How to use Stata's sem command with nonnormal data? A new nonnormality correction for the RMSEA, CFI and TLI

Meeting of the German Stata Users Group at the Ludwig-Maximilians Universität, 24th May, 2019

"All models are false, but some are useful." (George E. P. Box)

Dr. Wolfgang Langer Martin-Luther-Universität Halle-Wittenberg Institut für Soziologie

Assistant Professeur Associé Université du Luxembourg

LUXEMBOURG

Contents

- What is the problem?
- What are solutions for it?
- What do we know from Monte-Carlo simulation studies?
- How to implement the solutions in Stata?
- Empirical example of Islamophobia in Western Germany 2016
- Conclusions

What is the problem? 1

- The Structural Equation Model (SEM) developed by Karl Jöreskog (1970) requires the multivariate normality of indicators using Maximum-Likelihood (ML) or Generalized-Least Squares (GLS) to estimate the parameters
- Instead of the data matrix the SEM uses the covariance matrix of the indicators and the vector of their means
- This reduction to the first and second moments of the indicators is only allowed if strict assumptions about the skewness and kurtosis of the indicators exist

What is the problem? 2

- The violation of the multivariate normality assumption leads to an inflation of the Likelihood-Ratio-chi² test statistics (T_{ML}) for the comparison of actual and saturated or baseline and saturated models respectively when the kurtosis of indicators increases
- It has the following effects
 - Over-hasty rejection of the actual model
 - ► Severe bias of fit indices using the T_{ML} statistics
 - Proposed rules of thumb (Hu & Bentler 1999, Schermelleh-Engel et. al. 2003) to accept a model cannot be applied because they demand the multivariate normality of the indicators

- Stata's sem, EQS or MPLUS calculate the Satorra-Bentler (1994) mean-adjusted / rescaled Likelihood-Ratio-chi² test statistics (T_{SB}) to correct the inflation of T_{ML}
 - ► They use the T_{SB} values of the actual and baseline models to calculate the Root-Mean-Squared-Error-of Approximation (RMSEA), Comparative-Fit Index (CFI) and Tucker-Lewis Index (TLI)
- Simulation studies conducted by Curran, West & Finch (1996), Newitt & Hancock (2000), Yu & Muthén (2002), Lei & Wu (2012) recommend the usage of the T_{SB} for medium-sized and large samples (200 < n < 500 / 1000)

 Satorra-Bentler (SB) corrected RMSEA, CFI and TLI implemented in Stata

$$Satorra - Bentler rescaled \ T_{SB,M} = \frac{T_{ML,M}}{c_{M}} \qquad T_{SB,B} = \frac{T_{ML,B}}{c_{B}}$$

$$RMSEA_{SB} = \sqrt{\frac{T_{SB,M} - df_{M}}{n \times df_{M}}}$$

$$CFI_{SB} = 1 - \frac{T_{SB,M} - df_{M}}{T_{SB,B} - df_{B}}$$

$$TLI_{SB} = 1 - \frac{T_{SB,M} - df_{M}}{T_{SB,B} - df_{B}} \times \frac{df_{B}}{df_{M}}$$

- Brosseau-Liard & Savalei (2012, 2014, 2018)
 criticize this blind usage of the Satorra-Bentler rescaled T_{SB}.
 - ► They argue that the population values of RMSEA, CFI and TLI differ from those using the T_{ML}-statistics when the sample size grows to infinity. They are a function of the misspecification of the SEM and the violation of the multivariate normality assumption
 - Therefore the rules of thumb used to assess the model fit cannot be applied
 - ► They propose an alternative correction leading to the same population values as using the T_{ML} statistics under multivariate normality

