

simarwilson: DEA based Two-Step Efficiency Analysis

Harald Tauchmann

Friedrich-Alexander-Universität Erlangen-Nürnberg Professur für Gesundheitsökonomie

June 26, 2015

2015 German Stata Users Group Meeting *Nuremberg, IAB*

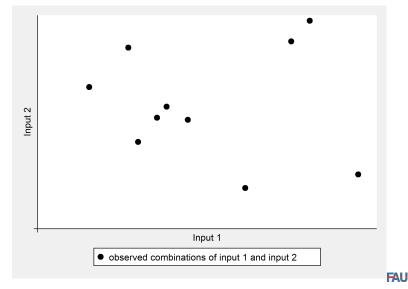
Efficiency Measurement

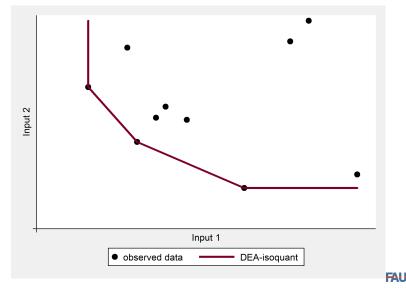
- Efficiency measurement industry in empirical research
 - Thousands of applications
- Two major methodological approaches
 - 1. Parametric approaches
 - ► Most important: stochastic frontier (SF; Aigner et al., 1977) → frontier, xtfrontier (real Stata); sfcross and sfpanel (user written programs implementing additional model variants; Belotti et al., 2013)
 - 2. Non-parametric approaches
 - ► Most important: DEA (Data Envelopment Analysis; Charnes et al., 1978) → dea (user written Stata command implementing most common DEA models; Ji and Lee, 2010)
 - ► Less often applied: FDH (Free Disposal Hull; Deprins et al., 1984), partial frontier (Cazals et al., 2002; Aragon et al., 2005) → orderm, orderalpha (user written Stata commands implementing FDH and partial frontier models: Tauchmann, 2012)

Stochastic Frontier Models

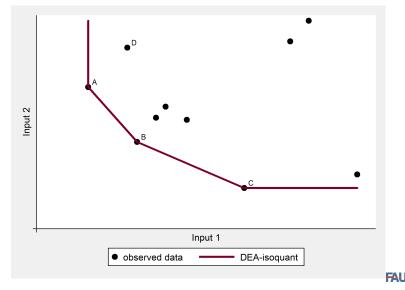
- ► SF embedded in familiar regression framework $y_i = x'_i\beta + \varepsilon_i - \nu_i$ with *i* indexing DMUs (decision making unit)
- y_i: log-output from production
- x_i: log-inputs to production
- ε_i: conventional normal error
 - Unexplained heterogeneity in production possibility frontier
- ▶ v_i support on the $[0, \infty)$ interval (exponential, half-normal, truncated normal)

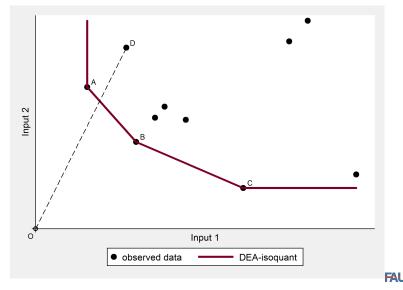
 $\checkmark\,$ Deviation from production possibility frontier (\rightarrow inefficiency)

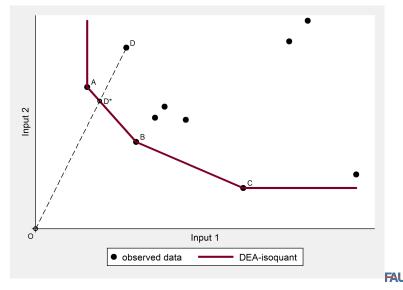

- Efficiency measured as $E(\exp(-\nu_i)|\varepsilon_i \nu_i)$
- ► E(v_i) or Var(v_i) can be specified as a function of DMU specific characteristics z_i
- Stochastic Frontier model allows for both
 - 1. Estimating individual efficiency
 - 2. Identifying effects DMU characteristics exert on (in)efficiency

