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Ethyl Acrylate

* Y= Kinematic viscosity of a lubricant
e x1=temperature (C)

e X2=pressure in atmospheres (atm)
* N=50

* Data Reference: Bates and Watts, Nonlinear regression analysis and
its application, Wiley.



Linear regression

regress viscoslity pressure temp 1f train
Source 55 df M5 Number of obs 30
Fiz, 27) 9.76
Model 1.2685e+11 2 .S3424e+10 Prob > F 0.0006
Ee=sidual 1.754Te+11 27 6.4991e+09 E-=quared 0.4196
Adj B-=gquared D.3766
Total 3.0232e+11 29 .0425e+10 Eoot MSE 80617
viscosity Coef. Std. Err. t B>|t] [85% Conf. Interwvall
pressure 30.23023 7.539026 4.01 0.000 14.76143 45.69503
temp -551.8822 415.771%9 -1.33 0.196 -1404.976 301.2113
_cons -3727.932 33660.81 -0.17 0.866 -747594 .21 63338.34

* Regressing on 30 random observations

* Conclusion: temp does not matter



Linear regression
diagnostic : qq plot

If the normality assumption were true, all i
points would be on the line
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Linear regression
diagnostic:
constant variance plot

If the assumption of constant variance were
true, there should be no pattern here.
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Viscosity as a function of pressure and
temperature
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CART: Classification and
Regression Trees

We now introduce a different method.

Emphasis is on concepts rather than mathematical rigour.



8000
|

CART: The data

Larger circle means greater viscosity (y).
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CART: split=1

The predicted values of viscosity are constant
in the red area, and constant in the yellow
area.
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i.e. one split =two predicted values

For Gaussian distribution, the predicted
value is the average viscosity of all obs in the

pressure
4000
e ®

same area.
The best split is chosen across all variables S
and all values for each variable such that &
residual sums of squares a minimized.
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The plot is a scatterplot with plotting symbols of squares.
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CART: split=1

Corresponding tree
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The tree graph was produced in R as Stata has no such program. The exact split point may appear to be
slightly different on these graphs.



CART: split=2

Tree
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CART: split=4

pressure< 5957

pressure< 5001 4.7358e+05

n=1

temp>=12.5 temp>E68.35
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CART: split=5

More intense shades of red correspond to
larger predicted values.
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CART: split=10

pressure
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CART: split=28

28 splits result into 29 regions.

N=30

almost each observation gets its own region.
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CART: all possible 29 splits

* Every data point has its
own terminal leaf.

[ | e * Perfect prediction (on this
L data)

) s 1 f% * The tree appears

I O unbalanced because mostly
B IR I = I = e T small regions are chopped
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Overfitting

e Qverfitting occurs when the model “hugs” the data so well that it
predicts perfectly on the given data - but not a fresh data set

e Overfitting is much less of a danger in Linear models because the
linearity constraint mostly prevents overfitting.

* Overfitting may occur in linear models when too many interactions or
polynomial (squared etc) terms are requested.



Strategy against Overfitting

* Split the data into two data sets: training and test data
e Develop a model using the training data only

* Assess the model using the test data only

* Here: choose the number of potential interactions (=splits) based on
performance on the test data



Strategy against Overfitting

* Two data sets don’t necessarily have to be equal size
* e.g. 80% training vs 20% testing is allowed
* The (small) Ethyl data were split into 30 and 23 data points.

* Training and Test data should be random

e complications arise when data are sorted
* (e.g. all high y-values first)



(Gradient) Boosting

We next introduce boosting as approximating a function sequentially with a
sequence of regression trees.

One a regression tree is added, it is never changed.



Boosting for squared error loss

1. Initialize f,with a constant value fo(X)=%Z Y,
2. For m=1to M:
a) Compute residuals =Y — F (%)

b) Fit a regression tree (with J terminal nodes) to the residuals
giving terminal leaves R
a) For each terminal node, compute fitted values

7y =argmin, 3 (¥, [ fa(x) +7])°

d) Update f.(X)= ml(X)+27,m|(X€ij)
3. Output f,, as estimate off

f(x)= fy (%)



Boosting for squared error loss

* We want to approximate the function slowly rather than all at once.

e Typical values for m are in the 100’s or in the 1000’s.

