
p∑

j=1
|βj |

There’s a cost to including lots of regressors, and we can reduce
the objective function by throwing out the ones that contribute
little to the fit.

The effect of the penalization is that LASSO sets the β̂js for some
variables to zero. In other words, it does the model selection for us.

In contrast to `0-norm penalization (AIC, BIC) computationally
feasible. Path-wise coordinate descent (‘shooting’) algorithm
allows for fast estimation. Back



Choosing controls: Post-Double-Selection LASSO
Our model is yi = αdi︸︷︷︸

aim

+ β1xi,1 + . . .+ βpxi,p︸ ︷︷ ︸
nuisance

+εi .

I Step 1: Use the LASSO to estimate

yi = β1xi,1 + β2xi,2 + . . .+ βjxi,j + . . .+ βpxi,p + εi ,

i.e., without di as a regressor. Denote the set of LASSO-selected controls
by A.

I Step 2: Use the LASSO to estimate

di = β1xi,1 + β2xi,2 + . . .+ βjxi,j + . . .+ βpxi,p + εi ,

i.e., where the causal variable of interest is the dependent variable.
Denote the set of LASSO-selected controls by B.

I Step 3: Estimate using OLS

yi = αdi + w′
iβ + εi

where wi = A ∪ B, i.e., the union of the selected controls from Steps 1
and 2.
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