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Abstract

This paper considers a model with general regressors and unobservable common factors. An

estimator based on iterated principal component analysis is proposed, which is shown to be not

only asymptotically normal, but also under certain conditions free of the otherwise so common

asymptotic incidental parameters bias. Interestingly, the conditions required to achieve unbiased-

ness become weaker the stronger the trends in the factors, and if the trending is strong enough

unbiasedness comes at no cost at all. The approach does not require any knowledge of how many

factors there are, or whether they are deterministic or stochastic. The order of integration of the

factors is also treated as unknown, as is the order of integration of the regressors, which means

that there is no need to pre-test for unit roots, or to decide on which deterministic terms to include

in the model.
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1 Introduction

The use of panel data with interactive fixed effects in regression analyses has attracted considerable

attention in the empirical literature in economics and elsewhere. One of the most common approaches

to such models by far is the principal component (PC) approach of Bai (2009). In fact, the PC

approach is so common that it has given rise to a separate strand of literature (see Moon and Weidner,

2015, and Ando and Bai, 2017, for overviews). The present paper aims to contribute to this strand,

and it does so in at least three ways.

The first contribution of the paper is to consider a general data generating process (DGP) that

includes most of the specifications considered previously in the literature as special cases. The only

requirement is that suitably normalized sample second moment matrices of the factors and regressors

have positive definite limits. This is noteworthy because the existing literature is almost exclusively

based on the assumption that both the factors and regressors are stationary. The only exceptions

known to us are Bai et al. (2009), and Dong et al. (2021), but they limit the non-stationarity to unit

root processes only, which is also not realistic. Indeed, regressors and factors of different order of

magnitude are likely to be the rule rather than the exception, especially in economic and financial

data, due to differences in persistence over time.

The unrestricted DGP is important in itself but also because it can be accommodated without

requiring any knowledge thereof. Hence, not only do we treat the factors and their number as unknown,

but we also do not require any knowledge of the order of magnitude of both factors and regressors.

An important implication of this is that there is no need to distinguish between deterministic and

stochastic factors, or stationary and non-stationary factors. In the existing literature, deterministic

factors are often treated as known, and are projected out prior to the application of PC (see, for

example, Moon and Weidner, 2015). The problem here is that there is typically great uncertainty

over which deterministic terms to include, which raises the issue of model misspecification. The fact

that in the present paper deterministic terms are treated as additional factors means that the problem

of deciding on which terms to include does not arise. Similarly, while the regressors can be tested for

unit roots, and the estimation can be made conditional on the test outcome, this raises the issue of

pre-testing bias. In the present paper we do not require any knowledge about the order of integration

of the regressors, which means that there is no need for any pre-testing.

Equally as important as the general model formulation and its empirical appeal is the extension of

the existing econometric theory, which has not yet ventured much outside the stationary or pure unit

root environments. This is our second contribution. The main difficulty here is not the unrestricted

specification of the factors and regressors per se, but rather that the order of magnitude of the factors

may differ. In particular, the problem is that the nonlinearity of the PC estimator distorts the signal

coming from the factors, just as it does in estimation of nonlinear regression models with mixtures of
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integrated regressors (see, for example, Park and Phillips, 2000). This is true if both the number and

order of the factors are known, and the problem does not become any simpler when these quantities

are treated as unknown, as they are here. An additional problem that then arises is that existing

studies on the selection of the number of factors all require that the data be stationary (see, for

example, Bai and Ng, 2002, and Ahn and Horenstein, 2013), and it is not obvious how one should go

about this when the order of magnitude of the factor is unknown.

Intuitively, the factors whose order is largest should dominate the PC estimator. This motivates

the use of an iterative estimation procedure in which the factors and their number are estimated in

order according to their magnitude with relatively larger factors being estimated first. We begin by

prescribing a large number of factors, and estimate the resulting model by PC. The estimated factors

only capture the most dominating factors whose order of magnitude is largest. In spite of this, we

can show that the estimator is consistent, albeit at a relatively low rate of convergence. The rate is,

however, high enough to ensure that the number of dominating factors can be consistently estimated

using a version of the eigenvalue ratio approach of Lam and Yao (2012), and Ahn and Horenstein

(2013). We then apply PC conditional on the first-step factor estimates, and estimate the second

most dominating set of factors. This procedure continues until we cannot identify any more factors.

Because of the iterative fashion in which the factors are estimated, we refer to the new estimation

procedure as “iterative PC” (IPC), which is shown to be asymptotically (mixed) normal.

Our third contribution is to point out a “blessing” of trending factors. The blessing occurs if the

magnitude of the factors is sufficiently large, in which case the otherwise so common asymptotic bias

of the PC approach can be completely eliminated without imposing any additional restrictions on the

cross-sectional and time series dependencies of the regression errors. This is noteworthy, because the

sentiment in the previous literature is that in order to eliminate the asymptotic bias, the errors have

to be independent.

The reminder of the paper is organized as follows. We begin by describing the IPC approach. This

is done in Section 2. Sections 3 and 4 present the formal assumptions and our main asymptotic results,

respectively. Section 6 concludes. In the online appendix, we provide (i) an empirical illustration using

as an example the long-run relationship between US house prices and income, (ii) the proofs of our

asymptotic results, and (iii) some results of secondary nature.

A word on notation. For any T -rowed full column rank matrix A, we define its projection error

matrix as MA = IT − A(A′A)−1A′ = IT − PA. If A is square, λmin(A) and λmax(A) signify

its smallest and largest eigenvalues, respectively, tr A signifies its trace, and ‖A‖ =
√

tr A′A and

‖A‖2 =
√
λmax(A′A) signify its Frobenius and spectral norms, respectively. We write A > 0 to

signify that A is positive definite. If B is also a matrix, diag(A,B) denotes the block-diagonal matrix

that takes A (B) as the upper left (lower right) block. The symbols →D, →P and MN(·, ·) signify

convergence in distribution, convergence in probability and a mixed normal distribution, respectively.
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We use N, T →∞ to indicate that the limit has been taken while passing both N and T to infinity.