* Any one tree does not need to be complicated (few splits).
* Any one tree only needs to improve the approximation a little bit.

* By introducing an arbitrary loss function this algorithm can be
generalized.



MART algorithm for (gradient) boosting

For an arbitrary loss function L
1. |Initialize f,with a constant value  f,(x)=arg min, > L(y;7)
i=1

2. For m=1to M:
a) Compute pseudo residuals . =-— oL(y;, T (%))
f (%)

b) Fit a regression tree (with J terminal nodes) to the pseudo residuals

giving terminal leaves ij
a) For each terminal node, compute fitted values

Yim =arg min}/ Z L(Y;, fra () +7)

d) Update f.(X)= fm_l(X)+Ziﬂ:7,-m|(X€ Rin)
3. Outputf,, as estimate of f  f(x) = f, (x)




Tuning parameters

* Parameters that one can change or “tune” are called tuning
parameters

* Boosting two naturally arising tuning parameters:
* M, the number of iterations or trees
* J, the number of leaves per regression

* Equivalently specify J-1 splits or interactions
* And two optional tuning parameters

* Fraction of the data used for bagging
* extent of shrinking



Number of trees/iterations M

* Monitor predictive performance on a test data set.
* Initially, predictive performance will increase and then degrade.

* Choose M as the number of iterations that maximizes performance
on the test data

* This is done automatically in my implementation of boost.



Number of splits/ interactions

* Interaction=1
* can only split on a single variable.

* Interaction=2
e Could split on two variables
* Could split on a single variable at two different values

 And so forth

* Typically good values for interaction are between 3 and 10
e The same value is used for all trees.



Shrinking

* To avoid overfitting one might want to fit slowly. Shrink the fitted
value by multiplying it with v

f (X)=f 1(x)+v2 VimlX€Ryp) 1, 0<v<l

Where }ym isthe constant predicted value in region R

e Shrinking slows down the learning process but substantially increases
runtime

* v=1 correspond to no shrinking
 Typical values of v are 0.1, 0.01, 0.001.



Bagging

* Goal: reduce variance
* Bagging = Bootstrap Aggregation
* Method:

* Create bootstrap replicates of the data and fit a model to each replicate.
* Average predictions over all models

* Properties:
 Stabilizes unstable methods (e.g. CART)
* Easy to implement, can be parallelized
* No interpretation (Black box method)



A Bagged version of boosting

* Bagging can be applied to boosting as follows:

e For each iteration, fit the model to a random subset of the “residuals”
r.

m

* This is not “pure” bagging, because there is only one bagged data set
at each iteration.

* No averaging needed

* A typical value for bagging is 0.5 (50%) .



Comparison on Mean squared error

1< . 1.

MSE == (y- §) ==
N5 N2

 The mean squared error is the average of the squared residuals.

* To compare to boosting, we do not use the usual (n-p) in the denominator as
in linear regression

Calculating the MSE in stata :
boost viscosity temp pressure if train, dist(normal) pred(predb) shrink(0.1) inter(3) bag(0.5)
bysort train: egen mse=total(((y-predb)”2)/ trainn')



Boosting has much
smaller residuals = wain

* linear regression MSE=31.5 *1078

* Boosting MSE= 4.4 *10"8 ]
* Both MSE’s refer to the test data (N=23) : S
° ] e,
o—-t’ *‘ -
]
oY
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viscosity

® residual (linear regression) @ residual (boosting)

Graphs by train



Does boosting still do better when regressing
on log(y)?

* You might notice that y spans several orders of magnitude.
The standard recommendation then is to regress on the log
transformed variable log(y).

