
Statistical Learning with
Boosting

Matthias Schonlau, Ph.D.

University of Waterloo, Canada

Outline

• Example: Ethyl data
• Regression Trees (CART)

• Overfitting

• MART algorithm to Boosting
• Tuning parameters

• Comparison: Gaussian Linear regression vs boosting

• Example: Propensity scoring
• Death penalty data

• Comparison: Logistic regression vs boosting

Ethyl Acrylate

• Y= Kinematic viscosity of a lubricant

• x1=temperature (C)

• X2=pressure in atmospheres (atm)

• N=50

• Data Reference: Bates and Watts, Nonlinear regression analysis and
its application, Wiley.

Linear regression

• Regressing on 30 random observations

• Conclusion: temp does not matter

Linear regression
diagnostic : qq plot
If the normality assumption were true, all
points would be on the line

-2
0
0

0
0

0
-1

0
0

0
0

0

0

1
0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0

R
e
s
id

u
a
ls

-200000 -100000 0 100000 200000
Inverse Normal

Linear regression
diagnostic:
constant variance plot
If the assumption of constant variance were
true, there should be no pattern here.

-2
0

2
4

S
ta

n
d
a

rd
iz

e
d

 r
e

s
id

u
a
ls

-50000 0 50000 100000 150000
Fitted values

Viscosity as a function of pressure and
temperature
• .

0

1
0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0

v
is

c
o
s
it
y

0 2000 4000 6000 8000
pressure

0

1
0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0

v
is

c
o
s
it
y

0 20 40 60 80 100
temp

CART: Classification and
Regression Trees
We now introduce a different method.

Emphasis is on concepts rather than mathematical rigour.

CART: The data
Larger circle means greater viscosity (y).

CART: split=1
The predicted values of viscosity are constant
in the red area , and constant in the yellow
area.

i.e. one split =two predicted values

For Gaussian distribution, the predicted
value is the average viscosity of all obs in the
same area.

The best split is chosen across all variables
and all values for each variable such that
residual sums of squares a minimized.

The plot is a scatterplot with plotting symbols of squares.

CART: split=1
Corresponding tree

|
pressure< 5957

2.882e+04

n=29

4.735e+05

n=1

The tree graph was produced in R as Stata has no such program. The exact split point may appear to be
slightly different on these graphs.

Predicted
values

CART: split=2
Tree

|
pressure< 5957

pressure< 5001

1.127e+04

n=25

1.385e+05

n=4

4.735e+05
n=1

CART: split=3
• The intial 2 splits were on pressure

• This split is on temperature in the middle
pressure region.

• Because the split depends on the region
for pressure, this represents a two-level
interaction

• Potential for interactions= number of
splits

CART: split=3
.

|
pressure< 5957

pressure< 5001

temp>=68.351.127e+04

n=25

4119

n=1

1.833e+05

n=3

4.735e+05

n=1

CART: split=4
.

|
pressure< 5957

pressure< 5001

temp>=12.5 temp>=68.35

4191

n=22

6.319e+04

n=3

4119

n=1

1.833e+05

n=3

4.735e+05

n=1

CART: split=5
More intense shades of red correspond to
larger predicted values.

CART: split=10

CART: split=20
.

CART: split=28
28 splits result into 29 regions.

N=30

almost each observation gets its own region.

CART: all possible 29 splits

• Every data point has its
own terminal leaf.

• Perfect prediction (on this
data)

• The tree appears
unbalanced because mostly
small regions are chopped
off the one large region

