

Regression Control Method with Stata

回归控制法及Stata应用

School of Economics Shandong University 颜冠鹏 <u>Guanpengyan@mail.sdu.edu.cn</u>

Outline

- **1. Introduction**
- 2. Model
- **3. Extension**
- 4. The rcm command
- **5. Examples**

1. Introduction

- Regression control method (RCM)
 - Aka a panel data approach for program evaluation (Hsiao et al. 2012)
 - Exploits cross-sectional correlation to construct counterfactual outcomes for a single treated unit
 - Hsiao and Zhou (2019) propose to add covariates in model for helping prediction

1. Introduction

- Stata command rcm :
 - $\circ~$ Implement regression control method
 - Facilitate model selection and estimation
 - $\circ~$ Support to add covariates
 - Support placebo tests for statistical inferences

2. Model

2.1 Basic Model

- N cross-sectional units indexed by $i=1,\ldots,N$ over $t=1,\ldots,T_0+1,\ldots,T$ periods
- i=1 indexes the treated unit, whereas $\{2,\ldots,N\}$ is the index set of N-1 control units (donor pool)
- Policy intervention occurs at time $T_0+1,$ which partitions the time series into two sections:

Pre-treatment periods: $1, \ldots, T_0$ Post-treatment periods: $T_0 + 1, \ldots, T$

- y_{it}^1 and y_{it}^0 be the outcomes of the unit i in period t with and without intervention respectively
- y_{it} is observed that in the form:

$$y_{it} = d_{it} y_{it}^1 + \left(1 - d_{it}
ight) y_{it}^0$$

- $d_{it} = 1$ if i = 1 and unit i is under intervention in period t, or $d_{it} = 0$ if not
- The treatment effect for can be expressed as

$$\Delta_{it}=y^1_{it}-y^0_{it}$$
 $t=T_0+1,\ldots,T$

• Assume that y_{it}^0 is generated by a **pure** factor model of the form

$$y_{it}^0 = \mathbf{b}_i' \mathbf{f}_t + arepsilon_{it}$$

- $f_t {:} K imes 1$ (unobserved) common factors
- $\mathbf{b}_i': 1 imes K$ (unobserved) factor loadings
- ε_{it} : Random idiosyncratic component with $E(\varepsilon_{it}) = 0$.

Stack y_{it}^0 for $i \in \{2,\ldots,N\}$, we get

$$\widetilde{\mathbf{y}}_t = \widetilde{\mathbf{B}}\mathbf{f}_t + \widetilde{oldsymbol{arepsilon}}_t$$

$$\bullet \; \widetilde{\mathbf{y}}_t = \left(y_{2t}^0, \ldots, y_{Nt}^0\right)'$$

•
$$\widetilde{\boldsymbol{\varepsilon}}_t = (\varepsilon_{2t}, \dots, \varepsilon_{Nt})'$$

• $\widetilde{\mathbf{B}}: (N-1) imes K$ factor loading matrix $(\mathbf{b}_2, \dots, \mathbf{b}_N)'$

$$\mathbf{f}_t = \left(\widetilde{\mathbf{B}}'\widetilde{\mathbf{B}}
ight)^{-1}\widetilde{\mathbf{B}}'\left(\widetilde{\mathbf{y}}_t - \widetilde{oldsymbol{arepsilon}}_t
ight)$$

Then y_{1t}^0 can be represented as

$$egin{aligned} y_{1t}^0 &= \mathbf{b}_1' \mathbf{f}_t + arepsilon_{1t} \ &= \mathbf{b}_1' \left(\widetilde{\mathbf{B}}' \widetilde{\mathbf{B}}
ight)^{-1} \widetilde{\mathbf{B}}' \left(\widetilde{\mathbf{y}}_t - \widetilde{oldsymbol{arepsilon}}_t
ight) + arepsilon_{1t} \ &= oldsymbol{\gamma}' \widetilde{\mathbf{y}}_t + arepsilon_{1t} - oldsymbol{\gamma}' \widetilde{oldsymbol{arepsilon}}_t \end{aligned}$$

•
$$oldsymbol{\gamma}' = \mathbf{b}_1' \left(\widetilde{\mathbf{B}}' \widetilde{\mathbf{B}}
ight)^{-1} \widetilde{\mathbf{B}}'$$

• $\widetilde{\mathbf{y}}_t$ is correlated to $\varepsilon_{1t} - \boldsymbol{\gamma}' \widetilde{\boldsymbol{\varepsilon}}_t$

$$egin{aligned} y_{1t}^0 &= oldsymbol{\gamma}' \widetilde{oldsymbol{y}}_t + arepsilon_{1t} - oldsymbol{\gamma}' \widetilde{oldsymbol{arepsilon}}_t \ &= oldsymbol{\gamma}' \widetilde{oldsymbol{y}}_t + L\left(arepsilon_{1t} - oldsymbol{\gamma}' \widetilde{oldsymbol{arepsilon}}_t | \widetilde{oldsymbol{y}}_t
ight) + arepsilon_{1t} \ &= oldsymbol{\gamma}' \widetilde{oldsymbol{y}}_t + oldsymbol{c}_1 + oldsymbol{c}' \widetilde{oldsymbol{arepsilon}}_t + arepsilon_{1t} \end{aligned}$$