We use w.p.a.1 to denote with probability approaching one. Finally, I(A) is the indicator function for

the event A.

2 The IPC procedure

Consider the stacked T × 1 variable yi = (yi,1, . . . , yi,T )′, observable for i = 1, . . . , N cross-sectional

units. The DGP that we will consider for this variable is given by

yi = Xiβ
0 + F0γ0

i + εi, (1)

where Xi = (xi,1, . . . ,xi,T )′ is a T × dx matrix of regressors, F0 = (f0
1 , . . . , f

0
T )′ is a T × df matrix

of unobservable common factors with γ0
i being a conformable vector of factor loadings, and εi =

(εi,1, . . . , εi,T )′ is a T ×1 vector of idiosyncratic errors. The interactive effects are here given by F0γ0
i .

The factors are divided into groups according to their order of magnitude. There are G groups

of size d1, . . . , dG, which means that d1 + · · · + dG = df . Because the grouping is unknown, we may

without loss of generality assume that the factors are ordered, such that the first d1 factors have the

highest order of magnitude, the next d2 factors have the second highest order, and so on. Hence, if

we denote by F0
g and γ0

g,i the T × dg matrix of factors and dg × 1 vector of loadings associated with

group g, respectively, then F0γ0
i =

∑G
g=1 F0

gγ
0
g,i, where F0 = (F0

1, . . . ,F
0
G) and γ0

i = (γ0′
1,i, . . . ,γ

0′
G,i)
′.

The goal is to infer β0. The main difficulty in the estimation process is how to control for F0. Our

proposed IPC estimation procedure consists of three steps. We first initialize the estimation procedure

by applying the PC estimator of Bai (2009). However, because the first group of factors dominates all

the other groups in terms of order of magnitude, the first-step PC factor estimator will only estimate

(the space spanned by) F0
1. The second step of the procedure therefore involves iteratively applying the

PCA conditional on previous factor estimates to estimate all subsequent groups of factors; hence, the

“I” in IPC. In the third and final step, we estimate β0 conditional on the second-step IPC estimator

of F0 and the first-step PC estimator of β0.

Step 1 (Initial estimation). The objective function that we consider is given by

SSR(β,F) =
N∑
i=1

(yi −Xiβ)′MF (yi −Xiβ), (2)

where F ∈ DF with DF = {FT×dmax : T−δF′F = Idmax}, and dmax ≥ df and δ ∈ [0,∞) are user-

specified numbers. As we explain in Remark 1 below, the IPC estimator of β0 is invariant to the choice
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of δ and the need to select dmax is standard. The initial estimator is the minimizer of SSR(β,F);

(β̂0, F̂0) = argmin
(β,F)∈D

SSR(β,F), (3)

where D = Rdx × DF . It is useful to note that β̂0 satisfies β̂0 = β̂(F̂0), where

β̂(F) =

(
N∑
i=1

X′iMFXi

)−1 N∑
i=1

X′iMFyi. (4)

Step 2 (Iterative estimation of factors). As already pointed out, the factors are estimated in order

according to magnitude. Therefore, F̂0 is estimating F0
1. Since d1 ≤ df ≤ dmax, in general the

dimension of F̂0 will be larger than that of F0
1. We therefore begin this step of the estimation

procedure by estimating d1, and for this purpose we employ a version of the ratio of eigenvalue-based

estimator considered by, for example, Lam and Yao (2012), and Ahn and Horenstein (2013), which is

given by

d̂1 = argmin
0≤d≤dmax

{
λ̂1,d+1

λ̂1,d

· I

(
λ̂1,d

λ̂1,0

≥ τN

)
+ I

(
λ̂1,d

λ̂1,0

< τN

)}
, (5)

where τN = 1/ ln (max{λ̂1,0, N}), λ̂1,0 = N−1
∑N

i=1 ‖yi − Xiβ̂0‖2, and λ̂1,1 ≥ · · · ≥ λ̂1,dmax are the

dmax largest eigenvalues of the following matrix:

Σ̂1 =
1

N

N∑
i=1

(yi −Xiβ̂0)(yi −Xiβ̂0)′. (6)

The threshold τN , the “mock” eigenvalue λ̂1,0, and the indicator function are there to ensure that the

estimator is consistent. The need for these will be explained later. Given d̂1, we update the estimate

of F0
1 by setting F̂1 equal to the first d̂1 columns of F̂0, and estimate γ0

1,i by γ̂1,i = T−δF̂′1(yi−Xiβ̂0).

The estimation of F0
2, . . . ,F

0
G is analogous to that of F0

1. The main difference is that we have

to condition on all previous estimates. Let us therefore use F̂−g = (F̂1, . . . , F̂g−1) and γ̂−g,i =

(γ̂ ′1,i, . . . , γ̂
′
g−1,i)

′ to denote the matrices containing the previously estimated factors and loadings,

respectively, when estimating group g. The estimator of dg is then given by

d̂g = argmin
0≤d≤dmax

{
λ̂g,d+1

λ̂g,d
· I

(
λ̂g,d

λ̂g,0
≥ τN

)
+ I

(
λ̂g,d

λ̂g,0
< τN

)}
, (7)

where we update τN by letting τN = 1/ ln (max{λ̂g,0, N}), λ̂g,0 = N−1
∑N

i=1 ‖MF̂−g
(yi−Xiβ̂0)‖2 and

λ̂g,1 ≥ · · · ≥ λ̂g,dmax−d̂g−1−···−d̂1 are the dmax − d̂g−1 − · · · − d̂1 largest eigenvalues of

Σ̂g =
1

N

N∑
i=1

(yi −Xiβ̂0 − F̂−gγ̂−g,i)(yi −Xiβ̂0 − F̂−gγ̂−g,i)
′. (8)
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The resulting estimator F̂g of F0
g is given by the eigenvectors associated with λ̂g,1, . . . , λ̂g,d̂g and

γ̂g,i = T−δF̂′g(yi−Xiβ̂0− F̂−gγ̂−g,i). New groups of factors are estimated until d̂g = 0. At this point,

we set Ĝ = g − 1 and define F̂ = (F̂1, . . . , F̂Ĝ
). This is the IPC estimator of F0.

