xtlhazard: Linear discrete time hazard estimation using Stata

Harald Tauchmann^{1,2,3}

¹FAU, ²RWI, ³CINCH

May 24th 2019

2019 German Stata Users Group Meeting

work in progress

Outline

2 Theory

- 4 Stata Implementation
- 5 Real Data Application

6 Conclusions

Motivation

Hazard models / duration analysis / survival analysis / models for non-repeated events & absorbing states

- » Modelling (directional) transitions
- 1. Continuous time hazard models
 - » Parametric (Weibull, Gompertz, exponential, ...) models (->streg)
 - » Semi-parametric (Cox) models (→stcox)
 - » Not considered in this talk
- 2. Discrete time hazard models
 - » Stacked binary outcome models (probit, logit, ...)

Motivation II

Unobserved individual heterogeneity ("frailty")

- » Random effects
 - Straightforward (integrating out)
 - > No correlation with regressors allowed

» Fixed effects

- Incidental parameters problem
- > Computationally demanding (possibly intractable)

Linear probability model alternative that allows for linear fixed effects estimation?

Does Linear Fixed Effects Estimation Work?

Left-hand-side y_{i1}, \ldots, y_{iT} for unit *i* in panel of length *T*

- » 0, 0, ..., 0, 0, 0, 0 (censored)
- » $0, 0, \ldots, 0, 1, 1, 1$ (\rightarrow no info in second, third, ... 1)
- » 0, 0, . . . , 0, 1 (\rightarrow effectively $T_i \leq T$ obs. if not cens.)

Within-transformed lhs variable (*i* observed T_i periods)

» 0, 0, . . . , 0, 0, 0, 0 (censored)

» $-\frac{1}{T_i}, -\frac{1}{T_i}, \ldots, -\frac{1}{T_i}, \frac{T_i-1}{T_i}$ (not censored)

» Transformation has **little effect** on lhs (at least for large T_i)

First-differenced lhs variable (*i* observed T_i periods)

- » 0,...,0,0,0,0 (censored)
- » 0, . . . , 0, 1 (not censored)
- » (Besides loosing y_{i1}) transformation has **no effect at all** due to $y_{it-1} = 0$

Does Linear Fixed Effects Estimation Work? II

Can transformations that (almost) do not transform the left-hand-side variable eliminate individual heterogeneity?

Implicit answer of the literature seems to be "yes":

- » Miguel et al. (2004, Journal of Political Economy)
- » Ciccone (2011, AEJ: Applied)
- » Brown and Laschever (2012, AEJ: Applied)
- » Cantoni (2012, *Economic Journal*)
- » Harding and Stasavage (2014, Journal of Politics)
- » Jacobson and von Schedvin (2015, Econometrica)
- » Wang et al. (2017, WP)
- » Bogart (2018, Economic Journal)

The Data Generating Process

$$y_{it} = a_i + \mathbf{x}_{it}\beta + \varepsilon_{it}$$

 $\varepsilon_{it} = \begin{cases} 1 - a_i - \mathbf{x}_{it}\beta & \text{if } t = T_i \text{ and } i \text{ is not censored} \\ -a_i - \mathbf{x}_{it}\beta & \text{if } t = T_i \text{ and } i \text{ is censored} \\ -a_i - \mathbf{x}_{it}\beta & \text{if } t < T_i \end{cases}$

a_i unobserved time-invariant individual heterogeneity
 a_i + **x**_{it}β ∈ [0, 1] ∀ *it*

Assumption rendering above equation regression model:

Estimation by pooled OLS

$$y_{it} = \alpha^{c} + \mathbf{x}_{it}\beta + \varepsilon_{it}^{OLS}$$

• $\varepsilon_{it}^{OLS} \neq \varepsilon_{it}$, since a_i not included as regressor

Conditional mean of disturbance:

$$E\left(\varepsilon_{it}^{\text{OLS}}|a_{i}, \mathbf{x}_{it}, \mathbf{y}_{it^{-}} = \mathbf{0}\right) = (a_{i} + \mathbf{x}_{it}\beta)\left(1 - \alpha^{c} - \mathbf{x}_{it}\beta\right) + (1 - a_{i} - \mathbf{x}_{it}\beta)\left(-\alpha^{c} - \mathbf{x}_{it}\beta\right) = a_{i} - \alpha^{c}$$

- ▶ Renders OLS biased and inconsistent if $Cov(a_i, \mathbf{x}_{it}) \neq \mathbf{0}$
- First-differences or within-transformation to eliminate a_i?