 To compute the robust fit indices they take the Satorra-Bentler versions of RMSEA, CFI and TLI and the corresponding Satorra-Bentler rescaling factors for the actual model c_M and the baseline model c_B calculated by Stata

$$\begin{aligned} Robust \, RMSEA &= \sqrt{\frac{T_{ML,M}}{T_{SB,M}}} \times RMSEA_{SB} = \sqrt{c_{M}} \times RMSEA_{SB} \\ Robust \, CFI &= 1 - \frac{T_{ML,M} \times T_{SB,B}}{T_{ML,B} \times T_{SB,M}} \times \left(1 - CFI_{SB}\right) = 1 - \frac{c_{M}}{c_{B}} \times \left(1 - CFI_{SB}\right) \\ Robust \, TLI &= 1 - \frac{T_{ML,M} \times T_{SB,B}}{T_{ML,B} \times T_{SB,M}} \times \left(1 - TLI_{SB}\right) = 1 - \frac{c_{M}}{c_{B}} \times \left(1 - TLI_{SB}\right) \end{aligned}$$

What do we know from M.C. studies? 1

- Brosseau-Liard & Savalei (2012, 2014) made two Monte-Carlo-simulation studies (M.C.) with 1,000 replications per combination of their study design
- They have investigated the effects of
 - Sample size
 - n = 100, 200, 300, 500, 1000
 - Extent of nonnormality of indicators
 - Normal (skewness=0, kurtosis=0)
 - Moderate nonnormal (skewness=2, kurtosis=7)
 - Extreme nonnormal (skewness=3, kurtosis=21)
 - Extent of misspecification of the SEM
 - 10 different population models varying the model fit

What do we know from M.C. studies? 2

- Brosseau-Liard & Savalei (2012, 2014) compare the performance of ML-based, Satorra-Bentler rescaled and robust fit indices
 - Results concerning RMSEA
 - Robust RMSEA correctly estimates for n ≥ 200 the given population values even under moderate or extreme deviation from multivariate normality
 - Therefore the robust RMSEA can be interpreted as if multivariate normality is given
 - The deviation of the SB-rescaled RMSEA from the given population value increases with the magnitude of nonnormality. It underestimates the true RMSEA which leads very often to the confirmation of the model structure

What do we know ...? 3a

Results concerning CFI and TLI

- If normality is given, the means of robust CFI and TLI converge towards the given population values and the uncorrected fit indices
- With increasing nonnormality the uncorrected CFI and TLI underestimate the given population values
- Even with increasing nonnormality the robust CFI and TLI estimate very precisely the population values for sample sizes greater or equal 300
- For sample sizes lower 300 the robust CFI and TLI underestimate the given population value to a minor degree as the uncorrected or Satorra-Bentler corrected fit indices

What do we know ...? 3b

- Results concerning Satorra-Bentler corrected CFI and TLI
 - The Satorra-Bentler corrected CFI and TLI severely underestimate the given population values if nonnormality increases
- Conclusion:
 - Brosseau-Liard & Savalei recommend the use of the robust RMSEA, CFI and TLI instead of their Satorra-Bentler corrected versions to assess the model fit if the multivariate normality assumption is violated

How to implement it in Stata?

- I wrote my robust_gof.ado which computes the robust RMSEA, CFI und TLI
- Steps of procedure:
 - 1. Estimate your Structural Equation Model with the vce(sbentler) option of Stata's sem
 - 2. Use the estat gof, stats(all) postestimation command
 - 3. Start the robust_gof.ado

Empirical example of Islamophobia

- SEM to explain Islamophobia
 - Data set: General Social Survey (ALLBUS) 2016 published by GESIS 2017. Subsample Western Germany: n=1.690
- Presentation of used indicators
- Test of multivariate normality (mvtest of Stata)
- Estimated results from sembuilder
- Output of my robust_gof.ado

Used indicators

- Factor SES: Socio-economic status
 - id02: Self rating of social class
 - Underclass to upperclass [1;5]
 - educ2: educational degree
 - Without degree to grammar school [1;5]
 - incc: income class (quintiles) [1;5]
- Factor Authoritu: authoritarian submission
 - Ip01: We should be grateful for leaders who can tell us exactly what to do [1;7]
 - Ip02: It will be of benefit for a child in later life if he or she is forced to conform to his or her parents' ideas [1;7]
- Single indicator pa01: left-right self-rating [1;10]