|
pressure< 5957

pressure< 5001

temp>=12.5

pressure< 4162

pressure< 3219

pressure< 1465

pressure< 745.7

temp>=68.35

pressure< 201.6

pressure< 544.1

pressure< 354

temp< 31.4

temp>=68.35

pressure< 1089

temp>=31.4temp>=31.4

temp>=31.4

temp>=68.35

pressure< 2506

pressure< 1872

temp>=61.95

temp>=68.35

temp< 31.4

pressure< 3596

pressure< 2577

temp>=68.35

temp>=31.4

pressure< 5173

29.3

n=2

59.6

n=1

86.3

n=1

93.9

n=1

105.7

n=1

176.4

n=1

182.5
n=1

332.8

n=1

338.5

n=1

454.4

n=1

506

n=1

343.5

n=1

539.7

n=1

772.5
n=1

816.6
n=1

1946
n=1

1252

n=1

1.368e+04

n=1

2366
n=1

3.138e+04

n=1

3.671e+04

n=1

2902
n=1
3.533e+04

n=1

1.513e+05

n=1

4119

n=1

1.361e+05

n=1

1.602e+05
n=1
2.536e+05

n=1

4.735e+05
n=1

Overfitting

• Overfitting occurs when the model “hugs” the data so well that it
predicts perfectly on the given data - but not a fresh data set

• Overfitting is much less of a danger in Linear models because the
linearity constraint mostly prevents overfitting.
• Overfitting may occur in linear models when too many interactions or

polynomial (squared etc) terms are requested.

Strategy against Overfitting

• Split the data into two data sets: training and test data

• Develop a model using the training data only

• Assess the model using the test data only
• Here: choose the number of potential interactions (=splits) based on

performance on the test data

Strategy against Overfitting

• Two data sets don’t necessarily have to be equal size
• e.g. 80% training vs 20% testing is allowed

• The (small) Ethyl data were split into 30 and 23 data points.

• Training and Test data should be random
• complications arise when data are sorted

• (e.g. all high y-values first)

(Gradient) Boosting
We next introduce boosting as approximating a function sequentially with a
sequence of regression trees.

One a regression tree is added, it is never changed.

Boosting for squared error loss

1. Initialize f0 with a constant value

2. For m=1 to M:
a) Compute residuals

b) Fit a regression tree (with J terminal nodes) to the residuals
giving terminal leaves

a) For each terminal node, compute fitted values

d) Update

3. Output fM as estimate of f

0

1
() i

i

f x y
n

 

()im i ir y f x 

  
2

1arg min ()
i jm

jm i m i

x R

y f x 



  

ˆ () ()Mf x f x

1

1

() () ()
mJ

m m jm jm

j

f x f x I x R



  

jmR

Boosting for squared error loss

• We want to approximate the function slowly rather than all at once.
• Typical values for m are in the 100’s or in the 1000’s.

• Any one tree does not need to be complicated (few splits).

• Any one tree only needs to improve the approximation a little bit.

• By introducing an arbitrary loss function this algorithm can be
generalized.

MART algorithm for (gradient) boosting

For an arbitrary loss function L

1. Initialize f0 with a constant value

2. For m=1 to M:
a) Compute pseudo residuals

b) Fit a regression tree (with J terminal nodes) to the pseudo residuals
giving terminal leaves

a) For each terminal node, compute fitted values

d) Update

3. Output fM as estimate of f

0

1

() arg min (;)
n

i

f x L y 


 

(, ())

()

i i
im

i

L y f x
r

f x

 
   

 

1arg min (, ())
i jm

jm i m i

x R

L y f x 



 

ˆ () ()Mf x f x

1

1

() () ()
mJ

m m jm jm

j

f x f x I x R



  

jmR

Tuning parameters

• Parameters that one can change or “tune” are called tuning
parameters

• Boosting two naturally arising tuning parameters:
• M, the number of iterations or trees

• J, the number of leaves per regression
• Equivalently specify J-1 splits or interactions

• And two optional tuning parameters
• Fraction of the data used for bagging

• extent of shrinking

Number of trees/iterations M

• Monitor predictive performance on a test data set .

• Initially, predictive performance will increase and then degrade.

• Choose M as the number of iterations that maximizes performance
on the test data
• This is done automatically in my implementation of boost.

Number of splits/ interactions

• Interaction=1
• can only split on a single variable.

• Interaction=2
• Could split on two variables

• Could split on a single variable at two different values

• And so forth

• Typically good values for interaction are between 3 and 10

• The same value is used for all trees.

Shrinking

• To avoid overfitting one might want to fit slowly. Shrink the fitted
value by multiplying it with

Where is the constant predicted value in region

• Shrinking slows down the learning process but substantially increases
runtime

• v=1 correspond to no shrinking

• Typical values of v are 0.1, 0.01, 0.001.