Estimation by First-Differences Estimation

$$y_{it} = \Delta \mathbf{x}_{it} \beta + \varepsilon_{it}^{\mathsf{FD}}$$
 $(y_{it} = \Delta y_{it} \text{ due to absorbing state})$

Conditional mean of disturbance:

$$E(\varepsilon_{it}^{FD}|a_i, \mathbf{x}_{it}, \mathbf{x}_{it-1}, \mathbf{y}_{it-1} = \mathbf{0}) = (a_i + \mathbf{x}_{it}\beta) (1 - \Delta \mathbf{x}_{it}\beta) + (1 - a_i - \mathbf{x}_{it}\beta) (-\Delta \mathbf{x}_{it}\beta) = a_i + \mathbf{x}_{it-1}\beta$$

Taking first-differences

» Does not eliminate a_i

» Makes x_{it-1} enter conditional mean of disturbance

Similar (yet more involved) result for within-transformation (eqiv. for T = 2) • Within-Transformation

First-diff. and within estimator biased and inconsistent

First-Differences Estimation with Constant

Including constant term in first-differences estimation improves matters

$$\mathsf{E}(\varepsilon_{it}^{\mathsf{FDC}}|a_i,\mathbf{x}_{it},\mathbf{x}_{it-1},\mathbf{y}_{it^-}=\mathbf{0}) = \tilde{a_i} + \tilde{\mathbf{x}}_{it-1}\tilde{\beta}$$

- Constant captures (estimation sample) mean of a_i
- $E(\tilde{a}_i | \text{sample}) = 0, \tilde{\beta}' \equiv [\tilde{\alpha}^c \beta'], \tilde{\mathbf{x}}_{it-1} \equiv [0 \mathbf{x}_{it-1}], \text{ and}$ $\widetilde{\Delta \mathbf{x}}_{it} \equiv [1 \Delta \mathbf{x}_{it}]$

Asymptotic Properties of FD Estimation with Constant

Assumption

 $Cov(a_i, \Delta \mathbf{x}_{it}) = \mathbf{0}$, while $Cov(a_i, \mathbf{x}_{it}) \neq \mathbf{0}$ in the population

$$plim(b^{FDC}) = plim\left(I + \left(\frac{1}{N}\sum_{i=1}^{N}\sum_{t=2}^{T_{i}}\widetilde{\Delta \mathbf{x}}_{it}'\widetilde{\Delta \mathbf{x}}_{it}\right)^{-1} \left(\frac{1}{N}\sum_{i=1}^{N}\sum_{t=2}^{T_{i}}\widetilde{\Delta \mathbf{x}}_{it}'\widetilde{\mathbf{x}}_{it-1}\right)\right)\widetilde{\beta}$$
$$+ plim\left(\frac{1}{N}\sum_{i=1}^{N}\sum_{t=2}^{T_{i}}\widetilde{\Delta \mathbf{x}}_{it}'\widetilde{\Delta \mathbf{x}}_{it}\right)^{-1} \left(\frac{1}{N}\sum_{i=1}^{N}\sum_{t=2}^{T_{i}}\widetilde{\Delta \mathbf{x}}_{it}'\widetilde{\mathbf{a}}_{i}\right) \neq \widetilde{\beta}$$

