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1. Introduction

e A fractional response y satisfies 0 <y < 1, possibly with

P(y=0) > 1orP(y =1) > 0 (or both).

e Assume y is the variable we would like to explain in terms of
covariates, X = (X1,...,Xk). (No data censoring, but y may be a “corner
solution.)

e Focus here Is on mean response. If X is exogenous, goal is to estimate
E(y[x).



e Can always use a linear model for E(y|x), but it is at best an
approximation.

e Papke and Wooldridge (1996, Journal of Applied Econometrics):
Model E(y|x) using models of the form G(xB) for 0 < G(-) < 1 (or

nonindex forms).



e So-called “fractional response” models (fractional probit, fractional
logit) easily estimated using g Im, and robust inference is trivial (and
very important: MLE standard errors are too large).

¢ [For panel data, can use xtgee. Papke and Wooldridge (2008,
Journal of Econometrics) show how to use correlated random effects
approaches to estimate fractional response models for panel data. But
for balanced panels.

e \Wooldridge (2005, Rothenberg Festschrift; 2010, MIT Press)
considers models with continuous endogenous explanatory variables

(EEVs). Proposes two-step control function approach.



e Papke and Wooldridge (2008): heterogeneity and continuous EEV.
Combination of CRE and control function methods for fractional
probit. But balanced panel, and only two-step estimators.

e \What if we want a one-step quasi-MLE (which simplifies inference
and may have better finite-sample properties)? So y; Is a fractional
response and y» a continuous EEV. Wooldridge (2011, unpublished)
shows that the 1vprobit log-likelihood identifies the (scaled)
parameters under correct specification of E(y1|y2,z1,a1) where az Is

the omitted variable. (and y» follows classical linear model).



e \What if y1 Is a fractional response and y» a binary EEV? Two-step
“forbidden regression” is not valid. Wooldridge (2011) shows the
biprobit log likelihood identifies the (scaled) parameters if
E(y1|y2,z1,a1) Is correctly specified (and y2 follows a probit).

e Neither 1vprobit nor biprobit allow y; to be a fractional
response. Neither does cmp (Roodman, 2009).

e Bottom line: Many existing Stata commands could be used to
estimate flexible fractional response models allowing for endogeneity
and unbalanced panel by removing the “data checks” on the response

variable.



2. Fractional Probit with “Heteroskedasticity”

o et X = (X1,X2,...,Xk). Fractional probit model is

E(y[X) = ®(Bo +XB) = ®(Bo + P1X1 +...+PkXk)

e Might want more flexibility. If P(y = 0) > 0, could use a two-part
model.

e But can directly make model for E(y|x) more flexible, for example,

E(y[x) = @[(Bo + xB) exp(-z8/2)]
where z (1 x M) is a function of (X1,X2,...,Xk) that does not include a

constant.



e The Bj and 6y are consistently estimated using the Bernoulli
quasi-MLE if E(y|x) is correctly specified. As usual, need to use robust
Inference because y is not binary. (The conditional mean may be
misspecified, anyway.)

e |deally, just type

hetprobit vy x1 ... x2, het(zl z2 ... zM), robust
e But y iIs turned into a binary response.

e Can easily test Ho : & = 0 with robust Wald statistic.



clear
capture program drop frac het

program frac_ het

version 11

args 11T xb zg

quietly replace “11f” = $ML_yl*log(nhormal(“xb”*exp(-“zg~))) ///
+ (1 - $ML_yD)*log(l - normal(“xb”*exp(-“zg~)))

end

ml model It frac _het (prate = mrate ltotemp age sole) ///
(mrate ltotemp age sole, nocons), vce(robust)