• $L(\varepsilon_{1t} - \gamma' \tilde{\varepsilon}_t | \tilde{\mathbf{y}}_t)$ is the linear projection of $\varepsilon_{1t} - \gamma' \tilde{\varepsilon}_t$ onto $(1, \tilde{\mathbf{y}}_t')$, and c_1 and \mathbf{c} are the minimizers of

$$\min_{c_1,\mathbf{c}} E\left[\left(arepsilon_{1t}-oldsymbol{\gamma}'\widetilde{oldsymbol{arepsilon}}_t-c_1-\mathbf{c}'\widetilde{oldsymbol{\mathrm{y}}}_t
ight)^2
ight]$$

$$egin{aligned} y_{1t}^0 &= oldsymbol{\gamma}' \widetilde{\mathbf{y}}_t + c_1 + \mathbf{c}' \widetilde{\mathbf{y}}_t + v_{1t} \ &= \delta_1 + oldsymbol{\delta}' \widetilde{\mathbf{y}}_t + v_{1t} \end{aligned}$$

•
$$\delta_1=c_1$$
 , $oldsymbol{\delta}'=oldsymbol{\gamma}'+\mathbf{c}'$

• Hsiao et al. (2012) advocate estimating $\hat{\delta}_1$ and $\hat{\delta}'$ by OLS with the pre-treatment subsample, and predicting the counterfactual outcomes as

$$\hat{y}_{1t}^{0} = \hat{\delta}_{1} + \hat{oldsymbol{\delta}}' \widetilde{\mathbf{y}}_{t}$$

- So the treatment effect Δ_{1t} can be predicted using

$$\hat{\Delta}_{1t} = y_{1t}^1 - \hat{y}_{1t}^0 \quad t = T_0 + 1, \dots, T$$

• Average treatment effect (ATE) is estimated by averaging Δ^{1} s over the post-treatment periods:

$$\hat{\Delta}_1 = rac{1}{T-T_0}\sum_{t=T_0+1}^T \hat{\Delta}_{1t}$$

- Use all of control units for estimation may not be the best choice
- Large estimation variance in turn leads to poor out-of-sample predictions
- Hsiao et at. (2012) suggest using information criterion approach to select control units in exhaustive search (best subset selection)
- Use $\widetilde{\mathbf{y}}_t^*$ instead of $\widetilde{\mathbf{y}}_t$, where $\widetilde{\mathbf{y}}_t^*$ is the best subset of $(y_{2t},\ldots,y_{Nt})'$

2.2 Model with Covariates (Hsiao and Zhou, 2019)

• Assume y_{it}^0 is a function of p observable variables \mathbf{x}_{it} :

$$y_{it}^0 = \mathbf{x}_{it}^\prime eta + \mathbf{b}_i^\prime \mathbf{f}_t + arepsilon_{it}$$

• y_{1t}^0 can be predicted as

$$\hat{y}_{1t}^0 = \hat{\delta}_1 + \hat{oldsymbol{\delta}}' \mathbf{z}_t^*$$

• \mathbf{z}_t^* includes any subset of $\mathbf{z}_t = (y_{2t}, \dots, y_{Nt}, \mathbf{x}_{1t} \dots, \mathbf{x}_{Nt})'$ that helps to predict y_{1t}^0 (forward stepwise method or Lasso method suggested)

3 Extension

- Step 1 Select the Suboptimal Model Select the suboptimal model $M^*_{OLS}(j)$ using best subset selection, forward stepwise selection or backward stepwise selection, or $M^*_{lasso}(\lambda)$ using Lasso seletion $(j \in \{1, \ldots, T_0 - 1\})$
- Step 2 Select the Optimal Model Choose the optimal model M^{*} from all of suboptimal models in terms of information criterion or cross-validation
- After model selection, OLS or Lasso regression is used to fit the optimal model for counterfactual prediction

3.1 Select the Suboptimal Model

3.1.1 Best Subset Selection

- Hsiao et. al. (2012) suggest using best subset selection
- *exhaustion*:

For
$$k = 1, 2, \dots p$$
:
1. Fit all $\begin{pmatrix} p \\ k \end{pmatrix}$ models that contain k predictors

2. Choose the smallest RSS model as $M^{st}_{OLS}(k)$

• $\mathbf{2}^p$ possible combination of the p predictors

3.1.1 Best Subset Selection

- *leaps and bounds* : quickly calculate best subsets without examining all possible subsets
- Fundamental inequality:

 $RSS(A) \leq RSS(B) \quad B \subset A$

- If $RSS(\{3,4\}) \geq RSS(1), RSS(\{3\})$ and $RSS(\{4\})$ do not need to be calculated

3.1.1 Best Subset Selection

- Initial : Reorder the variables by their impact on RSS
- Regression and bound tree (pair tree)
- Traverse all the subsets of the root node in level 1
- Traverse the tree from right to left