Two sources of asymptotic bias in b^{FDC}

- 1. 'Ill-scaling bias' originates from first-differences transformation itself (\rightarrow even in the absence of any unobserved heterogeneity)
- 2. Survivor bias originates from $Cov(a_i, \mathbf{x}_{it} | \mathbf{y}_{it^-} = \mathbf{0}) \neq Cov(a_i, \mathbf{x}_{it-1} | \mathbf{y}_{it^-} = \mathbf{0})$ due to selective survival

An Adjusted First-Differences Estimator

$$b_{\text{adjust}}^{\text{FDC}} = \underbrace{\left(I + \left(\sum_{i=1}^{N} \sum_{t=2}^{T_i} \widetilde{\Delta \mathbf{x}}'_{it} \widetilde{\Delta \mathbf{x}}_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=2}^{T_i} \widetilde{\Delta \mathbf{x}}'_{it} \widetilde{\mathbf{x}}_{it-1}\right)\right)^{-1}}_{\text{adjustment matrix } \mathbf{W}} \times \underbrace{\left(\sum_{i=1}^{N} \sum_{t=2}^{T_i} \widetilde{\Delta \mathbf{x}}'_{it} \widetilde{\Delta \mathbf{x}}_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=2}^{T_i} \widetilde{\Delta \mathbf{x}}'_{it} y_{it}\right)}_{b^{\text{FDC}}}$$

Eliminates 'ill-scaling bias'

An Adjusted First-Differences Estimator II

- 1. Does not suffer from 'ill-scaling bias'
 - » Dominant source of bias of b^{FDC} in many stettings
- 2. Still subject to survivor bias
 - » Unless x_{it} follows random walk
 - » Unless $\beta = \mathbf{0}$
 - » Unless $Var(a_i) = 0$
 - » Yet, OLS also suffers from (different kind of) **survivor bias** even for $Cov(a_i, \mathbf{x}_{it}) = \mathbf{0}$
- 3. Computationally very simple
- 4. Never consistent for α
- 5. Only exists if W is non-singular
- $\textbf{6. Var}(\textbf{b}_{adjust}^{FDC}|\textbf{X}) = \textbf{W} \times Var(\textbf{b}^{FDC}|\textbf{X}) \times \textbf{W}$
 - » No serial correlation, just heterosecedasticity

Higher-Order Differences

- Compared to conventional fixed-effects estimators much stronger assumptions required
 - » Properties of $b_{\text{adjust}}^{\text{FDC}}$ hinge on $\text{Cov}(a_i, \Delta \mathbf{x}_{it}) = \mathbf{0}$
 - » May well be violated
 - » Higher-order differences ∆^jx_{it} as possible solution
 > Higher-Order
 - » Technically fully analogous to b^{FDC}_{adjust}
 - » Costly in terms of variation in x that is used for identification

MC Simulation Design

- Five estimators
 - 1. b^{OLS} (OLS)
 - 2. b^{WI} (within transformation)
 - 3. b^{FD} (first-differences w/o constant)
 - 4. *b*^{FDC} (first-differences with constant)
 - 5. *b*^{FDC}_{adjust} (adjusted first-differences)
- T = 5
- \blacktriangleright N = 4 · 10⁷ (large samp.) or N = 400 (small samp.)
- Number of MC replications
 - » 1 (large sample)
 - » 10000 (small sample)
- Two variants for small sample
 - 1. **x**_{it} and a_i random
 - 2. **x**_{it} and a_i **fixed**

MC Simulation Design II

- a_i iid. continuous U(0.05, 0.15) ($\rightarrow \alpha = 0.1$)
- **x**_{*it*} comprises only one variable, three DGPs:
 - 1. **stationary**: $x_{it}^{ST} = 0.1 + a_i + \zeta_{it}$, with $\zeta_{it} \sim \text{iid. } U(-0.035, 0.035)$
 - 2. random walk w/o drift: $x_{it}^{RW} = x_{it-1}^{RW} + v_{it}$, with $x_{i1} = 0.1 + a_i$ and $v_{it} \sim \text{iid. } U(-0.05, 0.05)$
 - 3. **trended with increasing variance**: $x_{it}^{TR} = 0.075 + a_i + \eta_{it}$, with $\eta_{it} \sim \text{iid. } U(0, 0.025t)$