Used indicators

- Factor Islamophobia
 - Six items [1;7]
 - mm01 The exercise of Islamic faith should be restricted in Germany
 - mm02r The Islam does not fit to Germany
 - mm03 The presence of Muslims in Germany leads to conflicts
 - mm04 The Islamic communities should be subject to surveillance by the state
 - mm05r I would have objection to having a Muslim mayor in our town / village
 - mm06 I have the impression that there are many religious fanatics among Muslims living in Germany

Test of multivariate normality (mvtest)

Test for univariate normality

	oint ——	_	D (W +)	D (Gl)	77
	Prob>chi2	adj chi2(2)	Pr(Kurtosis)	Pr(Skewness)	Variable
Each	•	•	0.0000	0.0006	mm01
	0.0000	•	0.0000	0.0000	mm02r
indicator	0.0000	•	0.0000	0.0000	mm03
violates th	0.0000	•	0.0000	0.0000	mm04
univariate	•	•	•	0.0217	mm05r
	•	•	0.0000	0.0205	mm06
normality	0.0000	•	0.0000	0.0000	lp01
assumption	0.0000	•	0.0000	0.0000	1p02
	0.0129	8.70	0.6244	0.0035	pa01
	0.0045	10.82	0.0135	0.0236	id02
	•	•	•	0.0091	educ2
	0.0000	•	0.0000	0.0001	incc

Test for multivariate normality

All together violate the assumption of multivariate normality

Mardia mSkewness	=	6.24481	chi2(364) =	1762.558	Prob>chi2 =	0.0000
Mardia mKurtosis	=	176.6351	chi2(1) =	93.761	Prob>chi2 =	0.0000
Henze-Zirkler	=	1.353375	chi2(1) =	8686.420	Prob>chi2 =	0.0000
Doornik-Hansen			chi2(24) =	2343.968	Prob>chi2 =	0.0000

Standardized solution of the SEM (ML)

Output of my robust_gof.ado

```
. robust gof
Root-Mean-Squared-Error-of-Approximation:
MVN-based RMSEA = 0.0666
90% Confidence Interval for MNV-based RMSEA:
MVN-based Lower Bound (5%) = 0.0609
MVN-based Upper Bound (95%) = 0.0725
Satorra-Bentler corrected RMSEA = 0.0638
Robust-RMSEA = 0.0663
Incremental Fit-Indices:
MVN-based Tucker-Lewis-Index(TLI) = 0.8947
Satorra-Bentler corrected TLI = 0.8983
Robust Tucker-Lewis-Index(TLI) = 0.8958
MVN-based Comparative Fit Index (CFI) = 0.9187
Satorra-Bentler-corrected CFI
                             = 0.9214
Robust Comparative Fit Index(CFI) = 0.9195
```

r-containers of the robust_gof.ado

 The robust_gof.ado returns the following r-containers

Conclusions

- The presented Monte-Carlo simulation studies prove the advantage of the robust RMSEA, CFI and TLI using medium sized and great samples (n ≥ 200 / 300)
- My robust_gof.ado computes the robust fit indices using the individual data set, the Satorra-Bentler-rescaled Likelihood-Ratio-chi² test statistics (T_{SB}) and scaling factors c_M and c_B
- For small sample sizes I recommend the Swaincorrection of T_{ML} and my swain_gof.ado presented at the German Stata Users Group Meeting last year in Konstanz

Closing words

- Thank you for your attention
- Do you have some questions?