Result:
e linear regression MSE= 0.80
* Boosting MSE=0.14

e Both MSE’s refer to the test data (N=23)

o If first log-transforming the response , boosting still does better



Example: Propensity scoring



Statistical learning is useful for Propensity
scoring

* Propensity scoring is a tool for causal inference.
* A propensity score is the predicted value of a logistic regression.

log p—ﬂo+ﬂlx+ + B

Where Pj isthe probability of being in the treatment group.

* The goal is to estimate the probabilities well

* (and to create “balance”)
* The goal is not explanation of the relationship between x and treatment.

* This problem is well suited for black-box statistical learning methods



Death Penalty in the USA

Question: Is the decision to seek the death penalty arbitrary?

i.e., is it related to the race of the defendant or victim after adjusting
for case characteristics?

Data from 1995-2000 (federal cases only)
N=403



Death Penalty in the USA : Background

* A Capital Crime May Be Prosecuted Under Either State or Federal Law
* The vast majority of capital crimes are prosecuted under state law

* Federal cases tend to be more complex, involving...
* multiple defendants
* multiple victims

* elaborate ongoing criminal activities



Death Penalty in the USA
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If race is a factor for the death penalty for either defendant or victim, then
there is racial inequity

The Raw Numbers Seem to Point to Racial Inequity in the Federal System



Without Adjusting for Characteristics of the
Crime, Large Significant Race Effects Exist

40
35 -
30 -

B Defendants
25 A with a white
20 | victim

B Defendants
15 + without a
10 - white victim

5 _
P value=0.001

Unadjusted

Percentage of defendants for which the
Attorney General sought the death penalty




To Assess Racial Inequity, We Needed to
Compare Cases with Similar Crimes

* For each defendant with a white victim, we found a defendant
without a white victim who had committed a comparable crime

 Comparable crimes are those with similar heinousness

* Any differences in decisions to seek the death penalty could not be
due to observed characteristics of the crime

* Victim Race was the only remaining factor



Death Penalty

* Logistic regression
* 103 x-variables

* The large number
of x-variables
create some
problems.

logistic Streat “xvar'

note: mfvconsentagre any != 0 predicts failure perfectly

Srace?

if train

mfvconsentagre any dropped and 16 obs not used

note: evidprvwpn any dropped because of collinearity

Logi=stic regression Humnber of obs = 403
LE chiZz (100) = 277.159

Prob » chi?Z 0.0000

Log likelihood -114.06293 Fzeudo R2 = 0.5485
whtwvic COdds=s Ratio Std. Err. z F=|=z| [85% Conf. Imterwvall
vifemale 2.308138 1.693927 1.14 0.254 L24T7T7353 9.726415
sympvicl 2215818 LA338366 -0.78 0.434 LA021686 2.66273
crimedoer .0445804 .0842127 -1.65 0.100 .0010996 1.80747
vanderl?7 3.443886 3.738736 1.14 0.255 .4101768 28.91521
voverel 1744.724 3655.227 3.56 0.000 28.7372 105927.6
vmarried 1.424964 .B65T76559 0.58 0.560 433151 4. .6BT7796
vworkcrim ~y L9180076 1.036818 -0.08 0.%40 1003414 B.398703
valvicl 0023684 0039253 -3.63 0.000 LO0oDs2 LD60986
vimilitary~vy 15.34566 21.74452 1.53 0.054 .9546595 246.6736
viprison any 4,.9T7e+05 . . . . .
vdizabled 4.107626 7.226138 0.80 0.422 1306642 125.1294
vfabusedd ~y LB833503 . T480495 -0.35 0.728 0799559 5.840314
viinforman~vy 10.66977 8.082034 3.13 0.002 2.417657 47.08852
ot otabha T am NeaARIO MTIRMNITE - K1 m mn4o nNARLRIA RERTARMA




Death Penalty: Stepwise logistic regression

e Stepwise regression to reduce number of x-variables

* Backward stepwise regression:

. 8w, pr{.1): logistic Streat "xvar' Srace? if train

between—-term collinearity, variable evidprvwpn any

e Same problem when trying forward stepwise regression “sw, pe(.1): “

* Remove evidprvwpn_any, and then run stepwise again

// remove "evidprvwpn_any” and replace with " "

local xvar2= regexr(" xvar","evidprvwpn_any"," ")
sw, pe(.1): logistic Streat "xvar2' Srace? if train