»
$$\mathsf{Cov}(a_i, x_{it}) > 0$$
 and $\mathsf{Cov}(a_i, \Delta x_{it}) = 0$

»
$$a_i + x_{it}\beta \in [0, 1]$$
 ∀ $i, t = 1...5$

» $P(y_{it} = 1)$ and $Var(\Delta x_{it})$ very similar across DGPs

• $\beta = 1$

Large Sample	Simulation	Results
--------------	------------	---------

	_b ols		_b wi		b	<i>b</i> ^{FD}		_b fdc		b ^{FDC} adjust	
	Coef.	S.E.	Coef.	S.E.	Coef.	S.E.	Coef.	S.E.	Coef.	S.E.	
x ST	stational	ry									
β	1.6671	0.0012	0.9024	0.0025	0.7072	0.0022	0.5008	0.0019	0.9980	0.0037	
â	-0.0345	0.0002	0.1160	0.0005			0.2899	0.0001	0.0955	0.0007	
x ^{RV}	[/] follows	random w	alk								
β	1.4267	0.0009	0.9472	0.0019	1.0011	0.0022	1.0000	0.0018	0.9999	0.0018	
â	0.0134	0.0002	0.1072	0.0004			0.2882	0.0001	0.0951	0.0004	
x_{it}^{TR}	trended	with incre	asing vari	ance arou	nd trend						
β	1.5715	0.0012	6.0363	0.0019	4.4998	0.0020	0.6725	0.0019	1.0075	0.0028	
â	-0.0180	0.0002	-0.9154	0.0004			0.2950	0.0001	0.0936	0.0006	

Notes: True coefficient values: $\beta = 1$, $\alpha = 0.1$; $N = 4 \cdot 10^7$, T = 5; the # of observations for x_{lt}^{ST} is 71748906, the corresponding #s of observations for x_{lt}^{RW} is 71823746 and for x_{lt}^{TR} being trended 72218321. For b^{OLS} the #s of observations are higher by $4 \cdot 10^7$ observations, since the first wave is not eliminated by the within or the first-differences transformation.

- Substantial large sample bias in b^{OLS}, b^{WI}, b^{FD}, and b^{FDC}
- No significant survivor bias in b^{FDC}_{adjust}
 - » Attributable to small value of $Var(a_i)$
 - » Yet, even for much larger values of Var(a_i) bias of b^{FDC}_{adjust} comparatively small

Small Sample Simulation Results (x_{it} and a_i random)

	bors		_b wi		b ^{FD}		<i>b</i> FDC		b FDC adjust	
	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.
				x	it and ai ra	andom				
x ST	stationa	ry								
β	1.6755	0.3808	0.9208	0.7885	0.7240	0.7038	0.5133	0.5902	1.0167	1.1728
â	-0.0356	0.0746	0.1128	0.1549			0.2903	0.0171	0.0923	0.2286
x ^{RV}	^V follows	random w	alk							
β	1.4278	0.3004	0.9485	0.6089	1.0068	0.69504	1.0019	0.5862	1.0027	0.5856
â	0.0138	0.0582	0.1068	0.1195			0.2887	0.0170	0.0954	0.1131
x_{it}^{TR}	trended	with incre	asing vari	ance arou	nd trend					
β	1.5763	0.3654	6.0427	0.6069	4.5072	0.67781	0.6691	0.6155	0.9940	0.9147
â	-0.0186	0.0733	-0.9167	0.1167			0.2950	0.0187	0.0965	0.1909

Notes: True coefficient values: $\beta = 1$, $\alpha = 0.1$; N = 400, T = 5; 10 000 replications.