Contact

- Affiliation
 - Dr. Wolfgang Langer University of Halle Institute of Sociology D 06099 Halle (Saale)
 - ► Email:
 - wolfgang.langer@soziologie.uni-halle.de

- Asparouhov, T. & Muthén, B. (2010):
 Simple second order chi-square correction. Los Angels, Ca:
 MPLUS Working papers
- Bentler, P. M. (1990): Comparative fit indexes in structural equation models. Psychological Bulletin, 107, pp. 238-246
- Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88, 588-606
- Borsseau-Liard, P.E., Savalei, V. & Li, L. (2012): An investigation of the sample performance of two nonnormality corrections for RMSEA. *Multivariate Behavioral Research*, 47, 6, pp. 904-930
- Borsseau-Liard, P.E. & Savalei, V. (2014):
 Adjusting incremental fit indices for nonnormality. *Multivariate Behavioral Research*, 49, 5, pp. 460-470

- Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, pp. 62-83
- Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136-162). Newbury Park, CA: Sage
- Curran, P. J., West, S. G., & Finch, J. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. *Psychological Methods*, 1, pp. 16-29
- GESIS Leibniz-Institut für Sozialwissenschaften (2017): Allgemeine Bevölkerungsumfrage der Sozialwissenschaften ALLBUS 2016. GESIS Datenarchiv, Köln. ZA5250 Datenfile Version 2.1.0, doi:10.4232/1.12796

- Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, pp. 1–55
- Jöreskog, K.G. (1970): A general method for analysis of covariance structures. *Biometrika*, 57, 2, pp. 239-251
- Jöreskog, K.G., Olsson, U.H. & Wallentin, F.Y. (2016²):
 Multivariate Analysis with LISREL. Cham: Springer International Publishing AG
- Lei, P.W. & Wu, G. (2012): Estimation in Structural Equation Modeling. In: Hoyle, R.H. (Ed.): Handbook of Structural Equation Modeling. New York & London: Guilford Press, pp. 164-180
- Li, L., & Bentler, P. M. (2006). Robust statistical tests for evaluating the hypothesis of close fit of misspecified mean and covariance structural models. UCLA statistics preprint #506. Los Angeles: University of California

- Newitt, J. & Hancock, G.R.(2000): Improving the Root Mean Square Error of Approximation for Nonnormal Conditions in Structural Equation Modeling. *Journal of Experimental Education*, 68, 3, pp. 251-268
- Satorra, A. & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye & C. C. Clogg (eds.), Latent variables analysis: Applications for developmental research (pp. 399-419). Newbury Park, Ca: Sage
- Savalei, V. (2018): On the computation of the RMSEA and CFI from the mean and variance corrected test statistic with nonnormal data in SEM. Multivariate Behavioral Research, 53, 3, pp. 419-429
- StataCorp LLC (2017): Stata Structural Equation Modeling Reference Manual Release 15. College Station, Tx: Stata Press
- Schermelleh-Engel, K., Moosburger, H. & Müller, H. (2003): Evaluating the Fit of Structural Equation Models: Tests of Significance and Descriptive Goodness-of-Fit Measures. *Methods* of Psychological Research Online, 8, 2, pp. 23-74

- Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. *Multivariate Behavioral Research*, 25, pp. 173-180
- Steiger, J. H., & Lind, J. C. (1980, May). Statistically based tests for the number of common factors. Paper presented at the annual meeting of the Psychometric Society, Iowa City, IA
- Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. *Psychometrika*, 38, pp.1-10
- Yu, C., & Muthen, B. (2002, April). Evaluation of model fit indices for latent variable models with categorical and continuous outcomes. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, LA

Appendix

Rules of thumb for evaluation of fit

Schermelleh-Engel et. al. (2003, p. 53) recommend the following rules of thumb

Fit Measure	Good Fit	Acceptable Fit	
χ^2	$0 \le \chi^2 \le 2 df$	$2df < \chi^2 \le 3df$	
p value	$.05$	$.01 \le p \le .05$	
χ^2/df	$0 \le \chi^2/df \le 2$	$2<\chi^2/df\leq 3$	
RMSEA	$0 \le RMSEA \le .05$	$.05 < RMSEA \le .08$	
p value for test of close fit $(RMSEA < .05)$	$.10$	$.05 \le p \le .10$	
Confidence interval (CI)	close to $RMSEA$, left boundary of $CI = .00$	close to $RMSEA$	
SRMR	$0 \leq SRMR \leq .05$	$.05 < \textit{SRMR} \leq .10$	
NFI	$.95 \le NFI \le 1.00^{a}$	$.90 \le NFI < .95$	
NNFI / TLI	$.97 \le NNFI \le 1.00^{\rm b}$	$.95 \leq \mathit{NNFI} < .97^{\circ}$	
CFI	$.97 \leq \mathit{CFI} \leq 1.00$	$.95 \leq \mathit{CFI} < .97^{\mathrm{e}}$	
GFI	$.95 \leq \mathit{GFI} \leq 1.00$	$.90 \le GFI < .95$	
AGFI	$.90 \le AGFI \le 1.00$, close to GFI	$.85 \le AGFI < .90$, close to GFI	
AIC	smaller than AIC for comparison model		
CAIC	smaller than $CAIC$ for comparison model		
ECVI	smaller than $ECVI$ for comparison model		