Figure : The pair tree

3.1.1 Best Subset Selection

- Suppose subset $\Omega \subset \{1,2,\ldots,p+1\}$, we have

$$\mathrm{RSS}(\Omega) = y'y - \left(\Phi'_\Omega \cdot y
ight)' \left(\Phi'_\Omega \Phi_\Omega
ight)^{-1} \left(\Phi'_\Omega \cdot y
ight)$$

- Φ is $T_0 imes (p+1)$ matrix with a constant column and predictors
- Precomputed matrix :

$$(y,\Phi)'(y,\Phi)=\left(egin{array}{cc} y'y & y'\Phi\ \Phi'y & \Phi'\Phi \end{array}
ight)$$

3.1.2 Forward Stepwise Selection

- Hsiao and Zhou (2019) suggest using forward stepwise selection
- $M^*_{OLS}(0)$ denote the smallest model, which contains no predictors
- For $k=0,\ldots,p-1$:
 - 1. Consider models that augment the predictors in $M^*_{OLS}(k)$ with one additional predictor, fit OLS regression
 - 2. Fit these models with OLS regression
 - 3. Choose the smallest RSS model as $M^{st}_{OLS}(k+1)$
- Shi and Huang (2021) : Forward-Selected PDA (fsPDa)

3.1.3 Backward Stepwise Selection

- $M^{\ast}_{OLS}(p)$ denote the largest possible model, which contains all p predictors
- For $k=p,\ldots,1$:
 - 1. Consider models that contain all but one of the predictors in $M^{st}_{OLS}(k)$
 - 2. Fit these models with OLS regression
 - 3. Choose the smallest RSS model as $M^{st}_{OLS}(k-1)$
- Require that $T_0 > p$ (the largest possible model can be fit)

3.1.4 Lasso Selection

• Lasso selects β to minimize:

$$\hat{oldsymbol{eta}}_{lasso}(\lambda) = rgmin_{oldsymbol{eta}} \sum_{i=1}^n \left(y_i - oldsymbol{x}_i^\prime oldsymbol{eta}
ight)^2 + \lambda \sum_{j=1}^p |eta_j|$$

- $\lambda \geq 0$ is a tuning parameter
- Two extreme cases : $\hat{m{eta}}_{lasso}(\lambda=0)=\hat{m{eta}}_{ols}, \hat{m{eta}}_{lasso}(\lambda=\infty)={m 0}$

3.1.4 Lasso Selection

- For $\lambda_l = \lambda_1, \dots, \lambda_L$:
 - 1. Calculate lasso estimator $\hat{oldsymbol{eta}}_{lasso}(\lambda_l)$
 - 2. Consider the model with a set of predictors $\Omega(\lambda_l)$, where

$$\Omega(\lambda_l) = \{predictor_j | j \in \{1, \dots, p\}, \, eta_{lasso,j}(\lambda_l)
eq 0\}$$

3. Choose the model as $M^*_{lasso}(\lambda_l)$ if $\Omega(\lambda_l)$ is different from $\Omega(\lambda_1),\ldots,\Omega(\lambda_{l-1})$

3.2 Select Optimal Model

3.2.1 Information criterion

$$egin{aligned} ext{AIC}(p) &= T_0 \ln \left(rac{\mathbf{e}_0' \mathbf{e}_0}{T_0}
ight) + 2(p+2) \ & ext{BIC}(p) &= T_0 \ln \left(rac{\mathbf{e}_0' \mathbf{e}_0}{T_0}
ight) + (p+2) \ln(T_0) \ & ext{AICc}(p) &= ext{AIC}(p) + rac{2(p+2)(p+3)}{T_1 - (p+1) - 2} \end{aligned}$$

• \mathbf{e}'_0 : OLS or Lasso residuals fitted in pre-treatment periods.

3.2.2 Cross-Validation

- Common practice after Lasso selection
- Optimize the out-of-sample prediction performance
- The mean squared error for each fold is computed as

$$ext{MSE}(\lambda,k) = rac{1}{n_k} \sum_{i \in \mathcal{F}_k} \left(y_i - oldsymbol{x}_i^\prime \hat{oldsymbol{eta}}_{lasso,k}(\lambda)
ight)^2$$

- K : Number of groups in which pre-treatment data is splitted
- n_k : Size of pre-treatment data partition k for k=1,...,K
- \mathcal{F}_k : Set of observations in k-fold

3.2.2 Cross-Validation

• K-fold Cross-Validation estimate of \mathbf{CV} **MSE**, which serves as a measure of prediction performance, is

$$egin{aligned} ext{CV MSE}(\lambda,K) =& rac{1}{K} \sum_{k=1}^K ext{MSE}(\lambda,k) \ &= & rac{1}{K} \sum_{k=1}^K \left(rac{1}{n_k} \sum_{i \in \mathcal{F}_k} \left(y_i - oldsymbol{x}_i^\prime \hat{oldsymbol{eta}}_{lasso,k}(\lambda)
ight)
ight) \end{aligned}$$