ml max



Number of obs = 4075
Wald chi2(4) = 152.
Log pseudolikelihood = -1674.5212 Prob > chi2 = 0.0000
| Robust
prate | Coef. Std. Err. z P>|z]| [95% Conf. Interval
_____________ +______________________________________________________________
eql |
mrate | 1.384717 .2238623 6.19 0.000 -9459552 1.823479
Itotemp | -.1495098 -0139662 -10.71 0.000 -.1768831 -.1221365
age | .0670733 -0100639 6.66 0.000 .0473484 .0867981
sole | -.1182667 -0932352 -1.27 0.205 -.3010042 -0644708
_cons | 1.679383 -1059 15.86 0.000 1.471823 1.886944
_____________ +______________________________________________________________
eq2 |
mrate | .2403586 .053781 4.47 0.000 -1349497 .3457674
Itotemp | .0375202 .0144216 2.60 0.009 -0092543 .0657861
age | .0171714 .0027289 6.29 0.000 .011823 -0225199
sole | -.1627509 -0631067 -2.58 0.010 -.2864378 -.039064
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. test [eq2?]

1) [eg2]mrate 0
[eg2]1totemp = O

[eg2]age = O

[eg2]sole = O

NN
AWN
o/ \o/ o/

chi2( 4)
Prob > chi2

109.26
0.0000

. * Usual fractional probit (could use glm):
capture program drop frac probit
program frac probit
version 11
args 11T xb
quietly replace “11f” = $ML_yl*log(normal(“xb”)) ///
+ (1 - $ML_y1)*log(1l - normal(“xb~))
end
ml model If frac probit (prate = mrate ltotemp age sole), vce(robust)

ml max
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Number of obs = 4075
Wald chi2(4) = 695.
Log pseudolikelihood = -1681.9607 Prob > chi2 = 0.0000
| Robust
prate | Coef. Std. Err. z P>]z]| [95% Conf. Interval
_____________ +______________________________________________________________
mrate | -.5955726 -.038756 15.37 0.000 -5196123 .6715329
Itotemp | --1172851 -0080003 -14.66  0.000 -.1329655 -.1016048
age | .0180259 .0014218 12.68 0.000 .0152392 .0208126
sole | .0944158 .0271696 3.48 0.001 .0411645 .1476672
_cons | 1.428854 .0593694 24.07 0.000 1.312493 1.545216
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e Should do a comparison of average partial effects between ordinary
fractional probit and heteroskedastic fractional probit.
e The “hetprobit” quasi-MLE is needed for nonlinear CRE panel

models with unbalanced panels.
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3. Fractional Probit with an Endogenous Explanatory
Variable

e Adapted from Wooldridge (2011, unpublished). Set up endogeneity

as an omitted variable problem, and start by assuming y» is continuous:

E(y1|z,y2,a1) = (D(Xlﬁl + al).
Y2 = Z02 + V2,

where X1 Is a general nonlinear function of (z1,y2), a1 Is an omitted
factor thought to be correlated with y» but independent of the

exogenous variables z.
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e The average partial effects in this model are obtained from the

“average structural function” (ASF):
ASF(x1) = Ea,[@(X1B; +a1)] = P(X1B,,)
where
B, =B,/(1+03)"

e Happily, these are precisely the parameters that are identified.
e If (a1,V2) Is jointly normal, a two-step control function method is
valid (Wooldridge, 2005). Note that the distribution of y1 is not further

restricted.
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(1) Regress yi2 on z; and obtain the residuals, Vi».
(i1) Use “probit” of y;1 on Xi1, V2 to estimate parameters with different

scales, say B, and ye1. (Can implement as a “generalized linear

model.”)

e The “average structural function” (ASF) is consistently estimated as
— N
ASF(y2,21) = N1 D~ @(X1B,; + Ferli),
i=1

and this can be used to obtain APEs with respect to y, or z;
(Wooldridge, 2005).
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e \What about a quasi-LIML approach? Can show that

X1B,, + (p1/T2)(y2 — 282) }
(1-pD*

and so we can plug this mean function into the Bernoulli quasi-log

E(yily2,2) = <I>[

likelihood. This gives q1(Yy1,Y2,2,01,02). Identify &, and 7, using the
Gaussian QLL, which gives q2(y2,2,02).

