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Introduction

Efficiency Measurement
I Efficiency measurement industry in empirical research

3 Thousands of applications

I Two major methodological approaches
1. Parametric approaches

I Most important: stochastic frontier (SF; Aigner et al.,

1977)→ frontier, xtfrontier (real Stata); sfcross

and sfpanel (user written programs implementing

additional model variants; Belotti et al., 2013)

2. Non-parametric approaches
I Most important: DEA (Data Envelopment Analysis; Charnes

et al., 1978)→ dea (user written Stata command

implementing most common DEA models; Ji and Lee, 2010)
I Less often applied: FDH (Free Disposal Hull; Deprins et al.,

1984), partial frontier (Cazals et al., 2002; Aragon et al.,

2005)→ orderm, orderalpha (user written Stata

commands implementing FDH and partial frontier models;

Tauchmann, 2012)
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Methods Stochastic Frontier

Stochastic Frontier Models
I SF embedded in familiar regression framework

yi = x′iβ + ε i − νi with i indexing DMUs (decision making unit)

I yi: log-output from production

I xi: log-inputs to production

I εi: conventional normal error

3 Unexplained heterogeneity in production possibility frontier

I νi support on the [0,∞) interval (exponential, half-normal, truncated

normal)

3 Deviation from production possibility frontier (→ inefficiency)

I Efficiency measured as E(exp(−νi)|εi − νi)

I E(νi) or Var(νi) can be specified as a function of DMU specific

characteristics zi

I Stochastic Frontier model allows for both

1. Estimating individual efficiency

2. Identifying effects DMU characteristics exert on (in)efficiency
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Methods DEA

Data Envelopment Analysis

I DEA not a regression model

I Estimation of production possibility frontier by

non-parametrically enveloping a given sample of data
I Major advantages as compared to SF-Models

3 No distributional assumptions required

3 Straight forward modeling of multi-output processes (→ no

cost-efficiency approach required)

3 Not a causal model (→ endogeneity of inputs no issue)

I Various different DEA variants available
3 Assumptions about frontier (→ return to scale)

3 Efficient counterpart of observed DMU at frontier (→ orientation,

treatment of slacks)

I Solving linear program yields eff. score θi for each DMU i
1. θini ∈ (0,1]: possible prop. input reduction (input orient.)

2. θouti ∈ [0,∞): possible prop. output increase (output orient.)
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Methods DEA

Graphical Illustration of DEA
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Methods Two-step Approaches

DEA & Explaining Efficiency Differentials

I DEA focussed on measuring efficiency

3 Distance to estimated frontier

3 Benchmarking major field of applications

I DEA does not explain efficiency differentials

I Two-step approach intuitive

1. Estimating θi using DEA (→ yields certain share M/N of

DMUs for which θ̂i = 1 holds)

2. Regressing θ̂i (or transformation of θ̂i) on DMU

characteristics zi (OLS, censored regression, ...)

I Numerous applications of such two-step approaches
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Methods Simar & Wilson

The argument of Simar and Wilson (2007)

Conventional two-step approaches inappropriate

1. Two-step approaches lack a well defined data generating
mechanism

3 Censored regression model not appropriate

3 Probability mass at θ = 1 artifact of efficiency

measurement by DEA (finite sample problem)

3 No strictly positive probability for DMU being located on

true production possibility frontier ( 6= estimated DEA

frontier)

2. DEA generates complex (unknown) pattern of correlation
between the estimated efficiency scores

3 θ̂i with i = 1, . . . ,N by construction not independent

3 Misleading inference based on two-step approaches

3 Naive bootstrap no solution because of boundary

estimation nature of DEA
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Methods Simar & Wilson

The Simar and Wilson (2007) Approach

1. Constructing and simulating a ‘sensible’ data generating

process

2. Generating artificial iid bootstrap samples from artificial

data generating process

3. Construction standard errors and confidence through

bootstrapping/simulation
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Methods Simar & Wilson

The Simar and Wilson (2007) Procedure

1. Estimate θi with i = 1, . . . ,N using DEA

2. Fitting θ̂i = β′zi + εi using truncated regression (ML)

(→ obtain estimates β̂ and σ̂ε)

3 Efficient DMUs j (θ̂j = 1, j = 1, . . . ,M) excluded

3 εi ≡ ε i + ζi with ζi ≡ θ̂i − θi
3 θ̂ini ∈ (0,1] (input orient.): right-truncation at 1

3 θ̂outi ∈ [0,∞) (output orient.): left-truncation at 1
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Methods Simar & Wilson

The Simar and Wilson (2007) Procedure II

3. Loop over the next three steps B times (b = 1, . . . ,B)

3.1 Draw εbi from N(0, σ̂ε) with left-truncation (output orient.)

or right-truncation (input orient.) at (1− β̂′zi) for

i = M+ 1, . . . ,N
3.2 Compute θbi = β̂′zi + εbi for i = M+ 1, . . . ,N
3.3 Estimate β̂b and σ̂b