3.3 Post-Estimation of the Optimal Model

- Post-Estimation OLS :
 - $\circ\,$ Common practice
 - $\circ\,$ Fit OLS regression to the optimal model and obtain eta_{ols}
 - $\circ\,$ Use β_{ols} for counterfactual prediction
 - **Post-Lasso OLS** : Fit OLS regression after Lasso selected
- Post-Estimation Lasso:
 - $\circ\,$ Obtain $\beta_{lasso}(\lambda)$ in Lasso selection process
 - \circ Use $eta_{lasso}(\lambda)$ for counterfactual prediction
 - Can only be used after Lasso selection

3.4 Placebo Test

3.4.1 Placebo Test Using Fake Treatment Unit

- Reassign the treatment to control units (donor pool) where no intervention actually occurred
- Determine statistical significance of treatment effect
- p-val(t): p-value of estimated effect for a particular period is

$$p extstyle extstyle p extstyle val(t) = rac{1}{N-1}\sum_{i=2}^N 1\left(\left|\hat{\Delta}_{it}
ight| \geq \left|\hat{\Delta}_{1t}
ight|
ight) \quad t = T_0+1,\ldots,T$$

3.4.1 Placebo Test Using Fake Treatment Unit

• *p-val*: The probability of obtaining a post/pre-MSPE ratio as large as that of treated unit, is

$$p\text{-}val = rac{1}{N}\sum_{i=1}^{N} 1\left(rac{ ext{MSPE}_{i,post}}{ ext{MSPE}_{i,pre}} \geq rac{ ext{MSPE}_{1,post}}{ ext{MSPE}_{1,pre}}
ight)$$

- Cutoff : Discard the fake units $i \in \{2, \dots, N\}$ with extreme values of $\mathrm{MSPE}_{i,pre}$ (Abadie et al. , 2010)

3.4.2 Placebo Test Using Fake Treatment Time

- Reassign the treatment to periods previous to the intervention when no treatment actually ocurred
- Whether there is a perceivable effect durning $1, \ldots, T_0 + 1$ periods?

4 The rcm command

- Implement "Regression Control Method (RCM)" in Stata
- Install: ssc install rcm, all replace with Stata version >= 16
- Installed files :
 - rcm.ado and rcm.sthlp: Stata ado and help file
- Ancillary files :
 - growth.dta : The dataset obtained from Hsiao et al. (2012) which has been reshaped to long form
 - repgermany.dta : The dataset obtained from Abadie et al. (2015) of which panel variable has been reencoded

4 The rcm command

• Syntax:

rcm depvar [indepvars] , trunit(#) trperiod(#) [options]

- xtset panelvar timevar must be used to declare a panel dataset in the usual long form
- depvar and indepvars must be numeric variables, and abbreviations are not allowed.
- Without indepvars : Basic model (Section 2.1)
- With indepvars : Model with covariates (Section 2.2)

5 Examples

5.1 Replicate Hsiao et al.(2012)

- Consider the impact on Hong Kong real GDP growth rate with the reversion of sovereignty on 1 July 1997 from the UK to China
 - Treatment period : 1997Q3
 - Pre-treatment preiods : 1993Q1-1997Q2
 - Post-treatment preiods : 1997Q3-2004Q1
 - Treated unit : Hong Kong
 - Control units : 10 countries/regions that are either in the region or economically closely associated with Hong Kong

5.1 Replicate Hsiao et al.(2012)

use growth, clear xtset region time des

Observations: Variables:		1,525 3		16 Jun 2019 00:03
Variable name	Storage type	Display format	Value label	Variable label
time gdp region	float float long	%tq %8.0g %13.0g	region	

Sorted by: region time

5.1 Replicate Hsiao et al.(2012)

label list

region:

- 1 Australia
- 2 Austria
- 3 Canada
- 4 China
- 5 Denmark
- 6 Finland
- 7 France
- 8 Germany
- 9 HongKong
- 10 Indonesia
- 11 Italy
- 12 Japan
- 13 Korea

- 14 Malaysia
- 15 Mexico
 - 16 Netherlands
 - 17 NewZealand
 - 18 Norway
- 19 Philippines
 - 20 Singapore
 - 21 Switzerland
 - 22 Taiwan
 - 23 Thailand
 - 24 UnitedKingdom
 - 25 UnitedStates

rcm gdp, trunit(9) trperiod(150) ctrlunit(4 10 12 13 14 19 20 22 23 25) postperiod(150/175)

- gdp : Specifies "gdp" as dependent variable (outcome variable)
- trunit(9) : Specifies "HongKong" as the treated unit
- trperiod(150) : Specifies "1997q3" as the treatment period
 (150 is obtained from di tq(1997q3)
- ctrlunit(4 10 12 13 14 19 20 22 23 25) : Specifies 10 countries/regions as the control units
- postperiod(150/175) : Specifies "1997q3-2003q4" as the posttreatment periods (175 is obtained from di tq(2003q4))

Selecting the suboptimal model with number of predictors 1-10...