¢ The same objective function we get for MLE with y; binary can be
used when y is fractional — continuous or otherwise.

e [n other words, 1vprobit could be easily modified — and use robust

inference.
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e A similar argument holds when y is binary and follows a probit

model:

Y2 = 1[262 + V2 > 0]
Vz2|z ~ Normal(0,1)

e Can show that E(y1]y2, z) has the same form as the response

probability in the so-called “bivariate probit” model.
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e For example,

0 X1B., + p10
E(yaly = 1,2) = j—282 (D[ éfr_l ,0{))1/22 :|d02

e So for g2(y2,2,02) we use the usual probit log-likelihood. For

q:1(Y1,Y2,2,01,02) we use the Bernoulli QLL associated with bivariate
probit.

e So if y; were allowed to be fractional, biprobit with a “robust”

option could be used.
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4. Linear Unobserved Effects Models with Unbalanced
Panels

e Model for a random draw I has T potential time periods:
Vit = Xip +Ci + Ui, t = 1,..., T
E(uit/Xi1,...,XiT,Ci) = 0.
e Given access to a balanced random sample, the zero conditional mean
assumption is sufficient for FE to be consistent (as N — oo, T fixed) and
JN -asymptotically normal, provided all elements of xi; have some time

variation.
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olet{si:t=1,...,T} beasequence of “selection indicators”: sj; = 1
If and only if observation (i, t) is used. These are generally outcomes of

random variables.
e The number of time periods available for uniti1is T; = 2:21 Sir; this

IS properly viewed as random.
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Fixed Effects on the Unbalanced Panel
¢ The time-demeaned data uses a different number of time periods for
different I. Let

T
Vit = Vit — Ti Z SirYir
r=1

T
Xit = Xit — Ti_l Zsirxir
r=1

22



e The FE estimator iIs then
N T -1 N T
Bee = (Nl Z Z Sit%*jit) (Nl Z Z SitXftYit>,
=1 t=1 =1 t=1

e A sufficient condition for consistency of FE on the unbalanced panel

IS an extension of the usual strict exogeneity assumption:

E(uitXi,si,ci) =0, t=1,...,T

Si = (Sity--.,SiT)
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e Both the covariates and selection are strictly exogenous conditional
on c;. Rules out selection in any time period depending on the shocks in
any time period. That is, the condition is generally violated if

Cov(Sir, Ujt) = 0 for any (r,t) pair.

e Importantly, it allows si; to depend on c¢; in an unrestricted way.

e xtreg allows unbalanced panels and properly computes standard

errors and test statistics.
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Random Effects on the Unbalanced Panel

¢ The quasi-time-demeaning value for unit i is

A . 12
0 =1- T .
{[1+Td696®]}

Now define

A

Yit = Yit — 9i)7i
where §; = T;? Z:zl SirYir, and similarly for X;;. Then, RE is POLS of

Vit on Xjt using the sjt = 1 data points.
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e Useful equivalence result (Wooldridge, 2010, unpublished). Define

.
Xi = T;? Zsirxir
r=1

and consider either POLS or RE estimation of the following equation

on the unbalanced panel:
yn:a+m$+iﬁ+wt

Then Bog s = Bre = Bre- Generally, &oq s # Exe

26



e Must be careful in constructing X;i; only use periods where all
variables are observed (si; = 1).

e Must now include the time averages of year dummies because these
are no longer constants in an unbalanced panel.

e Same result holds when add any other time-constant covariates.
Implies that the CRE is robust even with unbalanced panels.

e Basis for robust Hausman test. Ho : £ = 0. Use RE with all

time-constant controls included.
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Heterogeneous Slopes

e Suppose the population model is
E(yit[Xi, ai, bi) = aj + Xitb;,
so, in the population, {xj; : t = 1,..., T} is strictly exogenous

conditional on (aj, bj).