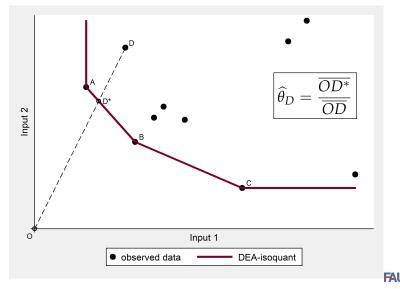


Data Envelopment Analysis


- DEA not a regression model
- Estimation of production possibility frontier by non-parametrically enveloping a given sample of data
- Major advantages as compared to SF-Models
 - No distributional assumptions required
 - ✓ Straight forward modeling of multi-output processes (→ no cost-efficiency approach required)
 - ✓ Not a causal model (\rightarrow endogeneity of inputs no issue)
- Various different DEA variants available
 - $\checkmark\,$ Assumptions about frontier (\rightarrow return to scale)
 - ✓ Efficient counterpart of observed DMU at frontier (→ orientation, treatment of slacks)
- Solving linear program yields eff. score θ_i for each DMU *i*
 - 1. $\theta_i^{in} \in (0, 1]$: possible prop. input reduction (input orient.)
 - 2. $\theta_i^{out} \in [0, \infty)$: possible prop. output increase (output orient.)







DEA & Explaining Efficiency Differentials

DEA focussed on measuring efficiency

- Distance to estimated frontier
- Benchmarking major field of applications
- DEA does not explain efficiency differentials
- Two-step approach intuitive
 - 1. Estimating θ_i using DEA (\rightarrow yields certain share M/N of DMUs for which $\hat{\theta}_i = 1$ holds)
 - 2. Regressing $\hat{\theta}_i$ (or transformation of $\hat{\theta}_i$) on DMU characteristics z_i (OLS, censored regression, ...)
- Numerous applications of such two-step approaches

The argument of Simar and Wilson (2007)

Conventional two-step approaches inappropriate

- 1. Two-step approaches lack a well defined data generating mechanism
 - $\checkmark\,$ Censored regression model not appropriate
 - ✓ Probability mass at $\theta = 1$ artifact of efficiency measurement by DEA (finite sample problem)
 - ✓ No strictly positive probability for DMU being located on true production possibility frontier (≠ estimated DEA frontier)
- 2. DEA generates complex (unknown) pattern of correlation between the estimated efficiency scores
 - ✓ $\hat{\theta}_i$ with i = 1, ..., N by construction not independent
 - Misleading inference based on two-step approaches
 - Naive bootstrap no solution because of boundary estimation nature of DEA

The Simar and Wilson (2007) Approach

- Constructing and simulating a 'sensible' data generating process
- 2. Generating artificial iid bootstrap samples from artificial data generating process
- 3. Construction standard errors and confidence through bootstrapping/simulation

The Simar and Wilson (2007) Procedure

- 1. Estimate θ_i with $i = 1, \dots, N$ using **DEA**
- 2. Fitting $\hat{\theta}_i = \beta' z_i + \epsilon_i$ using **truncated regression** (ML) $(\rightarrow \text{ obtain estimates } \widehat{\beta} \text{ and } \widehat{\sigma}_{\varepsilon})$
 - ✓ Efficient DMUs j ($\hat{\theta}_j = 1, j = 1, ..., M$) excluded

$$\boldsymbol{\epsilon}_{i} \equiv \varepsilon_{i} + \zeta_{i}$$
 with $\zeta_{i} \equiv \theta_{i} - \theta_{i}$

- ✓ $\hat{\theta}_i^{in} \in (0, 1]$ (input orient.): right-truncation at 1 ✓ $\hat{\theta}_i^{out} \in [0, \infty)$ (output orient.): left-truncation at 1