1

1

() () I(x R) , 0 1
mJ

m m jkm jkm

j

f x f x v 



    



jkm R jkm

Bagging

• Goal: reduce variance

• Bagging = Bootstrap Aggregation

• Method:
• Create bootstrap replicates of the data and fit a model to each replicate.

• Average predictions over all models

• Properties:
• Stabilizes unstable methods (e.g. CART)

• Easy to implement, can be parallelized

• No interpretation (Black box method)

A Bagged version of boosting

• Bagging can be applied to boosting as follows:

• For each iteration, fit the model to a random subset of the “residuals”
rim

• This is not “pure” bagging, because there is only one bagged data set
at each iteration.
• No averaging needed

• A typical value for bagging is 0.5 (50%) .

Comparison on Mean squared error

• The mean squared error is the average of the squared residuals.
• To compare to boosting, we do not use the usual (n-p) in the denominator as

in linear regression

 
2 2

1 1

1 1
ˆ ˆ

n n

i i

MSE y y r
n n 

   

Calculating the MSE in stata :
boost viscosity temp pressure if train, dist(normal) pred(predb) shrink(0.1) inter(3) bag(0.5)
bysort train: egen mse=total(((y-predb)^2)/`trainn')

Boosting has much
smaller residuals

-2
0

0
0

0
0

0

2
0
0

0
0

0
4

0
0

0
0

0
0 5000000 500000

test train

residual (linear regression) residual (boosting)

viscosity

Graphs by train

• linear regression MSE= 31.5 *10^8

• Boosting MSE= 4.4 *10^8

• Both MSE’s refer to the test data (N=23)

Does boosting still do better when regressing
on log(y)?
• You might notice that y spans several orders of magnitude.

The standard recommendation then is to regress on the log
transformed variable log(y).

Result:

• linear regression MSE= 0.80

• Boosting MSE= 0.14

• Both MSE’s refer to the test data (N=23)

• If first log-transforming the response , boosting still does better

Example: Propensity scoring

Statistical learning is useful for Propensity
scoring
• Propensity scoring is a tool for causal inference.

• A propensity score is the predicted value of a logistic regression.

Where is the probability of being in the treatment group.

• The goal is to estimate the probabilities well
• (and to create “balance”)

• The goal is not explanation of the relationship between x and treatment.

• This problem is well suited for black-box statistical learning methods

0 1 1log
1

i
k k

i

p
x x

p
     



ip

Death Penalty in the USA

Question: Is the decision to seek the death penalty arbitrary?

i.e., is it related to the race of the defendant or victim after adjusting
for case characteristics?

Data from 1995-2000 (federal cases only)

N=403

Death Penalty in the USA : Background

• A Capital Crime May Be Prosecuted Under Either State or Federal Law

• The vast majority of capital crimes are prosecuted under state law

• Federal cases tend to be more complex, involving…

• multiple defendants

• multiple victims

• elaborate ongoing criminal activities

Death Penalty in the USA

0

10

20

30

40

50

60

70

80

90

100

Black White Hispanic Am

Indian

Asian

Percent of US Population in 2000

0

10

20

30

40

50

60

70

80

90

100

Black White Hispanic Am

Indian

Asian

Percent of Federal Prisoners on Death Row

If race is a factor for the death penalty for either defendant or victim, then
there is racial inequity

The Raw Numbers Seem to Point to Racial Inequity in the Federal System

Without Adjusting for Characteristics of the
Crime, Large Significant Race Effects Exist

0

5

10

15

20

25

30

35

40

Defendants
with a white
victim

Defendants
without a
white victim

Percentage of defendants for which the
Attorney General sought the death penalty

Unadjusted

P value=0.001

To Assess Racial Inequity, We Needed to
Compare Cases with Similar Crimes

• For each defendant with a white victim, we found a defendant
without a white victim who had committed a comparable crime

• Comparable crimes are those with similar heinousness

• Any differences in decisions to seek the death penalty could not be
due to observed characteristics of the crime

• Victim Race was the only remaining factor

Death Penalty

• Logistic regression

• 103 x-variables

• The large number
of x-variables
create some
problems.

