Analyzing Proportions

Maarten L. Buis

Institut für Soziologie Eberhard Karls Universität Tübingen www.maartenbuis.nl

A proportion is bounded between 0 and 1,

▶ A proportion is bounded between 0 and 1, this means that:

- ▶ A proportion is bounded between 0 and 1, this means that:
 - the effect of explanatory variables tends to be non-linear, and

- A proportion is bounded between 0 and 1, this means that:
 - the effect of explanatory variables tends to be non-linear, and
 - the variance tends to decrease when the mean gets closer to one of the boundaries.

- A proportion is bounded between 0 and 1, this means that:
 - the effect of explanatory variables tends to be non-linear, and
 - the variance tends to decrease when the mean gets closer to one of the boundaries.
- This makes linear regression unattractive.

Solutions

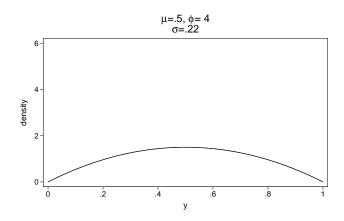
- model the distribution of the dependent variable(s) with either
 - a beta distribution, betafit
 - a zero/one inflated beta distribution, zoib
 - ▶ a Dirichlet distribution, dirifit

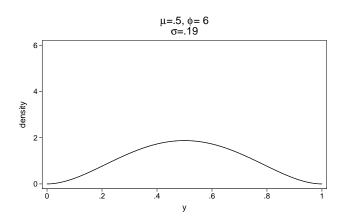
Solutions

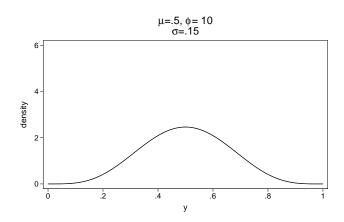
- model the distribution of the dependent variable(s) with either
 - a beta distribution, betafit
 - a zero/one inflated beta distribution, zoib
 - ▶ a Dirichlet distribution, dirifit
- model how the mean proportion relates to explanatory variables using
 - a fractional logit, glm
 - a fractional multinomial logit, fmlogit

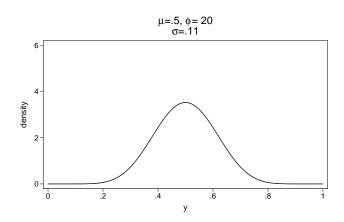
Outline

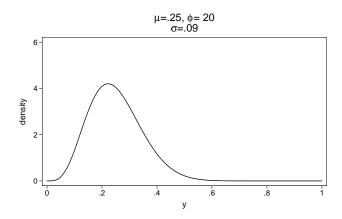
A single proportion

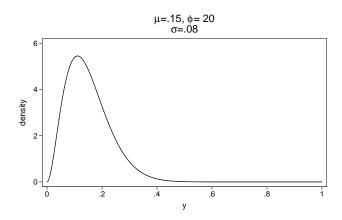

Multiple proportions

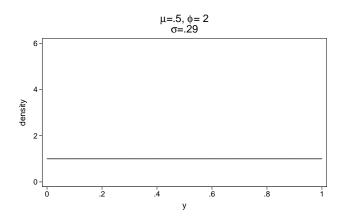

 A flexible distribution bounded between 0 and 1 (excluding 0 and 1)

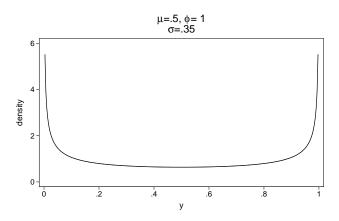

- A flexible distribution bounded between 0 and 1 (excluding 0 and 1)
- Two parameters: the mean and a scale parameter.