Sample and population values of RMSEA

Sample and population values of RMSEA under ML and robust ML

 $Estimator \, name \qquad Test \, statistic \qquad Sample \, formula \qquad \xrightarrow{n \to \infty} \qquad Population \, value \\ ML \qquad T_{ML,M} \qquad RMSEA_{ML,n} = \sqrt{\frac{T_{ML,M} - df_M}{n \times df_M}} \quad \to \quad RMSEA_{ML} = \sqrt{\frac{\widehat{F}_{ML,M}}{df_M}} \\ E(T_{ML,M}) = df \\ var(T_{ML,M}) = 2 \times df$

Roboust ML:

$$Satorra - Bentler \quad T_{SB,M} = \frac{T_{ML,M}}{c_{M}} \quad RMSEA_{SB,n} = \sqrt{\frac{T_{SB,M} - df_{M}}{n \times df_{M}}} \quad \rightarrow \quad RMSEA_{SB} = \sqrt{\frac{\widehat{F}_{ML,M}}{c_{M} \times df}}$$

rescaled $E(T_{SB,M}) = df$

$$Borsseau-Liard \& Savalei: \qquad RMSEA_{MLRobust,n} = \sqrt{\frac{\left(T_{ML,M} - c_{M} \times df_{M}\right)}{n \times df_{M}}}$$

$$or RMSEA_{SBRobust,n} = \sqrt{\frac{c_M \times (T_{SB,M} - df_M)}{n \times df_M}} \rightarrow RMSEA_{Robust,Pop} = \sqrt{\frac{\widehat{F}_{ML,M}}{df_M}}$$

Sample and population values of CFI

Sample and population values of CFI

Estimator name Sample formula $\xrightarrow{n\to\infty}$ Population value

$$ML \qquad \qquad CFI_{ML,n} = 1 - \frac{T_{ML,M} - df_{M}}{T_{ML,B} - df_{B}} \quad \rightarrow \qquad CFI_{ML,Pop} = 1 - \frac{\widehat{F}_{ML,M}}{\widehat{F}_{ML,B}}$$

Roboust ML:

$$Satorra - Bentler \quad CFI_{SB,n} = 1 - \frac{T_{SB,M} - df_{M}}{T_{SB,B} - df_{B}} \quad \rightarrow \quad CFI_{SB,Pop} = 1 - \frac{c_{B} \times \widehat{F}_{ML,M}}{c_{M} \times \widehat{F}_{ML,B}}$$

Borsseau – Liard & Savalei:

$$CFI_{MLRobust,n=} 1 - \frac{T_{ML,M} - c_M \times df_M}{T_{ML,B} - c_B \times df_B} \rightarrow CFI_{MLRobust,POP} = 1 - \frac{\widehat{F}_{ML,M} - \frac{c_M \times df_M}{n-1}}{\widehat{F}_{ML,B} - \frac{c_B \times df_B}{n-1}}$$

Sample and population values of TLI

Sample and population values of TLI

Estimator name Sample formula $\xrightarrow{n\to\infty} Population \ value$ $ML \qquad TLI_{ML,n} = 1 - \frac{T_{ML,M} - df_M}{T_{ML,R} - df_R} \times \frac{df_B}{df_M} \rightarrow TLI_{ML,Pop} = 1 - \frac{\widehat{F}_{ML,M}}{\widehat{F}_{ML,R}} \times \frac{df_B}{df_M}$