Step 3 (Estimation of β0). Given F̂, we compute β̂1 = β̂(F̂) using (4). The IPC-based estimator of

β0 is given by

β̂ = β̂0 +

(
N∑
i=1

Ẑ′iẐi

)−1 N∑
i=1

X′iMF̂
Xi(β̂1 − β̂0), (9)

where Ẑi = M
F̂

Xi −
∑N

j=1 M
F̂

Xj âij with âij = γ̂ ′i(Γ̂
′
Γ̂)−1γ̂j , γ̂i = (γ̂ ′1,i, . . . , γ̂

′
Ĝ,i

)′ and Γ̂ =

(γ̂1, . . . , γ̂N )′.

Remark 1. In the bulk of the previous literature, the appropriate value of δ to use depends on whether

F0 is stationary or unit root non-stationary (see, for example, Bai, 2004). The assumed knowledge

of δ is therefore tantamount to assuming that the order of integration of F0 is known, which is not

needed here. In fact, the IPC procedure is invariant with respect to δ, which can therefore be set

arbitrarily. Choosing τN is analogous to choosing a suitable penalty in information criteria. The choice

is therefore not unique. The main requirement is that τN should tend to zero at a slower rate than

λ̂g,d/λ̂g,0. Extensive Monte Carlo experimentation suggests that τN = 1/ ln (max{λ̂g,0, N}) works well

in small-samples. The need to specify a maximum dmax for the number of factors is standard in the

literature (see, for example, Bai and Ng, 2002).

Remark 2. The eigenvalue ratio λ̂g,d+1/λ̂g,d is self-normalizing, which makes it possible to handle

factors that are of different order of magnitude. Still, there are two issues. First, since λ̂g,d+1/λ̂g,d

is not defined for d = 0, we cannot have df = 0. The use of the mock eigenvalue λ̂g,0 allows us to

entertain this possibility. Second, the limiting behaviour of λ̂g,d+1/λ̂g,d is unknown for d > dg (Lam

and Yao, 2012). The use of the indicator functions allows us to circumvent this problem. The idea is

to look at λ̂g,d only. If this eigenvalue is “small”, we take it as a sign of d > dg and set λ̂g,d+1/λ̂g,d

to one. However, because the order of magnitude of f0
t is assumed to be unknown, we cannot look at

λ̂g,d directly but rather we look at λ̂g,d/λ̂g,0, which in contrast to λ̂g,d is self-normalizing.

Remark 3. Intuition suggests to take β̂1, the ordinary least squares (OLS) estimator conditional

on F̂, as the final estimator of β0 in Step 3. Interestingly, while consistent, because of the stepwise

estimation of the factors, the asymptotic distribution of β̂1 is generally not (mixed) normal and

nuisance parameter-free. In Section 5, we use Monte Carlo simulations to evaluate the extent of this

non-normality.
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3 Assumptions

Assumption 1 is a high-level moment condition concerned mainly with the order of magnitude of f0
t

and xi,t. The high-level formulation is convenient because it is the moment conditions that drive the

distribution theory, and we are not specifically interested here in the various sets of conditions under

which they hold. It may be noted, however, that there are a variety of more primitive conditions that

lead to Assumption 1 (see Westerlund, 2018, for a discussion).

Assumption 1 (Moments).

(a) There exists a matrix ΣX such that E‖(NT )−1
∑N

i=1 DTX′iMF 0XiDT − ΣX‖2 = o(1), where

DT = diag(T−κ1/2, . . . , T−κdx/2) with 0 ≤ κj < ∞ for j = 1, . . . , dx, E‖ΣX‖2 < ∞, and

0 < λmin(ΣX) ≤ λmax(ΣX) <∞ w.p.a.1.

(b) ‖(NT )−1
∑N

i=1 DTX′iεi‖ = OP (1/min{
√
N,
√
T}) and ‖ε‖2 = OP (max{

√
N,
√
T}) with ε =

(ε1, . . . , εN ).

(c) There exists a matrix ΣF 0 such that E‖CTF0′F0CT−ΣF 0‖2 = o(1), where CT = diag(T−ν1/2Id1 ,

. . . , T−νG/2IdG) with ν1 > · · · > νG > 1/2, E‖ΣF 0‖2 < ∞ and 0 < λmin(ΣF 0) ≤ λmax(ΣF 0) <

∞ w.p.a.1.