- A flexible distribution bounded between 0 and 1 (excluding 0 and 1)
- Two parameters: the mean and a scale parameter.
- ► The variance is a function of the mean and the scale parameter:


- A flexible distribution bounded between 0 and 1 (excluding 0 and 1)
- Two parameters: the mean and a scale parameter.
- ► The variance is a function of the mean and the scale parameter: the variance is largest when the mean is 0.5.







betafit

► Fits a beta distribution, where the mean and scale parameter are functions of explanatory variables

betafit

- Fits a beta distribution, where the mean and scale parameter are functions of explanatory variables
- Various types of partial and marginal effects: dbetafit

betafit

- Fits a beta distribution, where the mean and scale parameter are functions of explanatory variables
- Various types of partial and marginal effects: dbetafit
- Can be installed by typing in Stata ssc install betafit.

example

```
. use http://fmwww.bc.edu/repec/bocode/c/citybudget.dta, clear
(Spending on different categories by Dutch cities in 2005)
. betafit governing , mu(minorityleft noleft houseval popdens) nolog
ML fit of beta (mu, phi)
                                                    Number of obs
                                                                               394
                                                    Wald chi2(4)
                                                                     =
                                                                            109.99
Log likelihood = 768.06704
                                                    Prob > chi2
                                                                           0.0000
   governing
                     Coef.
                             Std. Err.
                                                  P>|z|
                                                             [95% Conf. Interval]
                                             z
minorityleft
                 -.102143
                              .059603
                                                  0.087
                                                                          .0146768
                  .1047123
                             .0611709
                                          1.71
                                                            -.0151804
                                                                         .2246049
      noleft
                                                  0.087
    houseval
                  .2970051
                             .0483488
                                           6.14
                                                  0.000
                                                             .2022432
                                                                          .391767
     popdens
                 -.1247097
                             .0262695
                                          -4.75
                                                  0.000
                                                             -.176197
                                                                         -.0732223
                -2.607601
                             .0856001
                                         -30.46
                                                  0.000
                                                            -2.775374
                                                                         -2.439828
       cons
                 4.168403
                             .0715323
                                          58.27
                                                  0.000
                                                             4.028202
                                                                         4.308604
     /ln_phi
         phi
                  64.61219
                             4.621857
                                                             56.15986
                                                                         74.33662
```

example

. dbetafit, at(minorityleft 0 noleft 0)

discrete	Min> Max		+-SD/2		+-1/2	
change	coef.	se	coef.	se	coef.	se
minorityleft	0084	.0047				
noleft		.0057				
houseval	.0879	.0217	.0101	.0022	.0255	.0056
popdens	0494	.0075	0099	.0019	0107	.0021

Marginal	MFX at x		Max MFX		
Effects	coef.	se	coef.	se	
houseval popdens	.0254	.0056	.0743	.0121	

E(governing|x) = .0945

	X	mean	sd	min	max
minorityleft	0	.434	.4963	0	1
noleft	0	.3858	.4874	0	1
houseval	1.492	1.492	.3971	.72	3.63
popdens	.7629	.7629	.9303	.025	5.711

betafit ignores 0s and 1s.

- betafit ignores 0s and 1s.
- If we want to include those, we have to make a decision about how those 0s and 1s came about:

- betafit ignores 0s and 1s.
- If we want to include those, we have to make a decision about how those 0s and 1s came about:
 - Os and 1s represent very low or very high proportions that "by accident" resulted in a proportion of 0 or 1.

- betafit ignores 0s and 1s.
- If we want to include those, we have to make a decision about how those 0s and 1s came about:
 - Os and 1s represent very low or very high proportions that "by accident" resulted in a proportion of 0 or 1.
 - Implies a fractional logit, which in Stata can be estimated using glm.

- betafit ignores 0s and 1s.
- If we want to include those, we have to make a decision about how those 0s and 1s came about:
 - Os and 1s represent very low or very high proportions that "by accident" resulted in a proportion of 0 or 1.
 - Implies a fractional logit, which in Stata can be estimated using glm.
 - Os and 1s represent distinct processes

- betafit ignores 0s and 1s.
- If we want to include those, we have to make a decision about how those 0s and 1s came about:
 - Os and 1s represent very low or very high proportions that "by accident" resulted in a proportion of 0 or 1.
 - Implies a fractional logit, which in Stata can be estimated using glm.
 - Os and 1s represent distinct processes
 - Implies a zero-one inflated beta, which in Stata can be estimated using zoib

