Analyzing Proportions

Maarten L. Buis

Institut für Soziologie
Eberhard Karls Universität Tübingen
www. maartenbuis.nl

The problem

- A proportion is bounded between 0 and 1,

The problem

- A proportion is bounded between 0 and 1 , this means that:

The problem

- A proportion is bounded between 0 and 1, this means that:
- the effect of explanatory variables tends to be non-linear, and

The problem

- A proportion is bounded between 0 and 1, this means that:
- the effect of explanatory variables tends to be non-linear, and
- the variance tends to decrease when the mean gets closer to one of the boundaries.

The problem

- A proportion is bounded between 0 and 1, this means that:
- the effect of explanatory variables tends to be non-linear, and
- the variance tends to decrease when the mean gets closer to one of the boundaries.
- This makes linear regression unattractive.

Solutions

- model the distribution of the dependent variable(s) with either
- a beta distribution, betafit
- a zero/one inflated beta distribution, zoib
- a Dirichlet distribution, dirifit

Solutions

- model the distribution of the dependent variable(s) with either
- a beta distribution, betafit
- a zero/one inflated beta distribution, zoib
- a Dirichlet distribution, dirifit
- model how the mean proportion relates to explanatory variables using
- a fractional logit, glm
- a fractional multinomial logit, fmlogit

Outline

A single proportion Multiple proportions

the beta distribution

- A flexible distribution bounded between 0 and 1 (excluding 0 and 1)

the beta distribution

- A flexible distribution bounded between 0 and 1 (excluding 0 and 1)
- Two parameters: the mean and a scale parameter.

the beta distribution

- A flexible distribution bounded between 0 and 1 (excluding 0 and 1)
- Two parameters: the mean and a scale parameter.
- The variance is a function of the mean and the scale parameter:

the beta distribution

- A flexible distribution bounded between 0 and 1 (excluding 0 and 1)
- Two parameters: the mean and a scale parameter.
- The variance is a function of the mean and the scale parameter: the variance is largest when the mean is 0.5 .

Some pictures

betafit

- Fits a beta distribution, where the mean and scale parameter are functions of explanatory variables

betafit

- Fits a beta distribution, where the mean and scale parameter are functions of explanatory variables
- Various types of partial and marginal effects: dbetafit

betafit

- Fits a beta distribution, where the mean and scale parameter are functions of explanatory variables
- Various types of partial and marginal effects: dbetafit
- Can be installed by typing in Stata ssc install betafit

example

example

Marginal Effects	MFX at x		Max MFX	
	coef.	se	coef.	se
houseval	.0254	.0056	.0743	.0121
popdens	-.0107	.0021	-.0312	.0066

$E($ governing $\mid x)=.0945$

	x	mean	sd	min	max
minorityleft	0	.434	.4963	0	1
noleft	0	.3858	.4874	0	1
houseval	1.492	1.492	.3971	.72	3.63
popdens	.7629	.7629	.9303	.025	5.711

What about 0s and 1s?

What about 0s and 1s?

- betafit ignores 0s and 1s.

What about 0s and 1s?

- betafit ignores 0s and 1s.
- If we want to include those, we have to make a decision about how those 0s and 1s came about:

What about 0s and 1s?

- betafit ignores 0s and 1s.
- If we want to include those, we have to make a decision about how those 0s and 1s came about:
- Os and 1s represent very low or very high proportions that "by accident" resulted in a proportion of 0 or 1.

What about 0s and 1s?

- betafit ignores 0s and 1s.
- If we want to include those, we have to make a decision about how those 0s and 1s came about:
- Os and 1s represent very low or very high proportions that "by accident" resulted in a proportion of 0 or 1.
- Implies a fractional logit, which in Stata can be estimated using glm .

What about 0s and 1s?

- betafit ignores 0s and 1s.
- If we want to include those, we have to make a decision about how those 0s and 1s came about:
- Os and 1s represent very low or very high proportions that "by accident" resulted in a proportion of 0 or 1.
- Implies a fractional logit, which in Stata can be estimated using glm.
- Os and 1s represent distinct processes

What about Os and 1s?

- betafit ignores 0s and 1s.
- If we want to include those, we have to make a decision about how those 0s and 1s came about:
- Os and 1s represent very low or very high proportions that "by accident" resulted in a proportion of 0 or 1.
- Implies a fractional logit, which in Stata can be estimated using glm.
- Os and 1 s represent distinct processes
- Implies a zero-one inflated beta, which in Stata can be estimated using zoib

What about Os and 1s?