(d) There exists a matrix ΣΓ0 such that ‖N−1Γ0′Γ0 − ΣΓ0‖ = oP (1) and maxi≥1 E‖γ0
i ‖4 < ∞,

where Γ0 = (γ0
1, . . . ,γ

0
N )′ is N × df and 0 < λmin(ΣΓ0) ≤ λmax(ΣΓ0) <∞.

Let us start with Assumption 1 (c), which is analogous to Assumption F of Westerlund (2018). This

condition is very general in that it imposes almost no restrictions on the type of trending behaviour

that ft may have. The trending can be deterministic and/or stochastic. Either way, the degree of

the trending is not restricted. The main requirement is that λmin(ΣF 0) > 0 w.p.a.1, which implies

that the elements of ft cannot be asymptotically collinear. A majority of previous PC-based works

assume that T−1F0′F0 converges to positive definite matrix (see, for example, Bai, 2009, and Moon

and Weidner, 2015). Notable exceptions include Bai (2004), and Bai et al. (2009), in which f0
t is

assumed to follow pure unit root process, and Bai and Ng (2004), who allow for a mix of stationary

and unit root factors. The fact that ΣF 0 is not required to be a constant matrix means that we

do not rule out factors that are stochastically integrated. We also do not place any restrictions on

the long-run covariance matrix of differences of f0
t , which means that we permit linear combinations

of factors that are of reduced integration order, commonly referred to as “multicointegration”. This

is similar to the scenario considered by Bai and Ng (2004), except that they restrict the order of

integration of f0
t to be at most one. The only study that comes close to ours in terms of the generality

of the factors is that of Westerlund (2018). However, he assumes that xi,t has a factor structure that

loads on the same set of factors as yi,t, which is not required here. Also, unlike Westerlund (2018),
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we allow 1/2 < νG < 1, which means that the signal coming from f0
G,t is even weaker than under

stationarity, as when f0
G,t is stationary and sparse. Similarly to Lam and Yao (2012), we refer to this

type of factors as “signal-weak”.

Assumption 1 (a) is similar to Assumption 1 (c) in that it leaves the trending behaviour of the

regressors essentially unrestricted, provided that they are not asymptotically collinear.

The first requirement of Assumption 1 (b) is quite mild and holds if a central limit theorem in only

one of the two panel dimensions applies to the normalized sum of DTX′iεi. The second requirement

is quite common in the literature, and is expected to hold as long as εi,t has zero mean, and weak

serial and cross-sectional correlation (see Moon and Weidner, 2015, for a discussion).

Assumption 1 (d) is standard and ensures that each factor has a non-trivial contribution to the

variance of yi,t (see, for example, Bai and Ng, 2004, for a discussion).

Assumption 2 (Identification). infF∈DF
λmin(B(F)) ≥ c0 > 0 for all N and T , where B(F) =

(NT )−1
∑N

i=1 DTZi(F)′Zi(F)DT with Zi(F) = MFXi −
∑N

j=1 MFXjaij and aij = γ0′
i (Γ0′Γ0)−1γ0

j .

Assumption 2 is analogous to Assumption A in Bai (2009), and Assumption NC in Moon and

Weidner (2015), and is there to rule out “low-rank” elements in Xi that are wiped out by the defac-

toring and demeaning carried out in Zi(F) to eliminate the interactive effects. The limitation here is

therefore not that we cannot allow for low rank data components, which we do through the interactive

effects, but that we cannot identify their effects if included among the observed regressors.

Assumption 3 (Errors).

(a) E(εi,t) = 0 and E(εiε
′
i) = Σε,i.

(b) Let εt = (ε1,t, . . . , εN,t)
′ in this assumption only. {εt : t ≥ 1} is strictly stationary and α-

mixing such that maxi≥1 E|εi,1|4+µ < ∞ for some µ > 0 and the mixing coefficient α(t) =

supA∈F0
−∞,B∈F∞t |P(A)P(B) − P(AB)| satisfies

∑∞
t=1 α(t)µ/(4+µ) < ∞, where F0

−∞ and F∞t are

the sigma-algebras generated by {εs : s ≤ 0} and {εs : s ≥ t}, respectively.

(c)
∑N

i,j=1

∑T
t,s=1 |E(εi,tεj,s)| = O(NT ) and

∑N
i,j=1 |σε,ij | = O(N), where σε,ij = E(εi,tεj,t).

(d) εi,t is independent of γ0
j , f0

s and xj,s for all i, j, t and s.

Assumption 3 is similar to Assumptions C and D in Bai (2009). Assumptions 3 (b) and (c) ensure

that the serial and cross-sectional dependencies of εi,t are at most weak. Assumption 3 (d) requires

that xi,t and εi,t are independent, which rules out the presence of lagged dependent variables in xi,t.

However, xi,t may still be correlated with the unobserved regression error γ0′
i f0
t + εi,t in (1), as the

correlation between xi,t, γ
0
i and f0

t is not restricted in any way. Hence, xi,t is actually not required

to be strictly exogenous even if we assume it to be independent of εi,t.
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Assumption 4 (Factors and loadings).

(a) maxg 6=h ‖Γ0′
g Γ0

h‖ = OP (Np) and maxg 6=h ‖F0′
g F0

h‖ = OP (T q), where g, h = 1, . . . , G, G > 1,

p < 1, q < (νG + νG−1)/2 and νG−1 ≥ 1.

(b) If νG < 1, then T/N2 → c1 ∈ [0,∞).

The Assumption 4 (a) condition that νG−1 ≥ 1 means that we only allow for one group of weak

factors. This can be seen as a form of normalization and is not particularly restrictive. Let us there-

fore instead consider maxg 6=h ‖F0′
g F0

h‖ = OP (T q), which is less restrictive than the exact orthogonality

condition typically required in papers on grouped factor structures (see, for example, Ando and Bai,

2017). Even so, we now provide a provide a justification for Assumption 4 (a). As is well known,

γ0′
i f0
t = γ0′

i W−1Wf0
t for any positive definite rotation matrix W. Now set W = (F0′F0C2

T )−1/2.

This implies CTWF0′F0W′CT = Idf , which means that the rotated factors are exactly orthogo-

nal, and hence that Assumption 4 is satisfied for F0W′ with q = −∞. The loading condition,

maxg 6=h ‖Γ0′
g Γ0

h‖ = OP (Np), can be justified in the same way.1 Assumption 4 (b) is not required

unless some of the factors are signal-weak.

4 Asymptotic results

Lemma 1 justifies the use of β̂0 in Step 1 of the IPC procedure as an initial estimator of β0.