Roboust ML:

$$Satorra-Bentler \quad TLI_{SB,n} = 1 - \frac{T_{SB,M} - df_M}{T_{SB,B} - df_B} \times \frac{df_B}{df_M} \quad \rightarrow \quad TLI_{SB,Pop} = 1 - \frac{c_B \times \widehat{F}_{ML,M}}{c_M \times \widehat{F}_{ML,B}} \times \frac{df_B}{df_M}$$

Borsseau – Liard & Savalei:

$$TLI_{MLRobust,n=} 1 - \frac{T_{ML,M} - c_{M} \times df_{M}}{T_{ML,B} - c_{B} \times df_{B}} \times \frac{df_{B}}{df_{M}} \rightarrow TLI_{MLRobust,POP} = 1 - \frac{\hat{F}_{ML,M} - \frac{c_{M} \times df_{M}}{n-1}}{\hat{F}_{ML,B} - \frac{c_{B} \times df_{B}}{n-1}} \times \frac{df_{B}}{df_{M}}$$

Abbreviations

Root-Mean-Squared-Error-of Approximation using $T_{ML,M}$, df_M **RMSEA** RMSEA_{SB} Root-Mean-Squared-Error-of Approximation using $T_{SB,M}$, df_{M} Comparative-Fit Index using $T_{ML,M}$, df_M , $T_{ML,B}$, df_B CFI Comparative-Fit Index using $T_{SB,M}$, df_M , $T_{SB,B}$, df_B CFI_{SB} TLI Tucker-Lewis Index / Non-Normed-Fit Index using $T_{ML,M}$, df_M , $T_{ML,B}$, df_B Tucker-Lewis Index / Non-Normed-Fit Index using $T_{SB,M}$, df_M , $T_{SB,B}$, df_B TLI_{SR} Likelihood-Ratio- χ^2_{MS} test statistic for comparison target model against saturated model $T_{ML,M}$ Satorra-Bentler-rescaled Likelihood-Ratio-χ²_{MS} test statistic $T_{SB,M}$ Degrees of freedom target model (M) $df_{\scriptscriptstyle M}$ sample size nSatorra-Bentler-scaling constant for the target model (M) C_{M} Likelihood-Ratio- χ^2_{BS} test statistic for comparison baseline model against saturated model $T_{ML,B}$ Satorra-Bentler-rescaled Likelihood-Ratio-χ²_{BS} test statistic $T_{SB,B}$ df_B Degrees of freedom baseline model (B) Satorra-Bentler-scaling constant for the baseline model (B) C_{R} $\widehat{F}_{\mathit{ML},\mathit{M}}$ Minimum value of the Maximum-Likelihood Fit-Function for the target model $\widehat{F}_{ML,B}$ Minimum value of the Maximum-Likelihood Fit-Function for the baseline model