Very close to large sample simulation results

Small Sample Simulation Results (x_{it} and a_i fixed)

	bols		_b wi		_b fd		<i>b</i> FDC		b FDC adjust	
_	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.
					x _{it} and a _i	fixed				
x_{it}^{ST}	stationa	ry								
β	1.6443	0.3826	1.3168	0.7160	0.8548	0.6678	0.5351	0.5790	1.0326	1.1189
â.	-0.0310	0.0743	0.0324	0.1390			0.2853	0.0168	0.0865	0.2161
x ^{RW}	follows	random w	alk							
	1.4208	0.3227	1.6595	0.5408	1.5261	0.6514	0.9350	0.5921	0.9807	0.6203
â	0.0125	0.0627	-0.0344	0.1054			0.2852	0.0166	0.0969	0.1209
x ^{TR} 1	trended	with incre	asing vari	ance arou	nd trend					
Ĝ	1.5638	0.3795	5.9851	0.5921	4.5432	0.6561	0.6581	0.6064	0.9792	0.9023
r	-0.0172	0.0751	-0.8950	0.1113			0.2903	0.0177	0.0973	0.1855

Notes: True coefficient values: $\beta = 1$, $\alpha = 0.1$; N = 400, T = 5; 10 000 replications.

b^{WI} and b^{FD} sensitive to fixing x_{it} and a_i

b^{WI} and b^{FD} prone to substantial small sample bias

The xtlhazard command

- Requires data to be xtset
- Checks whether depvar is consistent with absorbing state

Syntax of xtlhazard

xtlhazard depvar indepvars [if] [in] [weight] [, options]

Options for xtlhazard

- noabsorbing forces estimation if depvar is inconsitent with model
- edittozero(#) use Mata function edittozero() to set matrix entries close to zero to zero; edittozero(0) that is no editing is the default

The xtlhazard command II

Options for xtlhazard cont'd

noeomitted do not consider omitted collinear variables in e(b) and e(V)

level(#) set confidence level; default as set by set level

xtlhazard postestimation

.

- Many standard postestimation commands available
- predict, margins, test, testnl, lincom, nlcom, ...

Research Question of Brown and Laschever (2012)

Peer Effects in Retirement of School Teachers? Identification

- Two unexpected pension reforms exerting heterogenous incentives for retirement
- Incentives for others teachers as instrument for peer retirement while controlling for own incentives

Data

- Short yearly panel (1999-2001)
- Individual teacher level (LA Unified School District)
- ▶ No longer observed after retirement (→absorbing state)

Result

Significant positive peer effects

Research Question of present Application

Does Method used for Estimation Matter?

- Focus on reduced form model
- Focus on specification that includes teacher fixed effects
- Comparing results of Brown and Laschever (2012) who use b^{WI} to results from b^{FD} and b^{FDC}_{adjust}
 - » b^{FD} and b^{FDC} coincide because of year dummies

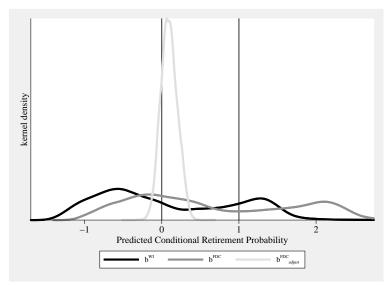
Results for Key Reduced Form Coefficients

	_b ₩i ‡		_b fdс		b FDC adjust	
	Coef. S.E.		Coef.	S.E.	Coef.	S.E.
change in pension wealth of peers $(t - 1)$ change in pension wealth of peers $(t - 2)$	0.003 **	0.001	0.003 **	0.001	-0.007	0.095
	0.002 *	0.001	0.002	0.001	-0.004	0.054
change in own pension wealth	0.033 ***	0.011	-0.003	0.009	-0.005	0.041
change in own peak value	-0.002	0.002	-0.002 *	0.001	-0.005 *	0.003

Notes: 21 290 observations, 8 320 teachers, and 586 school clusters for within-transformation estimation. 12 968 observations, 7 088 teachers, and 578 school clusters for first-differences estimation. *N* redundant observations in the within-transformed model.