Step 2: Select the optimal model from the suboptimal models
(criterion aicc specified)

Comparing the suboptimal models containing different set of predictors:

К	AICc	AIC	BIC	R-squared
1	-144.7514	-146.4657	-143.7946	0.4034
2	-160.5063	-163.5832	-160.0217	0.7937
3	-170.6492	-175.6492	-171.1973	0.9056
4	-171.7725	-179.4088	-174.0666	0.9314
5	-169.7878	-180.9878	-174.7552	0.9438
6	-164.2937	-180.2937	-173.1707	0.9477
7	-156.6834	-179.1834	-171.1701	0.9503
8	-146.2921	-177.7207	-168.8169	0.9517
9	-131.7464	-175.7464	-165.9523	0.9518
10	-111.3603	-173.7603	-163.0758	0.9518

Among models with 1-10 predictors, the optimal model contains 4 predictors with AICc = -171.7725.

Fitting results in the pre-treatment periods using OLS:

Mean Absolute Err	ror = 0	0.00611	Numbe	er of Obse	ervations =	18
Mean Squared Erro	or = 0	0.00003	Numbe	er of Prec	dictors =	4
Root Mean Squared	d Error = 0	0.00578	R-squ	uared	=	0.93144
gdp · HongKong	Coefficient	Std. err.	t	P> t	[95% conf	. interval]
gdp∙Korea	-0.4323	0.0634	-6.82	0.000	-0.5692	-0.2954
gdp∙Japan	-0.6760	0.1117	-6.05	0.000	-0.9172	-0.4347
gdp∙Taiwan	0.7926	0.3099	2.56	0.024	0.1231	1.4621
gdp∙UnitedStates	0.4860	0.2195	2.21	0.045	0.0118	0.9603
_cons	0.0263	0.0170	1.54	0.147	-0.0105	0.0631

Prediction results in the post-treatment periods using OLS:

北京友万信息科技有限公司 www.uone-tech.cn

5.1 Replicate Hsiao et al.(2012)

Time	Treated	Predicted	Tr. Effect
1997q3	0.0610	0.0798	-0.0188
1997q4	0.0140	0.0810	-0.0670
1998q1	-0.0320	0.1294	-0.1614
1998q2	-0.0610	0.1433	-0.2043
1998q3	-0.0810	0.1319	-0.2129
1998q4	-0.0650	0.1390	-0.2040
1999q1	-0.0290	0.0876	-0.1166
1999q2	0.0050	0.0670	-0.0620
1999q3	0.0390	0.0400	-0.0010
1999q4	0.0830	0.0445	0.0385
2000q1	0.1070	0.0434	0.0636
2000q2	0.0750	0.0398	0.0352
2000q3	0.0760	0.0524	0.0236
2000q4	0.0630	0.0318	0.0312
2001q1	0.0270	0.0118	0.0152
2001q2	0.0150	-0.0177	0.0327
2001q3	-0.0010	-0.0177	0.0167
2001q4	-0.0170	0.0184	-0.0354
2002q1	-0.0100	0.0314	-0.0414
2002q2	0.0050	0.0500	-0.0450
2002q3	0.0280	0.0577	-0.0297
2002q4	0.0480	0.0346	0.0134
2003q1	0.0410	0.0538	-0.0128
2003q2	-0.0090	0.0251	-0.0341
2003q3	0.0380	0.0628	-0.0248
2003q4	0.0470	0.0761	-0.0291
Mean	0.0180	0.0576	-0.0396

Note: The average treatment effect over the post-treatment periods is -0.0396.

- Consider the impact on Hong Kong real GDP growth rate with the implementation of CEPA starting in 2004Q1 between mainland China and Hong Kong.
 - \circ Treatment period : 2004Q1
 - Pre-treatment preiods : 1993Q1-2003Q4
 - Post-treatment preiods : 2004Q1-2008Q1
 - Treated unit : Hong Kong
 - Control units : All countries/regions in dataset except Hong Kong

rcm gdp, trunit(9) trperiod(176)

trperiod(176) : Specifies "2004q1" as the treatment period
 (176 is obtained from di tq(2004q1))

Step 1: Select the suboptimal models (method **best** specified) Note: If this takes too long, you may wish to try **method(lasso)**(recommended), **method(forward)** or **method(backward)**. Alternatively, you may restrict *indepvars*, and/or the donor pool by the option **ctrlunit()**.

Selecting the suboptimal model with number of predictors 1-24...

Step 2: Select the optimal model from the suboptimal models
(criterion aicc specified)

Comparing the suboptimal models containing different set of predictors:

К	AICc	AIC	BIC	R-squared
1	-313.8269	-314.4269	-309.0743	0.5877
2	-335.2386	-336.2642	-329.1275	0.7602
3	-348.2800	-349.8590	-340.9380	0.8318
4	-365.6420	-367.9122	-357.2071	0.8933
5	-377.4412	-380.5523	-368.0630	0.9235
6	-378.9426	-383.0569	-368.7833	0.9310
7	-378.9074	-384.2016	-368.1439	0.9357
8	-378.5854	-385.2521	-367.4102	0.9400
9	-377.5003	-385.7503	-366.1242	0.9433
10	-375.0098	-385.0744	-363.6641	0.9450
11	-372.4606	-384.5939	-361.3994	0.9469
12	-369.2578	-383.7405	-358.7619	0.9483
13	-365.9158	-383.0586	-356.2958	0.9498
14	-362.5660	-382.7142	-354.1671	0.9516
15	-358.3157	-381.8542	-351.5230	0.9529
16	-353.3736	-380.7336	-348.6182	0.9538
17	-348.1579	-379.8246	-345.9250	0.9549
18	-342.4931	-379.0149	-343.3311	0.9561
19	-335.8492	-377.8492	-340.3812	0.9570
20	-328.0881	-376.2785	-337.0264	0.9574
21	-319.2286	-374.4286	-333.3922	0.9575
22	-309.3373	-372.4952	-329.6747	0.9576
23	-298.3113	-370.5335	-325.9288	0.9576
24	-285.9617	-368.5499	-322.1610	0.9576

Among models with 1-24 predictors, the optimal model contains 6 predictors with AICc = -378.9426.