- betafit ignores 0s and 1s.
- If we want to include those, we have to make a decision about how those 0s and 1s came about:
 - Os and 1s represent very low or very high proportions that "by accident" resulted in a proportion of 0 or 1.
 - Implies a fractional logit, which in Stata can be estimated using glm.
 - Os and 1s represent distinct processes
 - Implies a zero-one inflated beta, which in Stata can be estimated using zoib
- Alternatively, you can transform your dependent variable to "push" your 0s and 1s a tiny bit inwards
- Smithson and Verkuilen (2006) propose y' = (y*(N - 1) + .5)/N

Fractional logit

Os and 1s occur through the same process as the other proportions

Fractional logit

- Os and 1s occur through the same process as the other proportions
- Only models the mean, this means:

Fractional logit

- Os and 1s occur through the same process as the other proportions
- Only models the mean, this means:
 - less sensitive to errors in other parts of the model, e.g. the variance, but

Fractional logit

- Os and 1s occur through the same process as the other proportions
- Only models the mean, this means:
 - less sensitive to errors in other parts of the model, e.g. the variance, but
 - not suitable when interest is in other quantities than the mean, e.g. the variance

Fractional logit

- 0s and 1s occur through the same process as the other proportions
- Only models the mean, this means:
 - less sensitive to errors in other parts of the model, e.g. the variance, but
 - not suitable when interest is in other quantities than the mean, e.g. the variance
- ► Can be estimated with glm in combination with the link(logit) family(binomial) robust options.

```
. use "http://fmwww.bc.edu/repec/bocode/k/k401.dta", clear
(source: Papke and Wooldridge 1996)
. replace totemp = totemp/10000
(4734 real changes made)
. glm prate mrate totemp age sole, ///
      family (binomial) link (logit) vce (robust) nolog
note: prate has noninteger values
Generalized linear models
                                                     No. of obs
                                                                             4734
Optimization
                 : ML
                                                     Residual df
                                                                             4729
                                                     Scale parameter =
                                                     (1/df) Deviance =
Deviance
                 = 1023.737134
                 = 1377.971352
Pearson
                                                     (1/df) Pearson = .2913875
Variance function: V(u) = u*(1-u/1)
                                                     [Binomial]
                 : q(u) = ln(u/(1-u))
Link function
                                                     [Logit]
                                                     AIC
                                                                     = .5794217
Log pseudolikelihood = -1366.491144
                                                     BIC
                                                                     = -38995.55
                              Robust
                             Std. Err.
                                                 P>|z|
                                                            [95% Conf. Interval]
       prate
                    Coef.
                                            z
       mrate
                 .5734427
                                                 0.000
                                                             .416792
      totemp
                -.0577987
                             .011467
                                         -5.04
                                                 0.000
                                                           -.0802736
                                                                       -.0353238
                 .0308946
                             .0027881
                                         11.08
                                                 0.000
                                                            .0254301
                                                                        .0363591
         age
        sole
                 .3635964
                             .0476003
                                          7.64
                                                 0.000
                                                            .2703017
                                                                         .4568912
       cons
                 1.074062
                             .0489076
                                         21.96
                                                 0.000
                                                            .9782051
                                                                        1.169919
```

```
. mfx, at(mean sole=0)
```

Marginal effects after glm

y = Predicted mean prate (predict)

= .86775841

variable	dy/dx	Std. Err.	z	P> z	[95%	C.I.]	х
mrate totemp age sole*	.0658047 0066326 .0035453 .0364495	.00803 .00132 .00033 .00471	8.19 -5.02 10.69 7.73	0.000 0.000 0.000 0.000	.050058 009224 .002895 .027209	004041 .004195	.746335 .462107 13.1398

(*) dy/dx is for discrete change of dummy variable from 0 to 1

zoib: zero one inflated beta

- A zero/one inflated beta model consists of three parts:
 - a logistic regression model for whether or not the proportion equals 0,
 - a logistic regression model for whether or not the proportion equals 1,
 - a beta model for the proportions between 0 and 1.

zoib: zero one inflated beta

- A zero/one inflated beta model consists of three parts:
 - a logistic regression model for whether or not the proportion equals 0,
 - a logistic regression model for whether or not the proportion equals 1,
 - a beta model for the proportions between 0 and 1.
- ► This model is for situations where you believe that the decisions for proportions of 0 and/or 1 are governed by a different process as the other proportions.