e Define aj = a + ¢j, bj = B + d; and write
Vit = & +Xit[3—|— Cij —I—Xitdi + Uit

where E(uit|xi, ai, bi) = E(uit|xi, ci,d;) = 0 for all t.
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e Assume that selection may be related to (Xi, aj, b;) but not the

idiosyncratic shocks:
E(uit/xi,aj,bi,si) =0, t=1,...,T.
e Multiply population equation by the selection indicator:
SiYit = Sitat + SitXitp + SitCi + SitXitdi + SitUit

¢ Find an estimating equation by conditioning on
{(Sit,SitXit) t=1,... ,T}.
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elethj=<hyy:t=1,..., T} = {(Si,SitXit) : t=1,...,T} and

consider
E(siyit|hi) = sita + SitXitP + SitE(Ci|hi) + sixitE(di|hi)

and then make assumptions concerning E(ci|h;) and E(d;|h;).

¢ \We might choose
wi = (Ti,Xi)
as the exchangeable functions satisfying

E(cilhi) = E(cilwi), E(dilhi) = E(di|w;).
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e A flexible specification with gir = 1[T; =r] :
T T
ECilTi, &) = D we(@ir — pr) + D _ Gir - (Xi — P&,
r=1 r=1

T T
E(difTi,%i) = D _(@ir — po)xr + D Gir + (Ri — ) ® hidn,,
r=1 r=1

where the p_ are the expected values of X; given r time periods

observed and p. is the fraction of observations with r time periods:

n, = ERXilTi = 1), pr = E{1[Ti =r]}
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e This formulation is identical to running separate regressions for each
Ti:

where i, = Ni* Zi'il 1[Ti = r]X;i and N Is the number of observations
with T; = r.

e The coefficient on Xi, B,, Is the APE given T; = r. Average these

across r to obtain the overall APE. Cannot identify the APE for T; = 1.
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o A simple test of the null that the B, do not change. Augmented
equation is
Yit = Xitp + 1[Ti = 2] « Xiey, +...+1[Ti = T = 1] « Xiry;_; + Ci + Uit

where the base group is T; = T. Use FE on the unbalanced panel and

obtain a fully robust test of
Ho:v,=0,...,v;,=0

This is like a Chow test where the slopes are allowed to differ by the

number of available time periods for each unit.

33



. use meap94
. Xtset schi
. egen tobs

. tab tobs

. gen tobs4

. gen tobs3

08

d year

= sum(1), by(schid)

=
o
N
0]

= tobs == 3

Percent Cum
21_.15 21_15
14 .38 35.52
64.48 100.00

100.00

. gen tobs3 lavgrexp = tobs3*lavgrexp

. gen tobs4

lavgrexp = tobs4*lavgrexp

34



lavgrexp
lunch
lenrol
y95

y96

y97

sigma_u
sigma_e
rho

6.288376
-.0215072
-2.038461

11.6192

13.05561

10.14771

23.41404

11.84422

15.84958
11.325028
.66200804

. Xtreg math4 lavgrexp lunch lenrol y95 y96 y97 y98, fe cluster(distid)

(Std. Err. adjusted for 467 clusters i1n distid

Robust
Std. Err.

3.132334
-0399206
2.098607
- 7210398
-9326851
.9576417
1.027313
32.68429

35

[95% Conft.

-1331271
-.0999539
-6.162365

10.20231

11.22282

8.26588
21.3953
-52.38262

Interval

12.44363
-.0569395
2.085443

13.0361

14.8884
12.02954
25.43278
76.07107



. Xtreg math4 lavgrexp tobs3 lavgrexp tobs4 lavgrexp lunch lenrol y95 y96
y97 y98, fe cluster(distid)

lavgrexp
tobs3 lavg~p
tobs4 lavg~p
flunch

lenrol

y95

y96

y97

sigma_u
sigma_e
rho

3.501465
8.048717
9.103049
-.0292364
-2.169307
12.01813
13.56065
10.60934
23.84989
10.6043

41.080099
11.319318
-92943391

(Std. Err. adjusted for 467 clusters i1n distid

3.547611
4.190867
6.809195
-0380268
2.074624

.69288
-9018155
-9648135
1.061322
31.12293

[95% ConfT.