Fitting results in the pre-treatment periods using OLS:

Mean Absolute Error	=	0.01070	Number of Observations	=	44
Mean Squared Error	=	0.00014	Number of Predictors	=	6
Root Mean Squared Error	=	0.01170	R-squared	=	0.93097

gdp·Norway 6	2 2222					
gdp·Austria -1 gdp·Korea 6 gdp·Mexico 6 gdp·Italy -6 gdp·Singapore 6	0.3222 1.0115 0.3447 0.3129 0.3177 0.1845	0.0538 0.1682 0.0469 0.0510 0.1591 0.0546	5.99 -6.01 7.35 6.13 -2.00 3.38	0.000 0.000 0.000 0.053 0.002	0.2132 -1.3524 0.2497 0.2095 -0.6400 0.0739	0.4311 -0.6707 0.4398 0.4162 0.0046 0.2951

Prediction results in the post-treatment periods using OLS:

Time	Treated	Predicted	Tr. Effect
2004q1	0.0770	0.0493	0.0277
2004q2	0.1200	0.0686	0.0514
2004q3	0.0660	0.0515	0.0145
2004q4	0.0790	0.0446	0.0344
2005q1	0.0620	0.0217	0.0403
2005q2	0.0710	0.0177	0.0533
2005q3	0.0810	0.0333	0.0477
2005q4	0.0690	0.0290	0.0400
2006q1	0.0900	0.0471	0.0429
2006q2	0.0620	0.0417	0.0203
2006q3	0.0640	0.0250	0.0390
2006q4	0.0660	0.0009	0.0651
2007q1	0.0550	-0.0101	0.0651
2007q2	0.0620	0.0092	0.0528
2007q3	0.0680	0.0143	0.0537
2007q4	0.0690	0.0508	0.0182
2008q1	0.0730	0.0538	0.0192
Mean	0.0726	0.0323	0.0403

Note: The average treatment effect over the post-treatment periods is 0.0403.

- Use the same dataset as Abadie et al. (2015)
- Estimate the economic impact of the 1990 German reunification
 - Treatment period : 1990
 - Pre-treatment preiods : 1960-1989
 - Post-treatment preiods : 1990-2003
 - Treated unit : West Germany
 - Control units : 16 OECD member countries

use repgermany.dta, clear
xtset country year
des

Contains dat Observation	a from rep s:	germany.dta 748			
Variable	s:	10		12 Aug 2021 08:25	
Variable	Storage	Display	Value		
name	type	format	label	Variable label	
year	float	%8.0g		Year	
gdp	long	%8.0g		GDP per-capita (annual)	
infrate	float	%9.0g		Inflation Rate (annual)	
trade	float	%9.0g		Trade openness (annual)	
schooling	float	%9.0g		Schooling (every 5 years)	
invest60	float	%9.0g		Investment rate (average 60-65)	
invest70	float	%9.0g		Investment rate (average 70-75)	
invest80	float	%9.0g		Investment rate (average 80-85)	
industry	float	%9.0g		Industry Share (annual)	
country	long	%12.0g	country	Country Name	

Sorted by: country year

label list

country:

- 1 Australia
- 2 Austria
- 3 Belgium
- 4 Denmark
- 5 France
- 6 Greece
- 7 Italy
- 8 Japan
- 9 Netherlands
- 10 New Zealand
- 11 Norway
- 12 Portugal
- 13 Spain
- 14 Switzerland
- 15 UK
- 16 USA
- 17 West Germany

rcm gdp infrate trade industry, tru(17) trp(1990) me(lasso) cr(cv) fold(10)

- infrate trade industry : Specifies three covariates
- tru(17) : Abbr. for trunit(17)
- trp(1990) : Abbr.for trperiod(1990)
- me(lasso) : Abbr. for method(lasso), which specifies Lasso as selection method
- cr(cv) : Abbr. for criterion(cv), which specifies cross-validation as the selection criterion
- fold(10) : Specifies that cross-validation with 10 folds

Step 1: Select the suboptimal models
(method lasso specified)

Selecting the suboptimal model...