Death Penalty: Stepwise logistic regression

sw, pe(.1l): logistic $treat "xvar2' Srace?2 1if train

note: mfvconsentagrc any dropped because of estimability

note: o.mfvconsentagrc any dropped because of estimabkility
° Va ria b | es re moved note: 16 obs. dropped because of estimability

begin with empty model

. 0ooo
D006
.0o12
.0079
D065
L0083
.0018
.0105
L0175
.0147
.0107
01659
.0108
L0135
L0215
0043
.0268
.0434
.0305
.0382
L0223
L0693
.0935
0746
.0851

L1000 adding ecrimedoer

»1000 adding vfinformant any

1000 adding wmfegdefagrc any
L1000 adding wovereld

.1000 adding csslow anyr

.1000 adding bkkidnap anyr
.1000 adding akconceal anyr
L1000 adding puobdang

.1000 adding evidweapon any
»1000 adding shotstaball anym
L1000 adding wvaolvicl

.1000 adding wmfminpartagro any

.1000 adding agghagre sumwm

.1000 adding agghplanagrc any

.1000 adding alcchol dommy

.1000 adding wmfimpoapagre any

L1000 adding anyclaim

.1000 adding agghprevofagrc any

.1000 adding agghprevdthagrc any

.1000 adding viprison any

.1000 adding evidwitness any

»1000  adding headinjdis dommy
L1000 adding ideont4
.1000 adding agghprevfireagre any

o oot oooodoooodootooooTo o oo oo
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L1000 adding timelong



Death Penalty: Stepwise logistic regression

Logistic regression NHumber of obs = 403

LR chi2 (25) = 190.85

Prob > chiz2 = 0.0000

. . . Log likelihood = -157.2345 Pseudo R2 = 0.3777

* Variables remaining

whtvic Odd= BRatio Etd. Err. z P=|z| [25% Conf. Imtervall]
crimedoer .2683635 .1012328 -3.49 0.000 1281241 5621032
viinformant any 8.80676 3.822697 5.01 0.000 3.76132 20.62016
mfegdefagrc any .200342 0768202 -4.19 0.000 .0944854 . 4247771
woverald 86.72239 81.27761 4.76 0.000 13.81566 544.366
csslow_anyr 3.11581 1.19883 2.895 0.003 1.465768 6.623337
bkkidnap anyr .0936096 .0556223 -3.99 0.000 .0292107 .2999852
akconceal anyr 3.982008 1.823835 3.02 0.003 1.622651 9.771662
pubdang .4328603 .1870553 -1.94 0.053 .1855715 1.009681
evidweapon any 2.B45765 .9937227 2.99 0.003 1.435374 5.642001
shotstaball anym . 3057303 .1336872 -2.72 0.007 .1329181 .T217438
vulwicl .0T7459186 .0510053 -3.81 0.000 .019726 . 2845389
mfminpartagrc any 6.954793 3.8557542 3.41 0.001 2.27%912 21.21535
agghagrc sumwm 2.106977 . 3701996 4.24 0.000 1.493146 2.973154
agghplanagrc any .3071287 .1391332 -2.61 0.009 .1263908 .T463206
alcohol dummy .0938077 .0653772 -3.40 0.001 .0239338 .3676757
mfimpcapagrc any 8.693805 T7.150865 2.61 0.009 1.71854 43.9805
anyclaim 2.153278 . 7342245 2.35 0.019 1.138006 4.227105
agghprevofagrec any 17.54478 22.92028 2.26 0.024 1.468 219.3563
agghprevdthagrc any .0242166 .0326784 -2.76 0.006 .0017158 .34059902
viprison _any 14.67863 12.84712 3.07 0.002 2.640533 81.598
evidwitness_any . 4360173 .1428879 -2.53 0.011 .2293798 . 828805
neadinjdis_dummy 2.282991 1.122871 1.68 0.093 .BT06E578 5.986333
ident4 . 3800507 L1844 -1.99 0.046 .1468384 . 9836561
agghprevfireagrc any 3256272 .2060958 -1.77 0.07& .0941843 1.125804
timelong .1412831 16059592 -1.72 0.085 .0152235 1.311194
_cons 1.009922 4700196 0.02 0.983 . 4056368 2.514425




Death Penalty

* Boosting

* One might do a grid search for best values of tuning parameters. This would

lead to even better results.