Lemma 1 (Consistency of β̂0). Under Assumptions 1 and 2, as N,T →∞,

min{
√
N,
√
T}D−1

T (β̂0 − β0) = OP (1).

According to Lemma 1, Assumptions 1 and 2 are enough to ensure that β̂0 is consistent for β0. The

rate of convergence is given by ‖DT ‖/min{
√
N,
√
T} = max{T−κ1/2, . . . , T−κdx/2}/min{

√
N,
√
T}.

To put this into perspective, suppose that xi,t is stationary, such that κ1 = · · · = κdx = 0. In this

case, DT = Idx and the rate of convergence is given by 1/min{
√
N,
√
T}, which is the slowest of the

regular rates in pure time series and cross-section regressions. Still, the rate is fast enough for the

estimation of the number of factors. This brings us to Step 2 of the estimation procedure.

Lemma 2 (Consistency of (d̂1, . . . , d̂G+1) and F̂). Suppose that Assumptions 1–4 are satisfied. Then,

the following results hold as N, T →∞:

(a) P
(
(d̂1, . . . , d̂G+1) = (d1, . . . , dG+1)

)
→ 1, where dG+1 = 0;

1Another way to rationalize Assumption 4 is if Γ0
1, . . . ,Γ

0
G are independent and at most one of them has non-zero

mean. Independence is often assumed and we therefore do not justify it here (see, for example, Chudik et al., 2011,
and Pesaran, 2006). In order to justify the zero mean assumption, suppose for simplicity that G = 2, that γ0

1,i = 1 and

that γ0
2,i = γ0

2 + ηi with E(ηi) = 0. Hence, γ0′
i f0t = (γ0

1,i, γ
0
2,i)(f

0
1,t, f

0
2,t)
′ = f0

1,t + (γ0
2 + ηi)f

0
2,t = (1, ηi)(f̃

0
1,t, f

0
2,t)
′, where

f̃0
1,t = (f0

1,t + γ0
2f

0
2,t). Then the zero mean assumption is fulfilled.

10



(b) ‖P
F̂
−PF 0‖ = oP (1).

The consistency of (d̂1, . . . , d̂G) is important for obvious reasons. The consistency of d̂G+1 ensures

that the stopping rule of Step 2 is asymptotically valid, which in turn implies that P(Ĝ = G)→ 1.

As we alluded to earlier, F0 and γ0
i are only identified up to a rotation matrix. However, we

cannot claim that F̂ is rotationally consistent for F0, as the number of rows of both objects is growing

with T . We therefore have to resort to alternative consistency concepts. This is where Lemma 2 (b)

comes in. It shows that the spaces spanned by F̂ and F0 are asymptotically the same.

We have now established that all the estimates of Step 1 and Step 2 are consistent. We therefore

move on to investigate the Step-3 IPC estimator β̂ of β0. In Theorem 1 below we provide the

asymptotic distribution of this estimator. In order to do so, however, we need to impose another two

assumptions.

Assumption 5 (Rates).

(a) N/T νG → ρ1 ∈ [0,∞);

(b) T 2−νG/N → ρ2 ∈ [0,∞).

Assumption 6 (Asymptotic normality).

1√
NT

N∑
i=1

DTZi(F
0)′εi →D MN(0dx×1,Ω)

as N, T →∞, where Ω = plimN,T→∞
1
NT

∑N
i=1

∑N
j=1 DTE[Zi(F

0)′εiεjZj(F
0)|C]DT with C being the

sigma-algebra generated by F0.

If all the factors in f0
t are stationary such that G = 1 and νG = ν1 = 1, Assumption 5 requires that

N/T → ρ1 = 1/ρ2 ∈ (0,∞), which is the same condition as in Bai (2009), and Moon and Weidner

(2015). Note also that Assumption 5 rules out the signal-weak case when νG < 1.

Assumption 6 is a central limit theorem that is analogous to Assumption E of Bai (2009). The

reason for requiring that the asymptotic distribution is mixed normal as opposed to normal is that by

doing so we can accommodate stochastically integrated factors (see, for example, Bai et al., 2009). In

the absence of such integrated factors, the mixed normal becomes normal. Either way, Assumption 6

ensures that standard normal and chi-squared inference based on β̂ is possible.

Theorem 1 (Asymptotic distribution of β̂). Under Assumptions 1–6, as N, T →∞,

√
NTD−1

T (β̂ − β0)→D MN(B−1
0 (
√
ρ1A1 +

√
ρ2A2),B−1

0 ΩB−1
0 ),

11



where

B0 = plim
N,T→∞

E[B(F0)|C],

A1 = − plim
N,T→∞

1

T (1−νG)/2

N∑
i=1

DTE[X′iMF 0ΣεF
0
G(F0′

GF0
G)−1(Γ0′

GΓ0
G)−1γ0

G,i|C],

A2 = − plim
N,T→∞

1

T (3−νG)/2

N∑
i=1

N∑
j=1

DTE[Zi(0)′F0
G(F0′

GF0
G)−1(Γ0′

GΓ0
G)−1γ0

G,jε
′
jεi|C],

with Σε = N−1
∑N

i=1 Σε,i and Zi(0) = Xi −
∑N

j=1 Xjaij.

According to Theorem 1, the asymptotic bias is driven by the factors and loadings of group G,

which is intuitive as the factors of this group are smallest in order of magnitude. They therefore

dominate the asymptotic bias. By bounding νG from below Assumption 5 ensures that B−1
0 (
√
ρ1A1 +

√
ρ2A2) is not diverging.