. zoib prate mrate totemp age sole, ///

> oneinflate(mrate totemp age sole) robust nolog

ML fit of oib Number of obs = 4734 Wald chi2(4) = 136.47 Log pseudolikelihood = -1293.6594 Prob > chi2 = 0.0000

prate	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
proportion						
mrate	.1524644	.0466905	3.27	0.001	.0609527	.243976
totemp	0265332	.0092522	-2.87	0.004	0446673	0083992
age	.0216248	.0020206	10.70	0.000	.0176645	.0255852
sole	.0604715	.0376378	1.61	0.108	0132972	.1342402
_cons	.8738362	.0354738	24.63	0.000	.8043088	.9433636
oneinflate						
mrate	.7935556	.0653962	12.13	0.000	.6653814	.9217297
totemp	1416409	.0354509	-4.00	0.000	2111235	0721584
age	.020835	.003494	5.96	0.000	.0139869	.0276832
sole	.9044132	.0654829	13.81	0.000	.7760692	1.032757
_cons	-1.472011	.0702084	-20.97	0.000	-1.609617	-1.334405
ln phi						
cons	1.77591	.0358677	49.51	0.000	1.705611	1.84621

```
. mfx, predict(pr) at(mean sole = 0)
Marginal effects after zoib
    y = Proportion (predict, pr)
```

y = Proportion (predict, pr) = .85369833

variable	dy/dx	Std. Err.	z	P> z	[95%	C.I.]	Х
mrate totemp age sole*	.0566366 0100315 .0034952 .053115	.00679 .00208 .00031 .0047	8.34 -4.83 11.37 11.31				.746335 .462107 13.1398

(*) dy/dx is for discrete change of dummy variable from 0 to 1

```
. mfx, predict(pr1) at(mean sole = 0)
```

Marginal effects after zoib

y = probability of having value 1 (predict, pr1) = .33817515

variable	dy/dx	Std. Err.	z	P> z	[95%	C.I.]	х
mrate totemp age sole*	.1776078 031701 .0046631 .2198069	.01555 .00796 .00078 .01548	11.42 -3.98 6.01 14.20				.746335 .462107 13.1398

^(*) dy/dx is for discrete change of dummy variable from 0 to 1 $\,$

Marginal effects after zoib

y = proportion conditional on not having value 0 or 1 (predict, prcond) = .778942

variable	dy/dx	Std. Err.	z	P> z	[95%	C.I.]	Х
mrate totemp age sole*	.0262531 0045688 .0037236 .0102369	.00781 .0016 .00035 .00632	3.36 -2.86 10.57 1.62	0.000	.010948 007698 .003033 002149	.004414	.746335 .462107 13.1398

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

[.] mfx, predict(prcond) at(mean sole = 0)

Comparing models

	beta	beta with	flogit	zoib
		transformed y		
mrate	0.027	0.033	0.066	0.057
	(3.30)	(17.20)	(8.19)	(8.34)
totemp	-0.005	-0.006	-0.007	-0.010
	(-2.86)	(-5.23)	(-5.02)	(-4.83)
age	0.004	0.001	0.004	0.003
	(10.54)	(8.38)	(10.69)	(11.37)
sole (d)	0.011	0.038	0.036	0.053
	(1.62)	(13.74)	(7.73)	(11.31)
N	2711	4734	4734	4734

Marginal effects; z statistics in parentheses

(d) for discrete change of dummy variable from 0 to 1

Outline

A single proportion

Multiple proportions

How are the proportions related to one another?

- How are the proportions related to one another?
 - Proportions are automatically (negatively) correlated: if you spent more on one thing, there is less left over for the rest.

- How are the proportions related to one another?
 - Proportions are automatically (negatively) correlated: if you spent more on one thing, there is less left over for the rest.
 - ► The question is how much association between proportions exist nett of this automatic correlation.