The Simar and Wilson (2007) Procedure II

- 3. **Loop** over the next three steps *B* times (b = 1, ..., B)
 - 3.1 **Draw** ε_i^b from $N(0, \hat{\sigma}_{\varepsilon})$ with **left-truncation** (output orient.) or **right-truncation** (input orient.) at $(1 \hat{\beta}' z_i)$ for i = M + 1, ..., N
 - **3.2 Compute** $\theta_i^b = \hat{\beta}' z_i + \varepsilon_i^b$ for $i = M + 1, \dots, N$
 - 3.3 Estimate $\hat{\beta}^b$ and $\hat{\sigma}^b_{\varepsilon}$ by **truncated regression** using the artificial efficiency scores θ^b_i as *lhs*-variable
- 4. Construct **standard errors** for $\hat{\beta}$ and $\hat{\sigma}_{\varepsilon}$ (conf. interv. for β and σ_{ε}) from **simulated distribution** of $\hat{\beta}^{b}$ and $\hat{\sigma}_{\varepsilon}^{b}$

The simarwilson command

simarwilson implements above procedure in Stata

- Except for step 1
- ✓ Efficiency scores have to be obtained prior to running simarwilson (→ e.g. using dea)
 - Implemented procedure is 'algorithm #1' (Simar and Wilson, 2007)
 - Alternative (more involved) 'algorithm #2' requires looping over DEA
- simarwilson requires user written mata modul RTNORM
 Belotti and Ilardi (2010) to drawn from the truncated
 normal distribution

Syntax of simarwilson

simarwilson depvar indepvars [if] [in], [nounit reps(#) dots level(#)]

- depvar is assumed to be an efficiency score estimated in a preceding step. depvar needs to be a numeric nonnegative variable.
- nounit indicates that depvar > 1 holds for inefficient dmus, unit indicates that for indicates that depvar < 1 holds for inefficient dmus. If depvar is is well coded, simarwilson recognizes if efficiency scores originate form an input or an output-oriented DEA. Specifying nounit is required for poorly coded data or if the data contain superefficient dmus
- With dots specified one dot character is displayed for each bootstrap replication
- reps (#) specifies the number of bootstrap replications to be performed. The default is 50. For simulating meaningful confidence intervals a much larger number of replications is required
- level(#) set confidence level; default is level(95)

Application & Data

- Regional efficiency of health care provision in Bavaria
 - simarwilson originates from project analyzing efficiency of nursing homes
 - ✓ Protected data (→ not well suited for illustrating the command)
- County level data (N = 96) for year 2006
- Output from health production
 - ✓ Regional survival rate (→ corrected for demographic composition; normalized to national average)
- Input to health production
 - 1. General practitioners (per 100 000 inhabitants)
 - 2. Medical specialists (per 100 000 inhabitants)
 - 3. Hospital beds (per 10 000 inhabitants)

Descriptives for Input & Outputs

tabstat survival gps specialists beds, columns(statistics) statistics > (mean sd median min max) format(%7.0g)

variable	mean	sd	p50	min	max
survival	1.0075	.08002	.9978	.84532	1.2205
gps	77.829	11.603	74.392	57.792	109.98
specialists	93.127	62.39	66.709	16.497	245.78
beds	66.402	51.808	49.156	1.7513	227.16

- Variables that enter deal
- Substantial heterogeneity across counties

Results from DEA

```
foreach direction in i o {
  2.
                     quietly: dea gps specialists beds = survival, rts(vrs) ort
> (`direction')
  з.
                     mat deascores = r(dearslt)
  4
                     mat deascores = deascores[1..., "theta"]
  5.
                     sort dmu
  6
                     cap drop deal
  7.
                     symat deascores, names(dea)
                     rename deal deascore `direction'
  8
                     gen efficient_`direction' = deascore_`direction' == 1
  9.
10. }
options: RTS(VRS) ORT(IN) STAGE(2)
options: RTS(VRS) ORT(OUT) STAGE(2)
```

```
. tabstat deascore_i deascore_o efficient_i efficient_o, columns(statistics) st
> atistics(mean sd median min max) format(%7.0g)
```

variable	mean	sd	p50	min	max
deascore_i	.81203	.12388	.82317	.52548	1
deascore_o	1.1421	.09806	1.1424	1	1.3611
efficient_i	.125	.33245	0	0	1
efficient_o	.125	.33245	0	0	1