Let us now illustrate the implications of Theorem 1 taking as examples the cases when f0
t is

stationary and when it is unit root non-stationary. If stationarity holds, such that G = ν1 = 1 and

ρ1 = 1/ρ2 ∈ (0,∞), the bias in Theorem 1 reduces to B−1
0 (
√
ρ1A1 + ρ

−1/2
1 A2), which under the

additional condition that also xi,t is stationary is identically the bias reported in Theorem 3 of Bai

(2009). It is important to note that while
√
ρ1A1 can be made arbitrarily small (large) by taking ρ1

to zero (infinity), this will make ρ
−1/2
1 A2 divergent (negligible). It follows that unless ρ1 ∈ (0,∞)

the bias will diverge, which in turn means that there is no way to make the bias disappear by just

manipulating ρ1, which in practical terms means restricting T/N . Indeed, as pointed out by Bai

(2009), the only way to avoid bias under stationarity is to assume that εi,t is homoskedastic and

serially uncorrelated.2

A major point about Theorem 1 is that it showcases the importance of νG for the IPC bias. In

particular, the theorem makes clear that by allowing νG > 1, we can break the above mentioned

inverse relationship between ρ1 and ρ2, which means that one can be zero without for that matter

forcing the other to infinity. In particular, ρ1 and ρ2 may both be zero. Let us therefore now consider

the case when f0
t is unit root non-stationary. In this case, νG = 2, implying that T 2−νG/N = 1/N → 0

as N →∞, and hence Assumption 5 (b) is satisfied with ρ2 = 0. The part of the bias that emanates

from
√
ρ2B

−1
0 A2 is therefore zero. Hence, if we in addition assume that N/T νG = N/T 2 → 0, so that

ρ1 = 0, then
√
ρ1B

−1
0 A1 is zero too, and hence the bias is gone. This is consistent with Proposition 4

of Bai et al. (2009), which establishes that their version of the regular PC estimator is asymptotically

unbiased under exogeneity if N/T 2 → 0.

In general, the larger νG is, the less restrictive the condition on T/N has to be for ρ1 and ρ2 to

2It is easy to see that A1 = 0dx×1 if εi,t is homoskedastic and serially uncorrelated, as MF0ΣεF
0
G = 0T×dG if

Σε = σ2
εIT . The proof of A2 = 0dx×1 requires more work and can be found in Bai (2009, Proof of Theorem 2(ii)).
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be zero. The intuition for this result is simple. Indeed, while F0
G appears twice in the denominator

of A1 and A2, it only appears once in the numerator. This “unbalancedness” together with ‖F0
G‖ =

OP (T νG/2) means that A1 and A2 are OP (T−νG/2), and therefore the bias is decreasing in νG.

Remark 4. Note that while biased, β̂ is still consistent at the best achievable rate.3 This is in

contrast to Lemma 1 and the relatively slow rate of convergence reported there. The reason for this

difference is that unlike Theorem 1, which requires that Assumptions 1–6 all hold, Lemma 1 only

requires Assumptions 1 and 2, and under these very relaxed conditions the Theorem 1 rate is not

attainable. If, however, the conditions of Theorem 1 are met, then β̂0 and β̂1 are consistent at the

same rate as β̂ (see Lemma B.6 of the online appendix for a formal proof).

Corollary 1 (Unbiased asymptotic distribution). Suppose that the conditions of Theorem 1 are met

and that ρ1 = ρ2 = 0. Then, as N, T →∞,

√
NTD−1

T (β̂ − β0)→D MN(0dx×1,B
−1
0 ΩB−1

0 ). (10)

In Section C of the online appendix, we provide some alternative conditions that ensure A1 =

A2 = 0dx×1. If ρ1, ρ2, A1 and A2 are all different from zero, one possibility is to use bias correction.

In the appendix, we explain how the Jackknife approach can be used for this purpose.

Theorem 1 imposes only minimal conditions on the correlation and heteroskedasticity of εi,t, and is

in this sense very general. Such generality is, however, not possible if we also want to ensure consistent

estimation of Ω. Let us therefore assume for a moment that E(εi,tεj,s) = 0 for all (i, t) 6= (j, s), so

that εi,t is serially and cross-sectionally uncorrelated. In this case,

N∑
i=1

N∑
j=1

E[Zi(F
0)′εiεjZj(F

0)|C] =
N∑
i=1

σ2
ε,iE[Zi(F

0)′Zi(F
0)|C]. (11)

A natural estimator of this matrix is given by
∑N

i=1 σ̂
2
ε,iẐ

′
iẐi, where σ̂2

ε,i = T−1
∑T

t=1 ‖MF̂
(yi−Xiβ̂)‖2

and Ẑi is as in the definition of β̂. It is not difficult to show that under the conditions of Theorem 1,

∥∥∥∥∥ 1

NT

N∑
i=1

σ̂2
ε,iDT Ẑ′iẐiDT −Ω

∥∥∥∥∥ = oP (1). (12)

Of course, in this paper we do not assume knowledge of the order of the regressors, which in practice

means that the appropriate normalization matrix DT to use is unknown. This is not a problem,

however, as the usual Wald and t-test statistics are self-normalizing. As an illustration, consider

testing the null hypothesis of H0 : Rβ0 = r, where R is a r0 × dx matrix of rank r0 ≤ dx and r is a

3For example, if xi,t is stationary, such that DT = Idx , the rate of convergence is given by 1/
√
NT , which is the

same as in Bai (2009). If, on the other hand, xi,t is unit root non-stationary, such that DT = T−1/2Idx , then the rate
of convergence is given by 1/

√
NT , just as in Bai et al. (2009).
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r0 × 1 vector. The Wald test statistic for testing this hypothesis is given by

W
β̂

= (Rβ̂ − r)′

R

(
N∑
i=1

Ẑ′iẐi

)−1 N∑
i=1

σ̂2
ε,iẐ

′
iẐi

(
N∑
i=1

Ẑ′iẐi

)−1

R

−1

(Rβ̂ − r), (13)

which has a limiting chi-squared distribution with r0 degrees of freedom under H0, as is clear from

W
β̂

= [RDT

√
NTD−1

T (β̂ − β0)]′

[
RDT

(
1

NT

N∑
i=1

DT Ẑ′iẐiDT

)−1
1

NT

N∑
i=1

σ̂2
ε,iDT Ẑ′iẐiDT

×

(
1

NT

N∑
i=1

DT Ẑ′iẐiDT

)−1

DTR

]−1

RDT

√
NTD−1

T (β̂ − β0)→D χ2(r0). (14)

In the next section, we use Monte Carlo simulations as a means to evaluate the accuracy of this last

result in small samples.