- How are the proportions related to one another?
 - Proportions are automatically (negatively) correlated: if you spent more on one thing, there is less left over for the rest.
 - ► The question is how much association between proportions exist nett of this automatic correlation.
 - Literature exists on this question, most notably Aitchinson (2003 [1986]).

- How are the proportions related to one another?
 - Proportions are automatically (negatively) correlated: if you spent more on one thing, there is less left over for the rest.
 - The question is how much association between proportions exist nett of this automatic correlation.
 - Literature exists on this question, most notably Aitchinson (2003 [1986]).
 - Have not been implemented in Stata.

- How are the proportions related to one another?
 - Proportions are automatically (negatively) correlated: if you spent more on one thing, there is less left over for the rest.
 - ► The question is how much association between proportions exist nett of this automatic correlation.
 - Literature exists on this question, most notably Aitchinson (2003 [1986]).
 - Have not been implemented in Stata.
- How are the proportions related to explanatory variables?

- How are the proportions related to one another?
 - Proportions are automatically (negatively) correlated: if you spent more on one thing, there is less left over for the rest.
 - ► The question is how much association between proportions exist nett of this automatic correlation.
 - Literature exists on this question, most notably Aitchinson (2003 [1986]).
 - Have not been implemented in Stata.
- How are the proportions related to explanatory variables?
 - Two options:

- How are the proportions related to one another?
 - Proportions are automatically (negatively) correlated: if you spent more on one thing, there is less left over for the rest.
 - ► The question is how much association between proportions exist nett of this automatic correlation.
 - Literature exists on this question, most notably Aitchinson (2003 [1986]).
 - Have not been implemented in Stata.
- How are the proportions related to explanatory variables?
 - Two options:
 - dirifit: Fits a Dirichlet distribution, which is an extension of the beta distribution to multiple proportions.

- How are the proportions related to one another?
 - Proportions are automatically (negatively) correlated: if you spent more on one thing, there is less left over for the rest.
 - ► The question is how much association between proportions exist nett of this automatic correlation.
 - Literature exists on this question, most notably Aitchinson (2003 [1986]).
 - Have not been implemented in Stata.
- How are the proportions related to explanatory variables?
 - Two options:
 - dirifit: Fits a Dirichlet distribution, which is an extension of the beta distribution to multiple proportions.
 - fmlogit: Fits a fractional multinomial logit, which is an extension of the fractional logit to multiple proportions.

- How are the proportions related to one another?
 - Proportions are automatically (negatively) correlated: if you spent more on one thing, there is less left over for the rest.
 - The question is how much association between proportions exist nett of this automatic correlation.
 - Literature exists on this question, most notably Aitchinson (2003 [1986]).
 - Have not been implemented in Stata.
- How are the proportions related to explanatory variables?
 - Two options:
 - dirifit: Fits a Dirichlet distribution, which is an extension of the beta distribution to multiple proportions.
 - fmlogit: Fits a fractional multinomial logit, which is an extension of the fractional logit to multiple proportions.
 - Both assume that all correlation between proportions is due to the 'automatic correlation'


```
. use http://fmwww.bc.edu/repec/bocode/c/citybudget.dta, clear
(Spending on different categories by Dutch cities in 2005)
. replace social = social + education + recreation
(395 real changes made)
. dirifit governing safety social urbanplanning, ///
      muvar(minorityleft noleft houseval popdens) nolog
ML fit of Dirichlet (mu, phi)
                                                     Number of obs
                                                     Wald chi2(12)
                                                                            189.54
Log likelihood = 1725.1477
                                                     Prob > chi2
                     Coef.
                              Std. Err.
                                                              [95% Conf. Interval]
                                              z
                                                   P>|z|
mu2
minorityleft
                  .1215461
                                                   0.177
                                                            -.0549397
                                                                           .2980319
      noleft
                  .0423453
                              .0925709
                                           0.46
                                                   0.647
    houseval
                  -.104733
                              .0729776
                                                   0.151
                                                            -.2477665
                                          -1.44
                                                                           .0383004
     popdens
                  .0030234
                              .0385816
                                            0.08
       _cons
                  .7199195
                               .129466
                                                              .4661708
                                                                           .9736682
mu3
minorityleft
                  .0492506
                                                   0.531
                                                            -.1049516
                                                                           .2034528
                               .078676
      noleft
                              .0813187
                                          -2.53
                                                             -.3649264
                                                                         -.0461629
    houseval
                 -.4818642
                              .0694126
                                          -6.94
                                                             -.6179105
                                                                         -.3458179
                  .1282351
                                                               .063214
                                                                           .1932563
     popdens
                              .0331747
                                           3.87
                              .1187476
                                          18.84
                                                             2.004415
                                                                           2.469898
       _cons
mu4
minorityleft
                  .1530504
                              .0863215
                                           1.77
                                                   0.076
                                                             -.0161367
                                                                           .3222375
      noleft
                              .0891623
                                          -0.23
                                                   0.818
                                                            -.1953218
                                                                           .1541879
                 -.1563326
                                          -2.22
                                                   0.027
                                                                          -.0180943
    houseval
                                                            -.2945709
                  .1285933
                              .0354878
                                                              .0590385
                                                                           .1981481
     popdens
                                           3.62
                  .9378096
                              .1247067
                                                               .693389
                                                                           1.18223
                   3.60327
                              .0405736
                                          88.81
                                                             3.523747
                                                                           3.682792
     /ln_phi
                  36.71809
                              1.489786
                                                             33.91125
                                                                           39.75726
         phi
```