Step 2: Select the optimal model from the suboptimal models (criterion **cv** specified for **10-fold** cross-validation)

Comparing the suboptimal models containing different set of predictors:

к	AICc	AIC	BIC	CV MSE	R-squared	lambda	Operation
1 2 3 4 5 7 6 7	526.5586 506.8945 504.0514 484.0258 478.7213 407.2748 357.2235 334.6504	525.6355 505.2945 501.5514 480.3737 473.6304 398.2748 350.3663 325.6504	529.8391 510.8993 508.5574 488.7808 483.4388 410.8855 361.5759 338.2611	2.187e+07 1.038e+07 8.616e+06 4.061e+06 3.058e+06 2.420e+05 58902.4925 29433.5466	0.0888 0.5668 0.6403 0.8289 0.8706 0.9894 0.9976 0.9988	4287.1880 2954.9924 2692.4790 1855.8213 1614.0987 459.7011 218.3953 150.5314	add gdp.Italy add gdp.Netherlands add gdp.Austria add gdp.Denmark add gdp.USA add gdp.Greece gdp.Norway drop gdp.Netherlands add gdp.Switzerland
8 9 9	328.6835 285.8035 270.7571	317.1046 271.1368 256.0904	286.5500 271.5036	6852.9127 4898.0417	0.9990 0.9998 0.9999	137.1586 59.3727 44.9133	add industry.Spain add gdp.Netherlands

Among models with 1-67 predictors, the optimal model contains 9 predictors with CV MSE = 4898.0417.

Fitting results in the pre-treatment periods using **post-lasso OLS**:

Mean Absolute Error	=	12.87119	Number of Observations	=	30
Mean Squared Error	=	3.0e+02	Number of Predictors	=	9
Root Mean Squared Error	=	17.30368	R-squared	=	0.99999

gdp·WestGermany	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
gdp∙Austria	0.1331	0.0708	1.88	0.093	-0.0271	0.2934
gdp∙Denmark	0.1046	0.0788	1.33	0.217	-0.0735	0.2828
gdp•Greece	0.1513	0.0422	3.58	0.006	0.0557	0.2468
gdp∙Italy	0.2914	0.0838	3.48	0.007	0.1018	0.4809
gdp∙Netherlands	0.1334	0.1097	1.22	0.255	-0.1148	0.3816
gdp•Norway	-0.0313	0.0598	-0.52	0.613	-0.1665	0.1039
industry.Spain	-44.6926	11.6744	-3.83	0.004	-71.1019	-18.2833
gdp∙Switzerland	0.0548	0.0343	1.60	0.144	-0.0228	0.1324
gdp•USA	0.2282	0.0439	5.20	0.001	0.1289	0.3276
_cons	1755.2090	419.7465	4.18	0.002	805.6764	2704.7417

Prediction results in the post-treatment periods using **post-lasso OLS**:

Time	Treated	Predicted	Tr. Effect
1990	20465.0000	20104.6133	360.3867
1991	21602.0000	20930.3809	671.6191
1992	22154.0000	21677.2500	476.7500
1993	21878.0000	22194.6797	-316.6797
1994	22371.0000	23190.9297	-819.9297
1995	23035.0000	24052.6563	-1017.6563
1996	23742.0000	24926.1309	-1184.1309
1997	24156.0000	25896.0313	-1740.0313
1998	24931.0000	26988.5430	-2057.5430
1999	25755.0000	27935.7734	-2180.7734
2000	26943.0000	29389.8184	-2446.8184
2001	27449.0000	30392.2207	-2943.2207
2002	28348.0000	31518.2871	-3170.2871
2003	28855.0000	32363.5508	-3508.5508
Mean	24406.0000	25825.7761	-1419.7761

Note: The average treatment effect over the post-treatment periods is -1419.7761.

rcm gdp infrate trade industry, tru(17) trp(1990) me(lasso) cr(cv) fold(10) fill(mean) placebo(unit cut(10))

- fill(mean) : Fill in missing values by sample means for each units
- placebo(unit cut(10)):
 - Implement placebo tests using the fake treatment units
 - Discard the fake treatment units of which pre-treatment MSPE
 10 times smaller than or equal to that of the treated unit

Implementing placebo effects using fake treatment unit Australia...Austria...Belgium...Denmark...France...Greece...Italy...Japan...Netherlands...Ne
> wZealand...Norway...Portugal...Spain...Switzerland...UK...USA...

Placebo test results using fake treatment units:

Unit	Pre MSPE	Post MSPE	Post/Pre MSPE	Pre MSPE of Unit/Treated Unit
WestGermany	2009.4254	4912795.2300	2444.8757	1.0000
Austria	6616.8915	191860.4677	28,9956	3.2929
Belgium	2640.2164	81819.2402	30.9896	1.3139
France	3509.5265	241028.1689	68.6783	1.7465
Greece	16088.6537	1218658.0663	75.7464	8.0066
Italy	2180.6256	181301.3038	83.1419	1.0852
Japan	10414.5510	2085867.0714	200.2839	5.1829
Netherlands	5532.6214	1278504.6038	231.0848	2.7533
Portugal	7468.8217	858321.5550	114.9206	3.7169
Spain	8020.4273	1327015.9387	165.4545	3.9914
UK	6950.5984	443053.1737	63.7432	3.4590
USA	14405.5364	5967054.2037	414.2195	7.1690

Note: The units Australia Denmark NewZealand Norway Switzerland with Pre-Treatment MSPE 10 times higher than WestGermany's are excluded. The probability of obtaining a post/pre-treatment MSPE ratio as large as WestGermany's is 0.0833.