The above results are for the case when εi,t is serially and cross-sectionally uncorrelated. If εi,t is

serially and/or cross-sectionally correlated, we recommend following Bai (2009), who discuss the issue

of consistent covariance matrix estimation at length. The same arguments can be applied without

change in current context.

5 Monte Carlo results

This section reports the results obtained from a small-scale Monte Carlo simulation exercise. The

DGP considered for this purpose is given by a restricted version of (1) that sets dx = 2, β0 = 12×1,

εi,t ∼ N(0, 1) and N, T ∈ {40, 80, 160, 320}. We further set df = 3 and generate the elements of γi =

(γ0
1,i, γ

0
2,i, γ

0
3,i)
′ as γ0

1,i ∼ N(1, 1), γ0
2,i ∼ N(0, 1) and γ0

3,i ∼ N(0, 1). The elements of f0
t = (f0

1,t, f
0
2,t, f

0
3,t)
′

are generated as f0
1,t = t, f0

2,t = µt and f0
3,t = ct, where µt = µt−1 + ξt, µ0 = 0, ξt ∼ N(0, 1/4) and

ct = sin(8πt/T ). Hence, in this DGP, the common component is a random walk with drift and cycle.

Also, d1 = d2 = d3 = 1 and (ν1, ν2, ν3) = (3, 2, 1). Let us denote by xj,i,t the j-th element of xi,t. The

following specification makes xj,i,t correlated with the common component of yi,t:

xj,i,t =
1

dx

 df∑
j=1

|γ0
j,i|+ |ξt|+ |ct|

+

(
t

4

)(j−1)/4

+ vj,i,t, (15)

where vj,i,t is the i-th element of the N × 1 vector vj,t = (vj,1,t, . . . , vj,N,t)
′, which we generate as

vj,t = 0.5vj,t−1 +ωj,t, where ωj,t ∼ N(0N×1,Σω) and Σω has 0.5|m−n| in row m and column n. Thus,

vj,i,t is weakly correlated across both i and t.

For each combination of N and T , we report the correct selection frequency for (d̂1, . . . , d̂Ĝ) when

seen as an estimator of (d1, . . . , dG) and for d̂g individually for each group g. Hence, while the former

frequency captures the accuracy of the estimation of both (d1, . . . , dG) and G, the latter frequency
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only captures the accuracy of the estimation of each dg. We also report the root mean squared error

(RMSE) of β̂ and P
F̂

, as measured by the square root of the average of ‖β̂−β0‖2 and ‖P
F̂
−PF 0‖2,

respectively, over the replications. The RMSE of β̂ is compared to that of β̂0, β̂1 and the infeasible

OLS estimator of β0 based on taking F0 as known, β̂(F0). Some results on the Wald test at the 5%

level based on R = Idx and r = β0 are also reported. In particular, we report the size of W
β̂

, W
β̂0

and W
β̂1

, which are computed in an obvious fashion by replacing (β̂, F̂) with (β̂0, F̂0) and (β̂1, F̂),

respectively, and W
β̂(F0)

, which is calculated in the same way as W
β̂

but with MF 0Xi in place of Ẑi.

The critical values are taken from χ2(dx). As pointed out in Section 2, the IPC estimator is invariant

to δ. The results reported here are based on δ = 1. We follow the bulk of the previous literature

(see, for example, Ahn and Horenstein, 2013, Bai and Ng, 2002, and Moon and Weidner, 2015) and

set dmax = 10, which led to the same results as some of the other values we tried. The number of

replications is 1,000.

Insert Tables 1 and 2 about here

We begin by considering the results reported in Table 1 for the estimated common component.

The correct selection frequency of each d̂g suggest that accuracy is decreasing in g, which is partly

expected because the signal strength of the factors, as measured by νg, is decreasing in g too. Also, the

sequential nature of the IPC estimation procedure implies that the error coming from the estimation

of dg−1 will tend to be imported into the estimation of dg, and therefore the procedure will be more

accurate in the beginning. We also see that the accuracy of (d̂1, . . . , d̂Ĝ) is almost identical to that of

d̂G, suggesting that the accuracy of Ĝ is driven by the accuracy of the group whose factors has the

weakest signal.

Looking next at the RMSE results reported in Table 2 for estimating β0, we see that there is a clear

improvement as the sample size increases. The best overall performance is generally obtained when

taking F0 as known, which is in accordance with our priori expectations. However, the improvement

is not very large and it decreases with increases in N and T . The reason for this is the accuracy of

the estimated factors, which according to the RMSE of P
F̂

reported Table 1 is high and increasing

in N and T . The second best performance is obtained by using β̂, followed by β̂1, and then β̂0.