ε by truncated regression using the

artificial efficiency scores θbi as lhs-variable

4. Construct standard errors for β̂ and σ̂ε (conf. interv. for β

and σε) from simulated distribution of β̂b and σ̂b
ε
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Stata Implementation Scope

The simarwilson command

I simarwilson implements above procedure in Stata

3 Except for step 1
3 Efficiency scores have to be obtained prior to running

simarwilson (→ e.g. using dea)
I Implemented procedure is ‘algorithm #1’ (Simar and Wilson,

2007)
I Alternative (more involved) ‘algorithm #2’ requires looping

over DEA

I simarwilson requires user written mata modul RTNORM

Belotti and Ilardi (2010) to drawn from the truncated

normal distribution
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Stata Implementation Syntax

Syntax of simarwilson

simarwilson depvar indepvars
[
if
] [

in
]
,
[
nounit

reps(#) dots level(#)
]

I depvar is assumed to be an efficiency score estimated in a preceding

step. depvar needs to be a numeric nonnegative variable.
I nounit indicates that depvar > 1 holds for inefficient dmus, unit

indicates that for indicates that depvar < 1 holds for inefficient dmus.

If depvar is is well coded, simarwilson recognizes if efficiency scores

originate form an input or an output-oriented DEA. Specifying nounit
is required for poorly coded data or if the data contain superefficient

dmus
I With dots specified one dot character is displayed for each bootstrap

replication
I reps(#) specifies the number of bootstrap replications to be

performed. The default is 50. For simulating meaningful confidence

intervals a much larger number of replications is required

I level(#) set confidence level; default is level(95)
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Empirical Application Data

Application & Data

I Regional efficiency of health care provision in Bavaria

3 simarwilson originates from project analyzing efficiency

of nursing homes

3 Protected data (→ not well suited for illustrating the

command)

I County level data (N = 96) for year 2006

I Output from health production

3 Regional survival rate (→ corrected for demographic

composition; normalized to national average)

I Input to health production

1. General practitioners (per 100 000 inhabitants)

2. Medical specialists (per 100 000 inhabitants)

3. Hospital beds (per 10 000 inhabitants)
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Empirical Application Data

Descriptives for Input & Outputs

. tabstat survival gps specialists beds, columns(statistics) statistics
> (mean sd median min max) format(%7.0g)

variable mean sd p50 min max

survival 1.0075 .08002 .9978 .84532 1.2205
gps 77.829 11.603 74.392 57.792 109.98

specialists 93.127 62.39 66.709 16.497 245.78
beds 66.402 51.808 49.156 1.7513 227.16

I Variables that enter dea

I Substantial heterogeneity across counties
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Empirical Application Data

Results from DEA

. foreach direction in i o {
2. quietly: dea gps specialists beds = survival, rts(vrs) ort

> (`direction´)
3. mat deascores = r(dearslt)
4. mat deascores = deascores[1...,"theta"]
5. sort dmu
6. cap drop dea1
7. svmat deascores, names(dea)
8. rename dea1 deascore_`direction´
9. gen efficient_`direction´ = deascore_`direction´ == 1
10. }
options: RTS(VRS) ORT(IN) STAGE(2)
options: RTS(VRS) ORT(OUT) STAGE(2)

. tabstat deascore_i deascore_o efficient_i efficient_o, columns(statistics) st
> atistics(mean sd median min max) format(%7.0g)

variable mean sd p50 min max

deascore_i .81203 .12388 .82317 .52548 1
deascore_o 1.1421 .09806 1.1424 1 1.3611
efficient_i .125 .33245 0 0 1
efficient_o .125 .33245 0 0 1
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Empirical Application Data

Explanatory Variables

I County unemployment rate (unemployment)

I Women’s share in county population (female)

I Indicator for urban county (single town constituting a

county, urban)

I Share of private hospitals in county hospital beds

(privatehosp)

. tabstat `reglist´, columns(statistics) statistics(mean sd median min
> max) format(%7.0g)

variable mean sd p50 min max

unemployment .07069 .02311 .0675 .034 .132
female .51058 .00881 .50778 .49683 .53575
urban .26042 .44117 0 0 1

privatehosp .16448 .29363 0 0 1
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Empirical Application Results

(Naive) Censored Regression Analysis

I Estimated input oriented efficiency (deascore_i) at lhs

. tobit deascore_i `reglist´, ul(1)

Tobit regression Number of obs = 96
LR chi2(4) = 58.47
Prob > chi2 = 0.0000

Log likelihood = 62.060332 Pseudo R2 = -0.8905

deascore_i Coef. Std. Err. t P>|t| [95% Conf. Interval]

unemployment -1.498905 .6192545 -2.42 0.017 -2.728798 -.269012
female -4.483155 1.677094 -2.67 0.009 -7.814008 -1.152302
urban -.0657136 .0364946 -1.80 0.075 -.1381952 .0067679

privatehosp .0188993 .0358417 0.53 0.599 -.0522853 .090084
_cons 3.226821 .8407472 3.84 0.000 1.557024 4.896618

/sigma .0976889 .0078113 .0821749 .1132029

Obs. summary: 0 left-censored observations
84 uncensored observations
12 right-censored observations at deascore_i>=1
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Empirical Application Results