Explanatory Variables

- County unemployment rate (unemployment)
- Women's share in county population (female)
- Indicator for urban county (single town constituting a county, urban)
- Share of private hospitals in county hospital beds (privatehosp)

tabstat `reglist', columns(statistics) statistics(mean sd median min
> max) format(%7.0g)

variable	mean	sd	p50	min	max
unemployment	.07069	.02311	.0675	.034	.132
female	.51058	.00881	.50778	.49683	.53575
urban	.26042	.44117	0	0	1
privatehosp	.16448	.29363	0	0	1

(Naive) Censored Regression Analysis

Estimated input oriented efficiency (*deascore_i*) at lhs

tobit deascore_i `reglist', ul(1)

Tobit regression

Number of obs	=	96
LR chi2(4)	=	58.47
Prob > chi2	=	0.0000
Pseudo R2	=	-0.8905

Log likelihood = 62.060332

	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
unemployment female urban privatehosp _cons	-1.498905 -4.483155 0657136 .0188993 3.226821	.6192545 1.677094 .0364946 .0358417 .8407472	-2.42 -2.67 -1.80 0.53 3.84	0.017 0.009 0.075 0.599 0.000	-2.728798 -7.814008 1381952 0522853 1.557024	269012 -1.152302 .0067679 .090084 4.896618
/sigma	.0976889	.0078113			.0821749	.1132029
Obs. summary	. 84		red obse	rvations	at deascore_i	>=1

Conventional Truncated Regression Analysis

. trun (note: 12 obs	ncreg deascore . truncated)	e_i `reglist	, ul(1)			
Fitting full r	model:					
Iteration 0: Iteration 1: Iteration 2: Iteration 3:	log likeliho log likeliho log likeliho log likeliho	bod = 102.3 bod = 102.3	2083 2114			
Truncated reg: Limit: lowe: uppe: Log likelihood	r = -inf r = 1	L			Number of ok Wald chi2(4) Prob > chi2	= 91.26
deascore_i	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
unemployment female urban privatehosp cons	-1.120479 -5.377884 0403955 0257407 3.634028		-2.17 -3.82 -1.39 -0.82 5.15	0.000 0.163	-2.13118 -8.136062 0971728 0873468 2.250918	.0163818
/sigma	.0753927	.0064815	11.63	0.000	.0626893	.0880962

Qualitatively similar results as from tobit

Harald Tauchmann (FAU)

Simar & Wilson (2007) Procedure

simarwilson deascore_i `reglist', reps(500)

Simar & Wilson (2007) truncated regression DMUs inefficient if deascore_i < unity

Number	of	obs.	=	96
Number	of	truncated obs.	=	12
Number	of	bootstr. reps.	=	500
Wald-test (p-value)			=	5.0e-18
Log-likelihood			=	102.321

deascore_i	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
deascore_i						
unemployment	-1.120479	.4943829	-2.27	0.023	-2.089451	1515059
female	-5.377884	1.289016	-4.17	0.000	-7.904308	-2.85146
urban	0403955	.0284727	-1.42	0.156	096201	.0154099
privatehosp	0257407	.0275043	-0.94	0.349	0796481	.0281667
_cons	3.634028	.6554127	5.54	0.000	2.349443	4.918613
sigma						
_cons	.0753927	.0073111	10.31	0.000	.0610632	.0897223

- Only standard errors differ from truncreg (alg. #1)
- (In this application) just small deviation from truncreg

- UND WHITEOHATT

simarwilson: output-oriented

simarwilson deascore o `reglist', reps(500) warning: all efficiency scores deascore_o outside unit-interval, option unit ch > angened to nounit

Simar & Wilson (2007) truncated regression DMUs inefficient if deascore o > unity

