From 3 to 15:
 Milestones, dead ends, prospects. A subjective review of Stata's history

Ulrich Kohler
ukohler@uni-potsdam.de

University of Potsdam
Faculty for Economics and Social Sciences

German Stata Users Group Meeting June $22^{\text {nd }} 2018$
University of Konstanz, Germany

Inhalt

Setting the Scene
Milestones (and Dead Ends)
Prospects (Why not Stata!?)

Versions

Education

Me

Plan of attack

Subjectively picking out

- milestones of development
- dead ends
to learn something on prospects.

Of course ...

... any statements made here are just personal views. Others have different views. At best, my views are an inspiration for the wishes and grumbles session at the end of the meeting.

Related

- Cox (2005)
- . help whatsnew\#to\#
- . ssc hot, author(name) n(\#)

Inhalt

Setting the Scene

Milestones (and Dead Ends)
Prospects (Why not Stata!?)

Inhalt

Milestones (and Dead Ends)
My Milestone
Command milestones
Other Milestones
Dead ends

Me reading "Statistics with Stata"

Why did I became a Stata user after reading SwS?

Why Stata?

Command line interface

```
. use ../downloaded/data1, clear
reg incomeR age yedu income
```


Models

mlogit lsat age yedu income

Speed

```
. set rmsg on
```

. mlogit rep78 foreign
r; $t=0.04$ 14:54:11

Humor

endless loop \rightarrow see "loop, endless"
loop, endless \rightarrow see
"endless loop"

Support

```
From: "William Gould" <wgould@stata.com>
To: statalist@hsphsun2.harvard.edu
Subject:Re: statalist: iweights and regress
Date: Fri, 30 Jan 1998 10:11:57 -0600
xyz <xyz@abc.de> asked for a clarification on iweights. Stay
away from them, I say, because they will invariably surprise
you. Let me explain:...
```


Inhalt

Milestones (and Dead Ends)
My Milestone
Command milestones
Other Milestones
Dead ends

My 14 favorites

I'll give some justifications for these choices.

Statistical commands

svy Describers (like me) need to respect the compexity of samples - especially weights.
marginsplot Makes understanding complicated models easy

```
regress income i.sex##i.emp##c.age##c.age
margins, at(age=(20(5) 80) emp=(1,2,3) sex=(1,2))
marginsplot, by(emp)
```

npregress If you do not believe in homogenous treatment effects, this is for you ...
bayes: In my heart, I am Bayesian. bayesmh were introduced in Stata 14, but Stata 15's bayes-prefix makes Bayesian analysis (syntactically) easy

General usability

foreach/forvalues By-by endless loops, and by-by clumpsy for.
graph twoway A command and a graphics programming language at the same time. Powerful and simple (but sometimes we want it even more powerful and much simpler at the same time.)
fvvarlist Factor-variable notation lets you specify complicated models. Use marginsplot to interpret them.
unicode America first? Perhaps, but American alone?

Programmer commands

program Stata wouldn't be Stata without program

```
program hello
display "hello, world"
end
```

syntax Parsing made easy
syntax [varlist] [if] [in]
file, the core of
esttab
psiduse
mata Matrix calculations made easy

```
: b = invsym(X'X)* (' Y
```


Other

net Stata became Web-aware in 1998. It turned out to be a game changer.
ssc the command formerly known as archutil made usage of user-written programs easy:

```
ssc hot
ssc install estout
```


Inhalt

Milestones (and Dead Ends)
My Milestone
Command milestones
Other Milestones
Dead ends

Educational milestones

Users

Inhalt

Milestones (and Dead Ends)
My Milestone
Command milestones
Other Milestones
Dead ends

Dead ends

- Stage. External command line editor for .gph-files. Published 1989, never updated. Deprecated since Stata 5.
- gph commands (Stata 5). Low level graphics language placed between
- gph open
- gph close gph continues to work under version 7; see help gph.
- Stata 7 had a "programmable bottom-layer graphics engine You may wish to code your graphics programs using this new feature and, if so, point your browser at http://developer.stata.com/graphics Documentation for the new developmental system resides there."
- for Loops as one-liner; Deprecated since Stata 8.

Inhalt

Setting the Scene
 Milestones (and Dead Ends)

Prospects (Why not Stata!?)

Real Programmers

Source: https://xkcd.com/378/

Speed

Speed was one (the) reason for me to start Stata. It is now a (the) reason for some to convert to R.
I do not know, but speed has many dimensions:

- Speed of writing code
- Speed of writing correct code
- Speed of understanding written code
- Speed of the code written
- Speed of making written code running on different OS

In any case, C is faster than Mata, Mata is faster than Ado, but a well written Ado-file might still be faster than a badly written Mata program.
Of course users can add their own C-code to Stata (Plugins); see http://www.stata.com/plugins.

Commands

- The number of available techniques was one (the) reason for me to start Stata. It is now a (the) reason for some to convert to R.
- I believe that R has more routines than Stata.
- As of today, I, personally don't care. So far, I can do all I want to do with Stata.
- Quality of routines?
- I am aware of colleagues saying that Stata cannot do something, which in fact it can.

Animated Graphs

- Animated graphs never been a top target of Stata's development
- Gould: animated graphs are for teaching not for publication. Since many journals are now online, this is no longer true.
- 'course, you can do animated graphs with gr7 from within Stata:
. do animated1
- 'course, you can build animated graphs by calling third party software from within Stata (ffmpeg, convert, i.e. ImageMagic)
. do animated2
Alos see https://blog.stata.com/2014/03/24/
how-to-create-animated-graphics-using-stata/

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $1 T_{E} \mathrm{X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Animated Graph in $A_{E} T_{E X}$-Beamer Example

Of course we would like to see this realy interactive.

Web scraping

- Web scraping is yet another reason for some to convert to R (and Python, of course)
- I realized that Python is much more powerful in processing text data. Regular Expressions, in particular, are easier to use there.
- However still:
- copy lets you copy a file from the Internet to your hard disk, which can then be processed with file.
- You can add Java plugins to Stata.
- Java plugins have been used to programm
- twitter2stata;
see https://blog.stata.com/2017/07/25/
importing-twitter-data-into-stata/
- facebook2stata;
see https://blog.stata.com/2018/01/16/
importing-facebook-data-into-stata/

'course there is an R-package ...

- Need to rename this file using number found in the upper left corner.
- An R-package finds that number
- 'course it is easy to the same with Stata
- do jpgrename

Literature

Cox, N. J. 2005. A brief history of Stata on its 20th anniversary. Stata Journal 5(1): 2005.
Henkel, J. and E. von Hippel. 2005. Welfare Implications of User Innovation. In Essays in Honor of Edwin Mansfield. The Economics of R\&D, Innovation and Technological Change, eds. A. N. Link and F. M. Scherer, 45-59.
Springer.
Jokisch, M. 2001. Open-Source Software-Entwicklung. Eine Analyse des Geschäftsmodells der StataCorp. Unpublished Master Thesis University of Munich.