Death Penalty: Stepwise logistic regression

• Stepwise regression to reduce number of x-variables

• Backward stepwise regression:

• Same problem when trying forward stepwise regression “sw, pe(.1): “

• Remove evidprvwpn_any, and then run stepwise again

// remove "evidprvwpn_any“ and replace with " "
local xvar2= regexr("`xvar'","evidprvwpn_any"," ")
sw, pe(.1): logistic $treat `xvar2' $race2 if train

Death Penalty: Stepwise logistic regression

• Variables removed

Death Penalty: Stepwise logistic regression

• Variables remaining

Death Penalty

• Boosting
• One might do a grid search for best values of tuning parameters. This would

lead to even better results.
. * data were randomly sorted
. boost $treat `xvar' $race2, dist(logistic) inter(5) predict(pred) shrink(0.01) train(0.7)
Distribution=logistic
predict=pred
Trainfraction=.7 Shrink=.01 Bag=.5 maxiter=20000 Interaction=5
xy_pred
Fitting ...
Predicting ...
bestiter= 1855
Test R2= .42504793
trainn= 420
Train R2= .99810995

Death Penalty : Prediction Accuracy

Whitevic Logistic regression Stepwise logistic Boosting

Accuracy Training
data

.835 .799 .997

Accuracy test data .740 .729 .851

Influence

• Boosting is a black-box method.

• The relationship between x variables and y is not easily explainable.

• However, we can get aggregate measures of the influence of
individual variables.

• The influence of a variable is the percentage the sums of squares
explained by this variable of the total explained across all trees.

Death Penalty: Influence

0 2 4 6
Percentage Influence

number of statute listings for defendant

sum(non statuatory aggravating factors)

AF: prev. conviction of other serious offence

sum(AF's: homicide/espionage/treason)

mitigating f: equally culpable defendants

crime scene: slow death

sum(aggravating factors - mitigating factors)

victim over 60

sum(aggravating factors)

victim was informant

victim is/was criminal

total number of counts for defendant• Influence on predicting
“white victim”

• Listing only variables with
at least 2% influence

• Interpretation: e.g. “victim
is/was criminal” is
predictive of “white
victim”.
• Correlation could be

positive or negative

Adjusting for Characteristics of the Crime,
Significant Race Effects Disappeared

0

5

10

15

20

25

30

35

40

Defendants
with a white
victim

Defendants
without a
white victim

Percentage of defendants for which the
Attorney General sought the death penalty

Unadjusted

P value=0.001

Adjusted

P value=0.466

Boosting in Computer science

• The MART algorithm to boosting is the most popular boosting
algorithm in Statistics.

• Developed by Statisticians at Stanford

• Analogous to Generalized linear models (GLM) it has versions for
various distributions
• GLM includes logistic regression, Gaussian regression, Poisson regression …

• Boosted regression includes logistic boosted regression, Gaussian boosted
regression, Poisson boosted regression …

Boosting in Computer science

• Many computer scientists with interests in machine learning,
including professors, have never heard of this algorithm.

• Historical reasons:
• The first boosting algorithm, Adaboost, was invented by Computer scientists

(Schapire and Freund) for Bernoulli outcomes.

• Philosophical reasons:
• Boosting is viewed as combining many week learning algorithm algorithms to

one strong one.

• There are many different boosting algorithms in computer science.

Appendix

How to use the boost command for least
squares CART predictions
• Specify a single tree: maxiter(1)

• Eliminate bagging and shrinking: bag(1) shrink(1)

• Specify the desired number of splits (or interactions) : inter(`inter’)

• Use all data for training [train(1)]
• Boosting internally splits the data into training and test data

boost viscosity temp pressure, dist(normal) pred(pred1) train(1)
maxiter(1) shrink(1) inter(`inter') bag(1)

References for the Death penalty study

Race And The Decision To Seek The Death Penalty In Federal Cases

Report # ISBN: 0-8330-39966-0

Full report on the web:

http://www.rand.org/pubs/technical_reports/TR389/index.html

Public Data:

ICPSR 4355

http://www.icpsr.org/access/restricted/index.html

(requires a verification process to prevent abuse of the data)

http://www.rand.org/pubs/technical_reports/TR389/index.html
http://www.icpsr.org/access/restricted/index.html