- Similar results for b^{WI} and b^{FDC}
- Instruments turn insignificant and negative for b^{FDC}_{adjust}
- Results from b^{FDC}_{adjust} conflict with retirement incentives for peer teachers mattering for own retirement decision,
 - i.e. peer effects in retirement

Predicted Conditional Retirement Probabilities



Predicted Conditional Retirement Probabilities II

- ► Unlike b^{FDC} , predictions from b^{WI} and b^{FDC}_{adjust} centered to sample mean of y_{it}
- All estimators yield some predicted probabilities outside unit interval
- Share of **irregular** estimated probabilities heterogeneous
 - » b^{₩I}: 77.9%
 - » b^{FDC}: 71.8%
 - » b^{FDC}_{adjust}: 19.2%
- Something seems to be wrong with b^{FDC} and b^{WI}

Results for Age Coefficients

	_b wi‡		b ^{fd}	oc	b ^{FD} ad	c ust
	Coef.	S.E.	Coef.	S.E.	Coef.	S.E.
change in pension wealth of peers $(t-1)$ change in pension wealth of peers $(t-2)$	0.003 ** 0.002 *	0.001 0.001	0.003 ** 0.002	0.001 0.001	-0.007 -0.004	0.095 0.054
change in own pension wealth change in own peak value	0.033 *** -0.002	0.011 0.002	-0.003 -0.002 *	0.009 0.001	-0.005 -0.005 *	0.041 0.003
:						
age \geq 54 years	-0.154 ***	0.013	-0.179 ***	0.015		
age \geq 55 years	-0.123 ***	0.013	-0.163 ***	0.015	-0.016	0.029
age \geq 56 years	-0.140 ***	0.012	-0.174 ***	0.014	-0.013	0.011
age \geq 57 years	-0.138 ***	0.013	-0.173 ***	0.014	0.001	0.010
age \geq 58 years	-0.127 ***	0.012	-0.163 ***	0.014	0.008	0.014
age \geq 59 years	-0.099 ***	0.014	-0.132 ***	0.015	0.030 ***	0.010
age \geq 60 years	-0.051 ***	0.015	-0.076 ***	0.017	0.056 **	0.022
age \geq 61 years	-0.024	0.017	-0.038 **	0.019	0.034	0.028
age \geq 62 years	0.027	0.020	0.023	0.021	0.060 ***	0.020
age \geq 63 years	-0.009	0.021	0.001	0.023	-0.022	0.031
age \geq 64 years	-0.055 ***	0.021	-0.054 ***	0.021	-0.052 *	0.030
age \geq 65 years	0.000	0.025	-0.009	0.026	0.037	0.046
age \geq 66 years	-0.025	0.026	-0.024	0.026	-0.017	0.034

Notes: 21290 observations, 8 320 teachers, and 586 school clusters for within-transformation estimation. 12968 observations, 7 088 teachers, and 578 school clusters for first-differences estimation. *N* redundant observations in the within-transformed model.

Results for Age Coefficients II

- b^{FDC}_{adjust} does not yield a very distinct pattern for baseline hazard
- b^{FDC} and b^{WI} yield a steady and steep decrease in the baseline retirement hazard for teachers in their 50th
- This pattern is in no way mirrored by the unconditional sample retirement rates
- According to β^{wi} baseline retirement hazard decreases
 by 83 percentage points between the age of 53 and the age of 60
 - » Seems to make little sense
- b^{FDC} and b^{WI} almost certainly yield misleading results regarding the baseline retirement hazard

Conclusions

- Conventional fixed-effects estimators (within-transformation, first-differences) inappropriate for discrete-time linear hazard model
 - » Bias may well exceed bias of OLS
- Adjusted first-differences as alternative
 - » Unobserved individual heterogeneity is not eliminated
 - » Corrects for incorrect 'scaling' of b^{FDC}
- xtlhazard implements adjusted first (and higher-oder) differences estimation in stata