. * data were randomly sorted

. boost Streat “xvar' Srace?2, dist(logistic) inter(5) predict(pred) shrink(0.01) train(0.7)
Distribution=logistic

predict=pred

Trainfraction=.7 Shrink=.01 Bag=.5 maxiter=20000 Interaction=5
xy_pred

Fitting ...

Predicting ...

bestiter= 1855

Test R2=.42504793

trainn=420

Train R2=.99810995



Death Penalty : Prediction Accuracy

Accuracy Training
data

Accuracy test data .740 729 .851



Influence

* Boosting is a black-box method.
* The relationship between x variables and y is not easily explainable.

* However, we can get aggregate measures of the influence of
individual variables.

* The influence of a variable is the percentage the sums of squares
explained by this variable of the total explained across all trees.



Death Penalty: Influence

* Influence on predicting
“white victim”

* Listing only variables with
at least 2% influence

* Interpretation: e.g. “victim
is/was criminal” is
predictive of “white

victim”.
e Correlation could be
positive or negative

total number of counts for defendant

victim is/was criminal

victim was informant

sum(aggravating factors)

victim over 60
sum(aggravating factors - mitigating factors)
crime scene: slow death

mitigating f: equally culpable defendants

sum(AF's: homicide/espionage/treason)

AF: prev. conviction of other serious offence
sum(non statuatory aggravating factors)

number of statute listings for defendant

0

I I
2 4
Percentage Influence



Adjusting for Characteristics of the Crime,
Significant Race Effects Disappeared

40
35 -
30 -
B Defendants
25 1 with a white
20 - victim
B Defendants
15 + without a
10 A white victim
5 _
P value=0.001 P value=0.466

Unadjusted Adjusted

Percentage of defendants for which the
Attorney General sought the death penalty




Boosting in Computer science

* The MART algorithm to boosting is the most popular boosting
algorithm in Statistics.

* Developed by Statisticians at Stanford

* Analogous to Generalized linear models (GLM) it has versions for
various distributions
* GLM includes logistic regression, Gaussian regression, Poisson regression ...

* Boosted regression includes logistic boosted regression, Gaussian boosted
regression, Poisson boosted regression ...



Boosting in Computer science

* Many computer scientists with interests in machine learning,
including professors, have never heard of this algorithm.

* Historical reasons:

* The first boosting algorithm, Adaboost, was invented by Computer scientists
(Schapire and Freund) for Bernoulli outcomes.

* Philosophical reasons:

* Boosting is viewed as combining many week learning algorithm algorithms to
one strong one.

* There are many different boosting algorithms in computer science.



Appendix



How to use the boost command for least
squares CART predictions

 Specify a single tree: maxiter(1)
 Eliminate bagging and shrinking: bag(1) shrink(1)
 Specify the desired number of splits (or interactions) : inter('inter’)

* Use all data for training [ train(1) ]
* Boosting internally splits the data into training and test data

boost viscosity temp pressure, dist(normal) pred(predl) train(1)
maxiter(1) shrink(1) inter(‘inter') bag(1)



References for the Death penalty study

Race And The Decision To Seek The Death Penalty In Federal Cases

Report # ISBN: 0-8330-39966-0

Full report on the web:

http://www.rand.org/pubs/technical reports/TR389/index.html

Public Data:
ICPSR 4355

http://www.icpsr.org/access/restricted/index.html

(requires a verification process to prevent abuse of the data)


http://www.rand.org/pubs/technical_reports/TR389/index.html
http://www.icpsr.org/access/restricted/index.html