- betafit ignores 0s and 1s.
- If we want to include those, we have to make a decision about how those 0s and 1s came about:
- Os and 1s represent very low or very high proportions that "by accident" resulted in a proportion of 0 or 1.
- Implies a fractional logit, which in Stata can be estimated using glm .
- Os and 1 s represent distinct processes
- Implies a zero-one inflated beta, which in Stata can be estimated using zoib
- Alternatively, you can transform your dependent variable to "push" your 0s and 1s a tiny bit inwards
- Smithson and Verkuilen (2006) propose

$$
y^{\prime}=\left(y^{*}(N-1)+.5\right) / N
$$

Fractional logit

- Os and 1s occur through the same process as the other proportions

Fractional logit

- Os and 1s occur through the same process as the other proportions
- Only models the mean, this means:

Fractional logit

- Os and 1s occur through the same process as the other proportions
- Only models the mean, this means:
- less sensitive to errors in other parts of the model, e.g. the variance, but

Fractional logit

- Os and 1s occur through the same process as the other proportions
- Only models the mean, this means:
- less sensitive to errors in other parts of the model, e.g. the variance, but
- not suitable when interest is in other quantities than the mean, e.g. the variance

Fractional logit

- Os and 1s occur through the same process as the other proportions
- Only models the mean, this means:
- less sensitive to errors in other parts of the model, e.g. the variance, but
- not suitable when interest is in other quantities than the mean, e.g. the variance
- Can be estimated with glm in combination with the link(logit) family(binomial) robust options.

Multiple proportions

example

example

```Marginal effects after glm y = Predicted mean prate (predict) =.86775841```							
variable	$d y / d x$	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[ 95\%	C.I.	X
mrate	. 0658047	. 00803	8.19	0.000	. 050058	. 081551	. 746335
totemp	-. 0066326	. 00132	-5.02	0.000	-. 009224	-. 004041	. 462107
age	. 0035453	. 00033	10.69	0.000	. 002895	. 004195	13.1398
sole*	. 0364495	. 00471	7.73	0.000	. 027209	. 04569	0

## zoib: zero one inflated beta

- A zero/one inflated beta model consists of three parts:
- a logistic regression model for whether or not the proportion equals 0 ,
- a logistic regression model for whether or not the proportion equals 1 ,
- a beta model for the proportions between 0 and 1 .


## zoib: zero one inflated beta

- A zero/one inflated beta model consists of three parts:
- a logistic regression model for whether or not the proportion equals 0 ,
- a logistic regression model for whether or not the proportion equals 1 ,
- a beta model for the proportions between 0 and 1 .
- This model is for situations where you believe that the decisions for proportions of 0 and/or 1 are governed by a different process as the other proportions.


## example



## example

$\begin{aligned} & \text { Marginal effects after zoib } \\ & \text { y }=\text { Proportion (predict, pr) } \\ &=.85369833 \end{aligned}$							
variable	$d y / d x$	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	95\%	C.I.	X
mrate	. 0566366	. 00679	8.34	0.000	. 043326	. 069947	. 746335
totemp	-. 0100315	. 00208	-4.83	0.000	-. 014104	-. 005959	. 462107
age	. 0034952	. 00031	11.37	0.000	. 002893	. 004098	13.1398
sole*	. 053115	. 0047	11.31	0.000	. 043908	. 062322	0

(*) $d y / d x$ is for discrete change of dummy variable from 0 to 1

## example


(*) $d y / d x$ is for discrete change of dummy variable from 0 to 1

## Comparing models

	beta	beta with   transformed y	flogit	zoib
mrate	0.027	0.033	0.066	0.057
	$(3.30)$	$(17.20)$	$(8.19)$	$(8.34)$
totemp	-0.005	-0.006	-0.007	-0.010
	$(-2.86)$	$(-5.23)$	$(-5.02)$	$(-4.83)$
age	0.004	0.001	0.004	0.003
	$(10.54)$	$(8.38)$	$(10.69)$	$(11.37)$
sole (d)	0.011	0.038	0.036	0.053
	$(1.62)$	$(13.74)$	$(7.73)$	$(11.31)$
$N$	2711	4734	4734	4734

Marginal effects; $z$ statistics in parentheses
(d) for discrete change of dummy variable from 0 to 1

## Outline

## A single proportion

## Multiple proportions

## types of questions

- How are the proportions related to one another?


## types of questions

- How are the proportions related to one another?