Error Cond. Mean in Within-Transformed Model

 $\mathsf{E}\left(\varepsilon_{it}^{\mathsf{WI}}|a_{i},\mathbf{x}_{i1},\ldots,\mathbf{x}_{iT_{i}},\mathbf{y}_{it^{-}}=\mathbf{0}\right) = \\ \left(a_{i}+\mathbf{x}_{it}\beta\right)\left(\frac{t-1}{t}-\left(\mathbf{x}_{it}-\frac{1}{t}\sum_{s=1}^{t}\mathbf{x}_{is}\right)\beta\right) \\ +\sum_{T_{i}=t+1}^{T}\left(a_{i}+\mathbf{x}_{iT_{i}}\beta\right)\left[\prod_{s=t}^{T_{i}-1}\left(1-a_{i}-\mathbf{x}_{is}\beta\right)\right]\left(-\frac{1}{T_{i}}-\left(\mathbf{x}_{it}-\frac{1}{T_{i}}\sum_{s=1}^{T_{i}}\mathbf{x}_{is}\right)\beta\right) \\ +\left[\prod_{s=t}^{T}\left(1-a_{i}-\mathbf{x}_{is}\beta\right)\right]\left(-\left(\mathbf{x}_{it}-\frac{1}{T_{i}}\sum_{s=1}^{T}\mathbf{x}_{is}\right)\beta\right)\right)$

Error Cond. Mean in Within-Transformed Model II

For t = T, conditional mean simplifies to:

$$\mathsf{E}\left(\varepsilon_{iT}^{\mathsf{WI}}|a_{i},\mathbf{x}_{i1},\ldots,\mathbf{x}_{iT},\mathbf{y}_{iT^{-}}=\mathbf{0}\right)=\left(\frac{T-1}{T}\right)a_{i}+\frac{1}{T}\left(\sum_{s=1}^{T-1}\mathbf{x}_{is}\right)\beta$$

For T = 2, we get

$$\mathsf{E}\left(\varepsilon_{i2}^{\mathsf{WI}}|a_{i},\mathbf{x}_{i1},\mathbf{x}_{i2},y_{i1}=0\right)=\frac{1}{2}a_{i}+\frac{1}{2}\mathbf{x}_{i1}\beta$$

which coincides with result for $E(\varepsilon_{it}^{FD}|a_i, \mathbf{x}_{it}, \mathbf{x}_{it-1}, \mathbf{y}_{it^-} = \mathbf{0})$.

Estimator based on Higher-Order Differences

$$b_{\text{adjust}}^{\text{JDC}} = \left(I + \left(\sum_{i=1}^{N} \sum_{t=j+1}^{T_i} \widetilde{\Delta^j \mathbf{x}'_{it}} \widetilde{\Delta^j \mathbf{x}'_{it}} \right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=j+1}^{T_i} \widetilde{\Delta^j \mathbf{x}'_{it}} (\mathbf{x}_{it} - \Delta^j \mathbf{x}_{it}) \right) \right)^{-1} \times \left(\sum_{i=1}^{N} \sum_{t=j+1}^{T_i} \widetilde{\Delta^j \mathbf{x}'_{it}} \widetilde{\Delta^j \mathbf{x}_{it}} \right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=j+1}^{T_i} \widetilde{\Delta^j \mathbf{x}'_{it}} y_{it} \right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=j+1}^{T_i} \widetilde{\Delta^j \mathbf{x}'_{i$$

for *j* = 2, 3, . . .

$$\begin{aligned} \Delta^2 \mathbf{x}_{it} &= \Delta \mathbf{x}_{it} - \Delta \mathbf{x}_{it-1} \\ &= \mathbf{x}_{it} - 2\mathbf{x}_{it-1} + \mathbf{x}_{it-2} \\ \Delta^3 \mathbf{x}_{it} &= (\Delta \mathbf{x}_{it} - \Delta \mathbf{x}_{it-1}) - (\Delta \mathbf{x}_{it-1} - \Delta \mathbf{x}_{it-2}) \\ &= \mathbf{x}_{it} - 3\mathbf{x}_{it-1} + 3\mathbf{x}_{it-2} - \mathbf{x}_{it-3} \end{aligned}$$

i

-