mu2 = safety mu3 = social

mu4 = urbanplanning

base outcome = governing

. ddirifit, at(minorityleft 0 noleft 0)

discrete change	Min coef.	> Max se	+-S coef.	D/2 se	coef.	-1/2 . se
governing minorityleft noleft houseval popdens	0078 .0099 .0937 0461	.0066 .0074 .0233 .0115	.0115 0087	.0024	.0293 0093	.0062
safety minorityleft noleft houseval popdens	.0072 .0257 .0926	.0088 .0096 .0254 .0152	.013 0149	.003	.0333 0159	.0077
social minorityleft noleft houseval popdens	0159 0527 264 .0865	.0114 .012 .0304 .0251	0366 .0164	.0045	0935 .0174	.0114
urbanplann_g minorityleft noleft houseval popdens	.0165 .0171 .0777 .0387	.0097 .0102 .0265 .0219	.0121 .0073	.0033	.0309 .0078	.0085

Marginal Effects		MFX at x coef. se			
governing houseval popdens	.0293 0093		0061		
safety houseval popdens	.0334		0077		
social houseval popdens	0937 .0174		0115		
urbanplann_g houseval popdens	.031		0085		
E(governing x) E(safety x) = E(social x) = E(urbanplann_g		.0993 .175 .5032 .2225			
minorityleft noleft houseval	0 0 1.483	.3878	.4962 .4879 .3902	0 0 0 2 .72	

- . fmlogit governing safety social urbanplanning, ///
- eta(minorityleft noleft houseval popdens) nolog

ML fit of fractional multinomial logit Number of obs = Wald chi2(12) = 232.02 Prob > chi2 = 0.0000

Log pseudolikelihood = -480.22927

	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
eta safety						
minorityleft	.1893804	.0596091	3.18	0.001	.0725486	.3062121
noleft	.0826287	.0617178	1.34	0.181	038336	.2035934
houseval	1389243	.0555301	-2.50	0.012	2477614	0300872
popdens	.0115828	.021217	0.55	0.585	0300018	.0531673
_cons	.7472656	.0920767	8.12	0.000	.5667985	.9277326
eta social						
minorityleft	.1274304	.0813587	1.57	0.117	0320297	.2868905
noleft	1631202	.0843848	-1.93	0.053	3285114	.002271
houseval	5152946	.0849965	-6.06	0.000	6818845	3487046
popdens	.1456129	.0257634	5.65	0.000	.0951176	.1961081
_cons	2.289081	.1415551	16.17	0.000	2.011638	2.566524
eta urbanp_q						
minorityleft	.234597	.1064367	2.20	0.028	.0259849	.443209
noleft	.0302709	.1142185	0.27	0.028	1935932	.254135
houseval	1766753	.0856439	-2.06	0.039	3445343	0088163
popdens	.1601436	.0417171	3.84	0.000	.0783796	.2419076
_cons	.9790566	.1526485	6.41	0.000	.6798709	1.278242
COIIS		. 1020400	0.41	0.000	. 0 / 20 / 02	1.2/0242