- Proportions are automatically (negatively) correlated: if you spent more on one thing, there is less left over for the rest.


## types of questions

- How are the proportions related to one another?
- Proportions are automatically (negatively) correlated: if you spent more on one thing, there is less left over for the rest.
- The question is how much association between proportions exist nett of this automatic correlation.


## types of questions

- How are the proportions related to one another?
- Proportions are automatically (negatively) correlated: if you spent more on one thing, there is less left over for the rest.
- The question is how much association between proportions exist nett of this automatic correlation.
- Literature exists on this question, most notably Aitchinson (2003 [1986]).


## types of questions

- How are the proportions related to one another?
- Proportions are automatically (negatively) correlated: if you spent more on one thing, there is less left over for the rest.
- The question is how much association between proportions exist nett of this automatic correlation.
- Literature exists on this question, most notably Aitchinson (2003 [1986]).
- Have not been implemented in Stata.


## types of questions

- How are the proportions related to one another?
- Proportions are automatically (negatively) correlated: if you spent more on one thing, there is less left over for the rest.
- The question is how much association between proportions exist nett of this automatic correlation.
- Literature exists on this question, most notably Aitchinson (2003 [1986]).
- Have not been implemented in Stata.
- How are the proportions related to explanatory variables?


## types of questions

- How are the proportions related to one another?
- Proportions are automatically (negatively) correlated: if you spent more on one thing, there is less left over for the rest.
- The question is how much association between proportions exist nett of this automatic correlation.
- Literature exists on this question, most notably Aitchinson (2003 [1986]).
- Have not been implemented in Stata.
- How are the proportions related to explanatory variables?
- Two options:


## types of questions

- How are the proportions related to one another?
- Proportions are automatically (negatively) correlated: if you spent more on one thing, there is less left over for the rest.
- The question is how much association between proportions exist nett of this automatic correlation.
- Literature exists on this question, most notably Aitchinson (2003 [1986]).
- Have not been implemented in Stata.
- How are the proportions related to explanatory variables?
- Two options:
- dirifit: Fits a Dirichlet distribution, which is an extension of the beta distribution to multiple proportions.


## types of questions

- How are the proportions related to one another?
- Proportions are automatically (negatively) correlated: if you spent more on one thing, there is less left over for the rest.
- The question is how much association between proportions exist nett of this automatic correlation.
- Literature exists on this question, most notably Aitchinson (2003 [1986]).
- Have not been implemented in Stata.
- How are the proportions related to explanatory variables?
- Two options:
- dirifit: Fits a Dirichlet distribution, which is an extension of the beta distribution to multiple proportions.
- fmlogit: Fits a fractional multinomial logit, which is an extension of the fractional logit to multiple proportions.


## types of questions

- How are the proportions related to one another?
- Proportions are automatically (negatively) correlated: if you spent more on one thing, there is less left over for the rest.
- The question is how much association between proportions exist nett of this automatic correlation.
- Literature exists on this question, most notably Aitchinson (2003 [1986]).
- Have not been implemented in Stata.
- How are the proportions related to explanatory variables?
- Two options:
- dirifit: Fits a Dirichlet distribution, which is an extension of the beta distribution to multiple proportions.
- fmlogit: Fits a fractional multinomial logit, which is an extension of the fractional logit to multiple proportions.
- Both assume that all correlation between proportions is due to the 'automatic correlation'


## example