-3.469832
-.1866205
-4._.277481
-.1039616
-6.246084
10.65657
11.78852
8.713416
21.76432
-50.55438

Interval

10.47276
16.28405
22 .48358
-0454889
1.90747
13.37968
15.33278
12.50526
25.93546
71.76297
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. test tobs3 lavgrexp tobs4 lavgrexp

( 1) tobs3 lavgrexp =0
( 2) tobs4 lavgrexp = 0
FC 2, 466) = 2.37
Prob > F = 0.0942

. * Might get away with using the pooled equations.

37



5. Nonlinear UE Models with Unbalanced Panels
e Adapted from Wooldridge (2010, unpublished). Interested in
E(yit|Xit, Ci),

where 0 < yjt < 1 and c; is unobserved heterogeneity. (Binary response

as special case.)
e Again, unbalanced panel. Assume strictly exogenous covariates

conditional on c¢; and ignorable selection:

E(yit|Xi, Ci,Si) = E(Yit|Xit,Ci), t =1,...,T.

38



e Do not model serial correlation. Make inference robust.

e Specify models for
D(ci|{(Sit,SitXit) : t =1,...,T}).

e |et w; be a vector of known functions of {(sit,SitXit) : t=1,...,T}

that act as sufficient statistics, so that

D(cil{(sit,Sitxit) : t=1,...,T}) = D(cilwj)

39



e For simplicity, take
E(yit[xi,ci) = E(Yit|Xit,Ci) = DX +cCi), t=1,...,T

where Xj; can include time dummies or other aggregate time variables.

e Assume that selection is conditionally ignorable for all t, that is,

E(yit[Xi, Ci,Si) = E(Yit|Xi, Ci).
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e All that is left is to specify a model for D(ci|w;) for suitably chosen
functions w; of {(sit,SitXit) : t = 1,...,T}. Simplest is the time average
on the selected periods, X;j, and the number of time periods, T;.

e A specification linear in X; but with intercept and slopes different for

each Ti IS

;
Ecilwi) = D _wel[Ti = ]+ ) _1[Ti = r] - Ri&,
r=1

41



e At a minimum, should let the variance of c¢; change with T;:

T-1
Var(cilwi) = exp<r - Z 1[Ti = r]cor>

r=1

e |f we also maintain that D(ci|w;) Is normal, then we obtain the

following:

E(yit|Xit, Wi, Sit = 1) = ©

where gir = 1[T; = r].

XitP + Z:zl WrQir + ZLl Jir * Xi&,

exp <Z::2 g irwr> 1/2

e No difficulty in adding gir - Xj forr = 1,...,T to the variance

function.
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e Can use “heteroskedastic probit” software provided the response
variable can be fractional.

e The explanatory variables at time t are

(1, Xit, Qit1, ..., QiT, i1 * Xi,...,QiT » Xi) and the explanatory variables in
the variance are simply the dummy variables (giz,...,git), or also add
Qi1 * Xi,...,0iT * Xij.

e Might want to impose restrictions, such as constant slopes on X;.
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e The average partial effects are easy to obtain from the estimated

“average structural function”:

N B A T A T - A ]
ASF(x{) = N7 E () P Zr:l l//rgT'r Zrzlfllz" S,
i=1 exp <Zr:2 gir(br>

where the coefficients with “~” are from the pooled heteroskedastic

fractional probit estimation.