My robust_gof.ado

```
program define robust_gof, rclass
version 15
  if "`e(cmd)""!="sem" {
 di in red "This command only works after sem"
 exit 198
 if "`e(vce)""!="sbentler" {
 di in red "This command only works with sem, vce (sbentler) option"
 exit 198
 * Satorra-Bentler-corrected statistics
 local chi2_ms=`r(chi2_ms)'
 local chi2 bs=`r(chi2 bs)'
 local chi2sb_ms = `r(chi2sb_ms)'
 local chi2sb bs = `r(chi2sb bs)'
 local df_bs = `r(df_bs)'
 local df_ms = `r(df_ms)'
 local nobs='e(N)'
```

```
local lb90_rmsea=`r(lb90_rmsea)'
local ub90_rmsea=`r(ub90_rmsea)'
* Calculation of Satorra-Bentler correction factor c ms und c bs
local c_ms = `e(sbc_ms)'
local c_bs = `e(sbc_bs)'
* Calculation of robust CFI, TLI, RMSEA
local cfi=`r(cfi)'
local tli=`r(tli)'
local cfi_sb=`r(cfi_sb)'
local tli_sb=`r(tli_sb)'
local rmsea=`r(rmsea)'
local rmsea_sb=`r(rmsea_sb)'
local robust_cfi = 1 - ((`c_ms' / `c_bs')*(1 - `cfi_sb'))
local robust_tli = 1 - ((`c_ms' / `c_bs')*(1 - `tli_sb'))
local robust_rmsea = sqrt(`c_ms')*`rmsea_sb'
```

```
*stores saved results in r()
 return scalar robust rmsea = `robust rmsea'
 return scalar robust cfi = `robust cfi'
 return scalar robust tli = `robust tli'
 * Display robust Fit indices
 dis as text "Root-Mean-Squared-Error-of-Approximation: "
 dis ""
 dis as text "MVN-based RMSEA = " as result %6.4f `rmsea'
 dis as text "90% Confidence Interval for MNV-based RMSEA: "
 dis as text "MVN-based Lower Bound (5%) = " as result %6.4f `lb90 rmsea'
 dis as text "MVN-based Upper Bound (95%) = " as result %6.4f `ub90 rmsea'
 dis ""
 dis as text "Satorra-Bentler corrected RMSEA = " as result %6.4f `rmsea sb'
 dis ""
 dis as text "Robust-RMSEA = " as result %6.4f `robust rmsea'
 * dis as text "90% Confidence Interval for robust RMSEA: "
 * dis as text "Robust Lower Bound (5%) = " as result %6.4f `rob rmsea lb90'
 * dis as text "Robust Upper Bound (95%) = " as result %6.4f `rob_rmsea_ub90'
dis ""
 dis as text "Incremental Fit-Indices: "
 dis ""
 dis as text "MVN-based Tucker-Lewis-Index(TLI) = " as result %6.4f `tli'
 dis as text "Satorra-Bentler corrected TLI = " as result %6.4f `tli sb'
 dis as text "Robust Tucker-Lewis-Index(TLI) = " as result %6.4f `robust tli'
 dis ""
 dis as text "MVN-based Comparative Fit Index (CFI) = " as result %6.4f `cfi'
 dis as text "Satorra-Bentler-corrected CFI
                                               = " as result %6.4f `cfi sb'
 dis as text "Robust Comparative Fit Index(CFI) = " as result %6.4f `robust cfi'
 dis ""
end
exit
```

Items measuring Islamophobia

- A Die Ausübung des islamischen Glaubens in Deutschland sollte eingeschränkt werden. +) mm01
- B Der Islam passt in die deutsche Gesellschaft. -) mm02r
- C Die Anwesenheit von Muslimen in Deutschland führt zu Konflikten. +) mm03
- D Islamische Gemeinschaften sollten vom Staat beobachtet werden.+) mm04
- Ich hätte nichts gegen einen muslimischen Bürgermeister in meiner Gemeinde.
 -) mm05r
- F Ich habe den Eindruck, dass unter den in Deutschland lebenden Muslimen viele religiöse Fanatiker sind. +) mm06

(GESIS 2017, Liste 54)

Items measuring authoritarian submission

A Wir sollten dankbar sein für führende Köpfe, die uns genau sagen können, was wir tun sollen und wie.

lp01

B Im allgemeinen ist es einem Kind im späteren Leben nützlich, wenn es gezwungen wird, sich den Vorstellungen seiner Eltern anzupassen.

lp02

(GESIS 2017, Liste 34)

Left-right-self rating

(GESIS 2017, Liste 46)

Standardized solution of the SEM (ADF)

Goodness of fit statistics: estat gof (ADF)

Value	Description
327.481	model vs. saturated
0.000	
1803.350	baseline vs. saturated
0.000	
0.057	Root mean squared error of approximation
0.051	
0.063	
0.030	Probability RMSEA <= 0.05
0.841	Comparative fit index
0.794	Tucker-Lewis index
0.058	Standardized root mean squared residual
0.827	Coefficient of determination
	327.481 0.000 1803.350 0.000 0.057 0.051 0.063 0.030 0.841 0.794