```
mu2 = safety
mu3 = social
mu4 = urbanplanning
```

base outcome = governing

## example

discrete change	Min coef.	$\operatorname{Max}$ se	$\begin{aligned} & +-S D / 2 \\ & \text { coef. } \end{aligned}$		$+-1 / 2$   coef.	
governing minorityleft noleft houseval popdens	$\begin{array}{r} -.0078 \\ .0099 \\ .0937 \\ -.0461 \end{array}$	$\begin{aligned} & .0066 \\ & .0074 \\ & .0233 \\ & .0115 \end{aligned}$	$\begin{array}{r} .0115 \\ -.0087 \end{array}$	$\begin{aligned} & .0024 \\ & .0027 \end{aligned}$	$\begin{array}{r} .0293 \\ -.0093 \end{array}$	$\begin{aligned} & .0062 \\ & .0029 \end{aligned}$
safety   minorityleft noleft houseval popdens	$\begin{array}{r} .0072 \\ .0257 \\ .0926 \\ -.0792 \end{array}$	$\begin{aligned} & .0088 \\ & .0096 \\ & .0254 \\ & .0152 \end{aligned}$	$\begin{array}{r} .013 \\ -.0149 \end{array}$	$\begin{array}{r} .003 \\ .0035 \end{array}$	$\begin{array}{r} .0333 \\ -.0159 \end{array}$	$\begin{array}{r} .0077 \\ .0037 \end{array}$
social   minorityleft noleft houseval popdens	$\begin{array}{r} -.0159 \\ -.0527 \\ -.264 \\ .0865 \end{array}$	$\begin{array}{r} .0114 \\ .012 \\ .0304 \\ .0251 \end{array}$	$\begin{array}{r} -.0366 \\ .0164 \end{array}$	$\begin{aligned} & .0045 \\ & .0042 \end{aligned}$	$\begin{array}{r} -.0935 \\ .0174 \end{array}$	$\begin{aligned} & .0114 \\ & .0045 \end{aligned}$
urbanplann_g minorityleft noleft houseval popdens	$\begin{aligned} & .0165 \\ & .0171 \\ & .0777 \\ & .0387 \end{aligned}$	$\begin{aligned} & .0097 \\ & .0102 \\ & .0265 \\ & .0219 \end{aligned}$	$\begin{aligned} & .0121 \\ & .0073 \end{aligned}$	$\begin{aligned} & .0033 \\ & .0034 \end{aligned}$	$\begin{array}{r} .0309 \\ .0078 \end{array}$	$\begin{aligned} & .0085 \\ & .0036 \end{aligned}$

## example

Marginal Effects	MFX at x coef.
governing houseval popdens	$\begin{array}{rr} .0293 & .0061 \\ -.0093 & .0029 \end{array}$
safety   houseval popdens	$\begin{array}{rr} .0334 & .0077 \\ -.0159 & .0037 \end{array}$
social   houseval popdens	$\begin{array}{rr} -.0937 & .0115 \\ .0174 & .0045 \end{array}$
urbanplann ${ }_{\sim} g$ houseval popdens	$\begin{array}{rr} .031 & .0085 \\ .0078 & .0035 \end{array}$


$\mathrm{E}($ governing $\mid \mathrm{x})=$	.0993				
$\mathrm{E}($ safety $\mid \mathrm{x})=$		.175			
$\mathrm{E}($ social $\mid \mathrm{x})=$		.5032			
$\mathrm{E}($ urbanplann $\mathrm{g} \mid \mathrm{x})=$	.2225				
	x	mean	sd	min	max
minorityleft	0	.4337	.4962	0	1
noleft	0	.3878	.4879	0	1
houseval	1.483	1.483	.3902	.72	3.63
popdens	.7839	.7839	.9408	.025	5.711

## example



## example



## example

Marginal   Effects	MFX at x   coef.	se
governing   houseval   popdens	-.0317	.0065
safety   houseval   popdens	-.0117	.0024
social   houseval   popdens	-.0966	.0178
.017	.0047	
urbanplann   houseval   popdens	.0335	.0139



## Summary

- Proportions are bounded: regress won’t work well.


## Summary

- Proportions are bounded: regress won't work well.
- one proportion:


## Summary

- Proportions are bounded: regress won't work well.
- one proportion:
- no 0s and/or 1s: betafit or fractional logit


## Summary

- Proportions are bounded: regress won't work well.
- one proportion:
- no 0s and/or 1s: betafit or fractional logit
- Os and/or 1s: zoib or fractional logit


## Summary

- Proportions are bounded: regress won’t work well.
- one proportion:
- no 0s and/or 1s: betafit or fractional logit
- Os and/or 1s: zoib or fractional logit
- interest in variance: fractional logit won't work


## Summary

- Proportions are bounded: regress won't work well.
- one proportion:
- no 0s and/or 1s: betafit or fractional logit
- Os and/or 1s: zoib or fractional logit
- interest in variance: fractional logit won't work
- multiple proportions:


## Summary

- Proportions are bounded: regress won’t work well.
- one proportion:
- no 0s and/or 1s: betafit or fractional logit
- Os and/or 1s: zoib or fractional logit
- interest in variance: fractional logit won't work
- multiple proportions:
- relationship between these proportions: no solution in Stata (yet)


## Summary

- Proportions are bounded: regress won’t work well.
- one proportion:
- no 0s and/or 1s: betafit or fractional logit
- Os and/or 1s: zoib or fractional logit
- interest in variance: fractional logit won't work
- multiple proportions:
- relationship between these proportions: no solution in Stata (yet)
- relationship between mean proportions and explanatory variables: dirifit or fmlogit


## References

Aitchison, J.
The Statistical Analysis of Compositional Data.
Caldwell, NJ: The Blackburn Press, 2003 [1986].
Ferrari, S.L.P. and Cribari-Neto, F.
Beta regression for modelling rates and proportions.
Journal of Applied Statistics, 31 (7): 799-815, 2004.

## Paolino, P.

Maximum likelihood estimation of models with beta-distributed dependent variables.
Political Analysis, 9(4): 325-346, 2001.
Papke, L.E. and Wooldridge, J.M.
Econometric Methods for Fractional Response Variables with an Application to 401(k) Plan Participation Rates.
Journal of Applied Econometrics, 11(6):619-632, 1996.
Smithson, M. and Verkuilen, J.
A better lemon squeezer? Maximum likelihood regression with beta-distributed dependent variables.
Psychological Methods, 11(1):54-71, 2006.