¢ The functions of (T;,X;) are averaged out, leaving the result a

function of x;. Take derivatives or changes with respect to X.
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. use meap94 98

xtset schid year
panel variable: schid (unbalanced)
time variable: vyear, 1994 to 1998, but with gaps
delta: 1 unit

. tab tobs
number of |
time |
periods | Freq. Percent Cum
____________ +___________________________________
3| 1,512 21.15 21.15
4 | 1,028 14._38 35.52
5] 4,610 64.48 100.00
____________ +___________________________________
Total | 7,150 100.00

. gen tobs3 = tobs ==
. gen tobs4 = tobs = 4

. replace math4 = math4/100
(7150 real changes made)
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. capture program drop frac_het

. program frac_het
1. version 11
2. args 11T xb zg
3. quietly replace “11T” = $ML_yl*log(normal (“xb”*exp(-“zg’))) ///
+ (1 - $ML_yD)*log(1 - normal(“xb”*exp(-°zg”)))
4. end

énd of do-file

. ml model If frac _het (math4 = lavgrexp lunch lenrol y95 y96 y97 y98 lavgrexpb
lunchb lenrolb y95b y96b y97b y98b tobs3 tobs4) (tobs3 tobs4, nocons),
vce(cluster schid)

. ml max
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Log pseudolikelihood = -4414.8409

lavgrexp
lunch
lenrol
y95

y96

y9o7

y98
lavgrexpb
lunchb
lenrolb
y95b
y96b
y97b
y98b
tobs3
tobs4
_cons

tobs3
tobs4

Prob > chi?2

0.0000

(Std. Err. adjusted for 1683 clusters in schid

Robust

[95% Conft.

Interval

.1142198
-.0013961
-.067624
.3241894
.3724917
-2830853
. 7162732
.1622914

-.0029272
.8794288
. 7270724
.6338092
.2733774

.022217
.088465
-1.856404

.0735598

-.001221

.0561521
.0150181
.0203004
-0217498
-0239386
.0957332
.0012652
-0610953
.5371528
.2073897
.4187642
-4579278

.056255

.0891877
.6052342

-.0299547
-.0037891
-.1776801
.2947545
.3327036
-2404565
.6693544
-.0253422
-.0151044
-.1226718
-.1733713
-320596
-.1869536
-.6241446
-.0880406
-.0863396
-3.042641

.2583943
-0009969
.0424321
.3536243
.4122797
-325714
. 7631921
-349925
-.0101448
-1168175
1.932229
1.133549
1.454572
1.170899
.1324747
.2632697
-.6701668

.2007713

I
I
+
I
I
I
I
I
I
I
I
I
| -.0126246
I
I
I
I
I
I
I
I
+
I
I
| 5504922

.0566528
.1162983

.0897339
.3225517

.3118087
. (784327



. ml model If frac_probit (math4 = lavgrexp lunch lenrol y95 y96 y97 y98
lavgrexpb lunchb lenrolb y95b y96b y97b y98b tobs3 tobs4), vce(cluster schid

- ml max

Log pseudolikelithood = -4420.8672

lavgrexp
lunch
lenrol
y95

y96

y9o7

y98
lavgrexpb
lunchb
lenrolb
y95b
y96b
y97b
y98b
tobs3
tobs4
_cons

.1227898
-.0008316
-.0556512

.3186249

.3647386

-2860664

.6760248

.1658169
-.0113902

-0202697

-9325259

.95439736

.6807815

.2624711
-.0431248
-.0771368
-2.194584

Prob > chi?2

0.0000

(Std. Err. adjusted for 1683 clusters in schid

Robust

Std. Err.

-08903

-0010958
-0531842
-3529265
.1438847
.2587424

-338214
.044767

.0413601
.5328879

[95% Conft.
-0669842
-0010475
-0490405
.0143788
-0189796
-0201033
.0217182

-.0084967
-.0028847
-.1517689
.2904429
.3275393
-2466647
.6334579
-.0086786
-.0135381
-.0839694
.2408026
.2619647
.1736557
-.4004161
-.1308666
-.158201
-3.239025

Interval

.2540764
-0012215
-0404665
-3468069
-4019379
-3254682
. 7185917
.3403125
-.0092424
-1245088
1.624249
.8259826
1.187907
-9253584
.044617
.0039274
-1.150142