Insert Figure 1 about here

If our asymptotic theory is correct, while the rejection frequency of W
β̂

and W
β̂(F0)

should converge

to the nominal level 5% as the sample size increases, that of W
β̂0

and W
β̂1

should not, and this

is exactly what we see in Table 2. Note in particular how the size of W
β̂0

and W
β̂1

is not only

nonconvergent but that it is in fact increasing in N and T . In order to illustrate these results, in

Figure 1 we plot kernel smoothed versions of the empirical densities of the first element of all four

estimators considered (after centering by β0 and scaling by
√
NT ) as well as the normal density.
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The first thing to note is that the densities of β̂ and β̂(F0) approach the normal one as the sample

size increases, and they are both unbiased. The densities of β̂1 and β̂0 are by contrast biased and

occasionally even bimodal. Consistent with the size results reported in Table 2 we see that there is

no improvement as N and T increase, but that the non-normality instead tends to get worse in larger

samples.

6 Conclusion

The PC approach of Bai (2009) has attracted considerable interest in recent years so that it has given

rise to a separate PC literature. A key assumption in this literature is that both the unknown factors

and regressors are stationary, which is rarely the case in practice. In the present paper, we relax

this assumption by considering a very general DGP in which the factors and regressors are essentially

unrestricted. In spite of this generality, the proposed IPC estimator can be applied without any input

from the practitioner, except for the maximum number of factors to be considered. The fact that

in IPC there is no need to distinguish between deterministic and stochastic factors means that the

usual problem in applied work of deciding on which deterministic terms to include in the model does

not arise, as these are estimated along with the other factors of the model. There is also no need to

pre-test the regressors for unit roots, which is otherwise standard practice when using procedures that

do not require the data to be stationary. In other words, the proposed IPC is not only very general

but also extremely user-friendly. It should therefore be a valuable addition to the already existing

menu of techniques for panel regression models with interactive effects.
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Table 1: Monte Carlo results for the estimated common component.

Correct selection frequency RMSE

N T d̂1, ..., d̂Ĝ d̂1 d̂2 d̂3 PF̂

40 40 0.341 1.000 0.406 0.341 0.9453

80 0.628 1.000 0.646 0.628 0.5599

160 0.835 1.000 0.837 0.835 0.3715

320 0.954 1.000 0.954 0.954 0.3520

80 40 0.348 1.000 0.378 0.348 0.9452

80 0.661 1.000 0.668 0.661 0.4523

160 0.867 1.000 0.867 0.867 0.2634

320 0.958 1.000 0.958 0.958 0.2401

160 40 0.329 1.000 0.337 0.329 0.6401

80 0.684 1.000 0.686 0.684 0.4359

160 0.864 1.000 0.864 0.864 0.1761

320 0.960 1.000 0.960 0.960 0.1696

320 40 0.220 1.000 0.225 0.220 0.4043

80 0.603 1.000 0.603 0.603 0.2083

160 0.882 1.000 0.882 0.882 0.1326

320 0.988 1.000 0.988 0.988 0.1195

Notes: The correct selection frequencies are for the estimated factor groups, which is Step 2 of the IPC
procedure. The results for d̂1, . . . , d̂Ĝ treat both the groups and their number, G, as unknown, while the

results for d̂1, d̂2 and d̂3 take G as given. The reported RMSE results for PF̂ refer to the square root of the
average of ‖PF̂ −PF 0‖2 across the Monte Carlo replications.
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Table 2: Monte Carlo results for the estimated slopes.

RMSE 5% size

Estimator N\T 40 80 160 320 40 80 160 320

β̂0 40 0.0573 0.0423 0.0380 0.0410 0.6800 0.7280 0.8410 0.9160

80 0.0335 0.0234 0.0212 0.0220 0.5990 0.6550 0.7940 0.9050

160 0.0219 0.0169 0.0158 0.0169 0.5820 0.3500 0.8680 0.9560

320 0.0148 0.0109 0.0105 0.0142 0.5680 0.6230 0.7750 0.9040

β̂1 40 0.0435 0.0296 0.0252 0.0262 0.3330 0.4320 0.6080 0.7520

80 0.0286 0.0177 0.0144 0.0138 0.2520 0.3130 0.4720 0.6830

160 0.0172 0.0127 0.0104 0.0102 0.2300 0.7260 0.5610 0.7560

320 0.0113 0.0079 0.0069 0.0084 0.2330 0.2770 0.4580 0.7060

β̂ 40 0.0383 0.0212 0.0129 0.0091 0.1320 0.0950 0.0580 0.0680

80 0.0280 0.0146 0.0092 0.0062 0.1500 0.0670 0.0650 0.0550

160 0.0164 0.0105 0.0064 0.0043 0.0960 0.0750 0.0690 0.0430

320 0.0099 0.0064 0.0044 0.0032 0.0720 0.0480 0.0420 0.0660

β̂(F0) 40 0.0254 0.0171 0.0114 0.0081 0.0550 0.0610 0.0440 0.0410

80 0.0186 0.0117 0.0084 0.0057 0.0750 0.0470 0.0560 0.0410

160 0.0127 0.0086 0.0059 0.0041 0.0560 0.0600 0.0530 0.0490

320 0.0087 0.0059 0.0041 0.0030 0.0640 0.0420 0.0520 0.0660

Notes: The RMSE of β̂ refers to the square root of the average of ‖β̂ − β0‖2 across the Monte Carlo

replications. The RMSEs of β̂0, β̂1 and β̂(F0) are constructed in an analogous fashion, where β̂0 is the

initial Step 1 IPC estimator, β̂1 is the regular PC estimator based on the IPC estimator of the factors, F̂,

and β̂(F0) is the infeasible OLS estimator based on the true factors. The 5% size results are for the Wald
test associated with each estimator.
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Figure 1: Simulated densities for the estimated slopes.

Notes: The plotted curves are kernel smoothed empirical densities of the first element of each
of
√
NT (β̂ − β0) (red solid line),

√
NT (β̂1 − β0) (magenta dotted line),

√
NT (β̂0 − β0) (blue

dash-dotted line) and
√
NT (β̂(F0) − β0) (black dashed line). The normal density (green dashed

line) is also included for reference.
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