. dfmlogit, at(minorityleft 0 noleft 0)

discrete change	Min coef.	> Max se	+-S coef.	SD/2 se	coef.	-1/2 . se
governing minorityleft noleft houseval popdens	0138 .0056 .1036 0525	.0066 .0072 .0258 .0085	.0124 0103	.0027	.0317 011	.0069
safety minorityleft noleft houseval popdens	.0065 .0252 .0847	.0064 .0069 .0184 .0105	.0123 016	.0024	.0313 017	.0062
social minorityleft noleft houseval popdens	0122 0513 2721 .0792	.0128 .0129 .0458 .0315	0377 .016	.007	0963 .017	.0177
urbanplann_g minorityleft noleft houseval popdens	.0196 .0205 .0838 .0572	.014 .0152 .0422 .038	.0131	.0055	.0333	.0141

Marginal Effects	coef	X at x	se		
governing					
houseval popdens	.0317 011		065 024		
safety					
houseval	.0314		061		
popdens	017	.0	026		
social					
houseval	0966	.0	178		
popdens	.017	.0	047		
urbanplann.q					
houseval	.0335	.0	139		
popdens	.011		006		
E(governing x)		.098			
E(safety x) =		.1699			
E(social x) = E(urbanplann.q		.5046			
E(urbanpiann_g	(x) =	.22/6			
		mean	sd	min O	max
minorityleft noleft		.3878	.4962	-	1
houseval			.3902		
popdens		.7839	.9408	.025	
popuerra	. 1033	. 1035	. 2400	.020	9.711

Proportions are bounded: regress won't work well.

- Proportions are bounded: regress won't work well.
- one proportion:

- Proportions are bounded: regress won't work well.
- one proportion:
 - ▶ no 0s and/or 1s: betafit or fractional logit

- Proportions are bounded: regress won't work well.
- ► one proportion:
 - no 0s and/or 1s: betafit or fractional logit
 - Os and/or 1s: zoib or fractional logit

- Proportions are bounded: regress won't work well.
- one proportion:
 - no 0s and/or 1s: betafit or fractional logit
 - Os and/or 1s: zoib or fractional logit
 - interest in variance: fractional logit won't work

- Proportions are bounded: regress won't work well.
- one proportion:
 - no 0s and/or 1s: betafit or fractional logit
 - Os and/or 1s: zoib or fractional logit
 - interest in variance: fractional logit won't work
- multiple proportions:

- Proportions are bounded: regress won't work well.
- one proportion:
 - no 0s and/or 1s: betafit or fractional logit
 - Os and/or 1s: zoib or fractional logit
 - interest in variance: fractional logit won't work
- multiple proportions:
 - relationship between these proportions: no solution in Stata (yet)

- Proportions are bounded: regress won't work well.
- one proportion:
 - no 0s and/or 1s: betafit or fractional logit
 - Os and/or 1s: zoib or fractional logit
 - interest in variance: fractional logit won't work
- multiple proportions:
 - relationship between these proportions: no solution in Stata (yet)
 - relationship between mean proportions and explanatory variables: dirifit or fmlogit

References

Aitchison, J.

The Statistical Analysis of Compositional Data.
Caldwell, NJ: The Blackburn Press, 2003 [1986].

Ferrari, S.L.P. and Cribari-Neto, F.

Beta regression for modelling rates and proportions. *Journal of Applied Statistics*, 31(7): 799–815, 2004.

Paolino, P.

Maximum likelihood estimation of models with beta-distributed dependent variables. Political Analysis, 9(4): 325–346, 2001.

Papke, L.E. and Wooldridge, J.M.

Econometric Methods for Fractional Response Variables with an Application to 401(k) Plan Participation Rates.

Journal of Applied Econometrics, 11(6):619-632, 1996.

Smithson, M. and Verkuilen, J.

A better lemon squeezer? Maximum likelihood regression with beta-distributed dependent variables. Psychological Methods, 11(1):54–71, 2006.