. =	= 96
ncated obs. =	: 12
str. reps. =	500
/alue) =	1.1e-08
= E	108.830
	ncated obs. = tstr. reps. = value) =

deascore_o	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
deascore_o						
unemployment	3.315517	.5375734	6.17	0.000	2.261893	4.369142
female	-1.191438	1.384378	-0.86	0.389	-3.90477	1.521893
urban	0518028	.0269731	-1.92	0.055	1046692	.0010636
privatehosp	0301374	.0292012	-1.03	0.302	0873707	.0270958
_cons	1.543875	.6942935	2.22	0.026	.1830849	2.904665
sigma						
_cons	.0739952	.0070933	10.43	0.000	.0600927	.0878977

- Results differ from input-oriented analysis
- Estimated effect for female, urban, and privatehosp change direction
- urban becomes significant (10% level)

Results

simarwilson: output-oriented (inverted score

gen deascore oi = 1/deascore o

simarwilson deascore_oi `reglist', reps(500)

Simar & Wilson (2007) truncated regression DMUs inefficient if deascore_oi < unity

Number o	of	obs.	=	96
Number o	of	truncated obs.	=	12
Number o	of	bootstr. reps.	=	500
Wald-test (p-value)			=	1.0e-09
Log-likelihood			=	132.557

deascore_oi	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
deascore_oi						
unemployment	-2.349899	.3703527	-6.35	0.000	-3.075777	-1.624021
female	.8053843	.9966054	0.81	0.419	-1.147926	2.758695
urban	.0374269	.02103	1.78	0.075	0037912	.078645
privatehosp	.0247856	.0212903	1.16	0.244	0169425	.0665137
_cons	.6116713	.4991997	1.23	0.220	3667421	1.590085
sigma						
_cons	.0530765	.0051011	10.40	0.000	.0430784	.0630745

Results gualitatively equivalent to using not inverted scores at Ihs

Conclusions

- Using DEA-scores as *lhs*-variable in regression model questionable
- Simar & Wilson (2007) propose procedure that is not ad hoc but has a basis in statistical theory
 - ✓ Very influential in applied efficiency analysis
- simarwilson implements the procedure (alg. #1) in Stata
 - ✓ Also implementing alg. #2 worth considering
 - Complicated by alg. #2 requiring looping over DEA
- In many application results (inference) do not differ much from simple truncated regression

References

- Aigner, D., Lovell, C. A. K. and Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models, *Journal of Econometrics* 6: 21–37.
- Aragon, Y., Daouia, A. and Thomas-Agnan, C. (2005). Nonparametric frontier estimation: A conditional quantilebased approach, *Econometric Theory* 21: 358–389.
- Belotti, F., Daidone, S., Ilardi, G. and Atella, V. (2013). Stochastic frontier analysis using stata, Stata Journal 13(4): 719–758.
- Belotti, F. and Ilardi, G. (2010). RTNORM: Stata Mata module to produce truncated normal pseudorandom variates, Statistical Software Components, Boston College Department of Economics.
- Cazals, C., Florens, J. P. and Simar, L. (2002). Nonparametric frontier estimation: A robust approach, *Journal of Econometrics* 106: 1–25.
- Charnes, A., Cooper, W. W. and Rhodes, E. (1978). Measuring efficiency of decision making units, European Journal of Operational Research 2: 429–444.
- Deprins, D., Simar, L. and Tulkens, H. (1984). Measuring labor-efficiency in post offices, in M. Marchand, P. Pestieau and H. Tulkens (eds), *The Performance of Public Enterprises: Concepts and Measurement*, Elsevier, Amsterdam, pp. 243–267.
- Ji, Y. and Lee, C. (2010). Data envelopment analysis, Stata Journal 10(2): 267-280.
- Simar, L. and Wilson, P. W. (2007). Estimation and inference in two-stage semi-parametric models of production processes, *Journal of Econometrics* 136: 31–64.

Tauchmann, H. (2012). Partial frontier efficiency analysis, Stata Journal 12(3): 461–478.