Conventional Truncated Regression Analysis

. truncreg deascore_i `reglist´, ul(1)
(note: 12 obs. truncated)

Fitting full model:

Iteration 0: log likelihood = 102.21542
Iteration 1: log likelihood = 102.32083
Iteration 2: log likelihood = 102.32114
Iteration 3: log likelihood = 102.32114

Truncated regression
Limit: lower = -inf Number of obs = 84

upper = 1 Wald chi2(4) = 91.26
Log likelihood = 102.32114 Prob > chi2 = 0.0000

deascore_i Coef. Std. Err. z P>|z| [95% Conf. Interval]

unemployment -1.120479 .5156737 -2.17 0.030 -2.13118 -.1097767
female -5.377884 1.407259 -3.82 0.000 -8.136062 -2.619706
urban -.0403955 .0289685 -1.39 0.163 -.0971728 .0163818

privatehosp -.0257407 .0314323 -0.82 0.413 -.0873468 .0358655
_cons 3.634028 .7056814 5.15 0.000 2.250918 5.017138

/sigma .0753927 .0064815 11.63 0.000 .0626893 .0880962

I Qualitatively similar results as from tobit
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Empirical Application Results

Simar & Wilson (2007) Procedure

. simarwilson deascore_i `reglist´, reps(500)

Simar & Wilson (2007) truncated regression
DMUs inefficient if deascore_i < unity

Number of obs. = 96
Number of truncated obs. = 12
Number of bootstr. reps. = 500
Wald-test (p-value) = 5.0e-18
Log-likelihood = 102.321

deascore_i Coef. Std. Err. z P>|z| [95% Conf. Interval]

deascore_i
unemployment -1.120479 .4943829 -2.27 0.023 -2.089451 -.1515059

female -5.377884 1.289016 -4.17 0.000 -7.904308 -2.85146
urban -.0403955 .0284727 -1.42 0.156 -.096201 .0154099

privatehosp -.0257407 .0275043 -0.94 0.349 -.0796481 .0281667
_cons 3.634028 .6554127 5.54 0.000 2.349443 4.918613

sigma
_cons .0753927 .0073111 10.31 0.000 .0610632 .0897223

I Only standard errors differ from truncreg (alg. #1)

I (In this application) just small deviation from truncreg
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Empirical Application Results

simarwilson: output-oriented
. simarwilson deascore_o `reglist´, reps(500)
warning: all efficiency scores deascore_o outside unit-interval, option unit ch
> angened to nounit

Simar & Wilson (2007) truncated regression
DMUs inefficient if deascore_o > unity

Number of obs. = 96
Number of truncated obs. = 12
Number of bootstr. reps. = 500
Wald-test (p-value) = 1.1e-08
Log-likelihood = 108.830

deascore_o Coef. Std. Err. z P>|z| [95% Conf. Interval]

deascore_o
unemployment 3.315517 .5375734 6.17 0.000 2.261893 4.369142

female -1.191438 1.384378 -0.86 0.389 -3.90477 1.521893
urban -.0518028 .0269731 -1.92 0.055 -.1046692 .0010636

privatehosp -.0301374 .0292012 -1.03 0.302 -.0873707 .0270958
_cons 1.543875 .6942935 2.22 0.026 .1830849 2.904665

sigma
_cons .0739952 .0070933 10.43 0.000 .0600927 .0878977

I Results differ from input-oriented analysis
I Estimated effect for female, urban, and privatehosp change direction
I urban becomes significant (10% level)
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Empirical Application Results

simarwilson: output-oriented (inverted score

. gen deascore_oi = 1/deascore_o

. simarwilson deascore_oi `reglist´, reps(500)

Simar & Wilson (2007) truncated regression
DMUs inefficient if deascore_oi < unity

Number of obs. = 96
Number of truncated obs. = 12
Number of bootstr. reps. = 500
Wald-test (p-value) = 1.0e-09
Log-likelihood = 132.557

deascore_oi Coef. Std. Err. z P>|z| [95% Conf. Interval]

deascore_oi
unemployment -2.349899 .3703527 -6.35 0.000 -3.075777 -1.624021

female .8053843 .9966054 0.81 0.419 -1.147926 2.758695
urban .0374269 .02103 1.78 0.075 -.0037912 .078645

privatehosp .0247856 .0212903 1.16 0.244 -.0169425 .0665137
_cons .6116713 .4991997 1.23 0.220 -.3667421 1.590085

sigma
_cons .0530765 .0051011 10.40 0.000 .0430784 .0630745

I Results qualitatively equivalent to using not inverted

scores at lhs
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Conclusions

Conclusions

I Using DEA-scores as lhs-variable in regression model

questionable

I Simar & Wilson (2007) propose procedure that is not ad
hoc but has a basis in statistical theory

3 Very influential in applied efficiency analysis

I simarwilson implements the procedure (alg. #1) in
Stata

3 Also implementing alg. #2 worth considering

3 Complicated by alg. #2 requiring looping over DEA

I In many application results (inference) do not differ much

from simple truncated regression
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