Placebo test results using fake treatment units (continued):

Time	Tr. Eff.	P-value
1990	432.1543	0.0909
1991	709.9277	0.1818
1992	515.8379	0.1818
1993	-256.7402	0.4545
1994	-766.9336	0.1818
1995	-1035.2422	0.0000
1996	-1448.2324	0.0000
1997	-1981.4160	0.0000
1998	-1975.5234	0.0000
1999	-2385.0527	0.0000
2000	-3280.4258	0.0000
2001	-3540.6426	0.0909
2002	-3515.3242	0.0909
2003	-3850.5918	0.0909
	1	

Note: The p-value of the treatment effect for a particular period is definded as the frequency that the absolute values of the placebo effects are greater or equal to the absolute value of treatment effect.

rcm gdp infrate trade industry, tru(17) trp(1990) me(lasso) cr(cv) fold(10) fill(linear) placebo(period(1980 1985))

- fill(linear) : Fill in missing values by linear interpolation for each units
- placebo(period(1980 1985)) : Implement placebo tests with fake treatment time 1980 and 1985

Implementing placebo effects using fake treatment time 1980...198

5.2 Illustrate RCM with Covariates and Placebo Test

Placebo test results using fake treatment time 1980:

-	Time	Treated	Predicted	Tr. Eff.
	1980	11083.0000	11062.1953	20.8047
	1981	12115.0000	11937.9014	177.0986
	1982	12761.0000	12584.5449	176.4551
	1983	13519.0000	13487.0322	31.9678
	1984	14481.0000	14485.5996	-4.5996
	1985	15291.0000	15414.0498	-123.0498
	1986	15998.0000	15827.1543	170.8457
	1987	16679.0000	16503.3066	175.6934
	1988	17786.0000	17469.7988	316.2012
	1989	18994.0000	18590.4004	403.5996
	1990	20465.0000	19414.7520	1050.2480
	1991	21602.0000	20036.1699	1565.8301
	1992	22154.0000	20710.7656	1443.2344
	1993	21878.0000	21346.8164	531.1836
	1994	22371.0000	22564.2402	-193.2402
	1995	23035.0000	23573.0605	-538.0605
	1996	23742.0000	25172.0996	-1430.0996
	1997	24156.0000	26662.7520	-2506.7520
	1998	24931.0000	27212.3789	-2281.3789
	1999	25755.0000	28998.8145	-3243.8145
	2000	26943.0000	32415.6914	-5472.6914
	2001	27449.0000	33603.8672	-6154.8672
	2002	28348.0000	34962.1016	-6614.1016
	2003	28855.0000	36147.2969	-7292.2969
-	Mean	20432.9583	21674.2829	-1241.3246

Note: The average treatment effect over the post-treatment periods is -1241.3246.

Predicted Tr. Eff. Time Treated 1985 15291.0000 15399.4453 -108.44531986 15998.0000 15950.9844 47.0156 1987 16679.0000 16604.2344 74.7656 1988 17786.0000 17587.4297 198.5703 1989 18994.0000 18738.6387 255.3613 1990 20465.0000 19745.6875 719.3125 1991 21602.0000 20602.5215 999.4785 1992 22154.0000 790.7988 21363.2012 1993 21878.0000 21871.5781 6.4219 1994 22371.0000 22915.0332 -544.0332 1995 23035.0000 23870.9434 -835.9434 1996 23742.0000 25165.6582 -1423.6582 26213.7539 1997 24156.0000 -2057.753926917.2168 1998 24931.0000 -1986.2168 1999 25755.0000 28444.0781 -2689.0781 2000 26943.0000 31154.6328 -4211.6328 2001 31974.5781 27449.0000 -4525.5781 2002 -4458.0039 28348.0000 32806.0039 2003 28855.0000 33786.4219 -4931.4219 22443.7895 23742.7390 -1298.9495Mean

Placebo test results using fake treatment time 1985:

Note: The average treatment effect over the post-treatment periods is -1298.9495.

Reference

- Abadie, Alberto, Alexis Diamond, and Jens Hainmueller. 2015. Comparative Politics and the Synthetic Control Method. American Journal of Political Science 59(2): 495-510.
- Hsiao, Cheng, H. Steve Ching, and Shui Ki Wan. 2012. A Panel Data Approach for Program Evaluation: Measuring the Benefits of Political and Economic Integration of Hong Kong with Mainland China. Journal of Applied Econometrics 27(5): 705-740.
- Hsiao, Cheng, and Qiankun Zhou. 2019. Panel Parametric, Semiparametric, and Nonparametric Construction of Counterfactuals. Journal of Applied Econometrics 34(4): 463-481.

Reference

- Furnival, George M., and Robert W. Wilson, Jr. 1974. Regressions by Leaps and Bounds. Technometrics 16(4): 499-511.
- Guanpeng Yan, and Qiang Chen. 2021. Regression Control Method with Stata. Shandong University working paper.

Thank for Listening

School of Economics Shandong University 颜冠鹏 <u>Guanpengyan@mail.sdu.edu.cn</u>