Fractional Response Models with Endogenous Explanatory Variables and Heterogeneity ### Jeffrey M. Wooldridge Michigan State University - 1. Introduction - 2. Fractional Probit with "Heteroskedasticity" - 3. Fractional Probit with an Endogenous Explanatory Variable - 4. Linear Unobserved Effects Models with Unbalanced Panels - 5. Nonlinear UE Models with Unbalanced Panels ### 1. Introduction - A fractional response y satisfies $0 \le y \le 1$, possibly with P(y = 0) > 1 or P(y = 1) > 0 (or both). - Assume y is the variable we would like to explain in terms of covariates, $\mathbf{x} = (x_1, \dots, x_K)$. (No data censoring, but y may be a "corner solution.) - Focus here is on mean response. If \mathbf{x} is exogenous, goal is to estimate $E(y|\mathbf{x})$. - Can always use a linear model for $E(y|\mathbf{x})$, but it is at best an approximation. - Papke and Wooldridge (1996, *Journal of Applied Econometrics*): Model $E(y|\mathbf{x})$ using models of the form $G(\mathbf{x}\boldsymbol{\beta})$ for $0 < G(\boldsymbol{\cdot}) < 1$ (or nonindex forms). - So-called "fractional response" models (fractional probit, fractional logit) easily estimated using glm, and robust inference is trivial (and very important: MLE standard errors are too *large*). - For panel data, can use xtgee. Papke and Wooldridge (2008, *Journal of Econometrics*) show how to use correlated random effects approaches to estimate fractional response models for panel data. But for balanced panels. - Wooldridge (2005, Rothenberg Festschrift; 2010, MIT Press) considers models with continuous endogenous explanatory variables (EEVs). Proposes two-step control function approach. - Papke and Wooldridge (2008): heterogeneity and continuous EEV. Combination of CRE and control function methods for fractional probit. But balanced panel, and only two-step estimators. - What if we want a one-step quasi-MLE (which simplifies inference and may have better finite-sample properties)? So y_1 is a fractional response and y_2 a continuous EEV. Wooldridge (2011, unpublished) shows that the ivprobit log-likelihood identifies the (scaled) parameters under correct specification of $E(y_1|y_2, \mathbf{z}_1, a_1)$ where a_1 is the omitted variable. (and y_2 follows classical linear model). - What if y_1 is a fractional response and y_2 a binary EEV? Two-step "forbidden regression" is not valid. Wooldridge (2011) shows the biprobit log likelihood identifies the (scaled) parameters if $E(y_1|y_2, \mathbf{z}_1, a_1)$ is correctly specified (and y_2 follows a probit). - Neither ivprobit nor biprobit allow y_1 to be a fractional response. Neither does cmp (Roodman, 2009). - Bottom line: Many existing Stata commands could be used to estimate flexible fractional response models allowing for endogeneity and unbalanced panel by removing the "data checks" on the response variable. ### 2. Fractional Probit with "Heteroskedasticity" • Let $\mathbf{x} = (x_1, x_2, \dots, x_K)$. Fractional probit model is $$E(y|\mathbf{x}) = \Phi(\beta_0 + \mathbf{x}\boldsymbol{\beta}) = \Phi(\beta_0 + \beta_1 x_1 + \ldots + \beta_K x_K)$$ - Might want more flexibility. If P(y = 0) > 0, could use a two-part model. - But can directly make model for $E(y|\mathbf{x})$ more flexible, for example, $$E(y|\mathbf{x}) = \Phi[(\beta_0 + \mathbf{x}\boldsymbol{\beta}) \exp(-\mathbf{z}\boldsymbol{\delta}/2)]$$ where **z** $(1 \times M)$ is a function of $(x_1, x_2, ..., x_K)$ that does not include a constant. - The β_j and δ_h are consistently estimated using the Bernoulli quasi-MLE if $E(y|\mathbf{x})$ is correctly specified. As usual, need to use robust inference because y is not binary. (The conditional mean may be misspecified, anyway.) - Ideally, just type hetprobit y x1 ... x2, het(z1 z2 ... zM), robust - But *y* is turned into a binary response. - Can easily test $H_0: \delta = \mathbf{0}$ with robust Wald statistic. Number of obs = 4075Wald chi2(4) = 152. Log pseudolikelihood = -1674.5212 Prob > chi2 = 0.0000 Robust P > |z|Std. Err. [95% Conf. Interval Coef. prate eq1 1.384717 .2238623 6.19 0.000 .9459552 1.823479 mrate ltotemp -.1495098 .0139662 -10.71 0.000 -.1768831 -.1221365 .0670733 6.66 .0473484 .0100639 0.000 .0867981 age -1.27 0.205 -.3010042 .0644708 sole -.1182667 .0932352 .1059 1.679383 15.86 0.000 1.471823 1.886944 cons eq2 .053781 4.47 0.000 .1349497 mrate .2403586 .3457674 .0375202 2.60 0.009 .0092543 .0657861 ltotemp .0144216 .0171714 .0027289 6.29 0.000 .011823 .0225199 age sole 0.010 -.2864378 -.1627509 .0631067 -2.58 -.039064 ``` . test [eq2] (1) [eq2]mrate = 0 (2) [eq2]ltotemp = 0 (3) [eq2]age = 0 (4) [eq2] sole = 0 chi2(4) = 109.26 Prob > chi2 = 0.0000 . * Usual fractional probit (could use glm): capture program drop frac_probit program frac_probit version 11 args llf xb quietly replace 'llf' = $ML_y1*log(normal('xb')) /// + (1 - ML_y1)*log(1 - normal('xb')) end ml model lf frac_probit (prate = mrate ltotemp age sole), vce(robust) ml max ``` Number of obs = 4075 Wald chi2(4) = 695. Log pseudolikelihood = -1681.9607 Prob > chi2 = 0.0000 _____ | prate |
 Coef. | Robust
Std. Err. | Z | P> z | [95% Conf. | Interval | |---------|-------------|---------------------|--------|-------|------------|--| | mrate | .5955726 | .038756 | 15.37 | 0.000 | .5196123 | .67153291016048 .0208126 .1476672 1.545216 | | ltotemp | 1172851 | .0080003 | -14.66 | 0.000 | 1329655 | | | age | .0180259 | .0014218 | 12.68 | 0.000 | .0152392 | | | sole | .0944158 | .0271696 | 3.48 | 0.001 | .0411645 | | | _cons | 1.428854 | .0593694 | 24.07 | 0.000 | 1.312493 | | - Should do a comparison of average partial effects between ordinary fractional probit and heteroskedastic fractional probit. - The "hetprobit" quasi-MLE is needed for nonlinear CRE panel models with unbalanced panels. ### 3. Fractional Probit with an Endogenous Explanatory Variable • Adapted from Wooldridge (2011, unpublished). Set up endogeneity as an omitted variable problem, and start by assuming y_2 is continuous: $$E(y_1|\mathbf{z}, y_2, a_1) = \Phi(\mathbf{x}_1\boldsymbol{\beta}_1 + a_1).$$ $$y_2 = \mathbf{z}\boldsymbol{\delta}_2 + v_2,$$ where \mathbf{x}_1 is a general nonlinear function of (\mathbf{z}_1, y_2) , a_1 is an omitted factor thought to be correlated with y_2 but independent of the exogenous variables \mathbf{z} . • The average partial effects in this model are obtained from the "average structural function" (ASF): $$ASF(\mathbf{x}_1) = E_{a_1}[\Phi(\mathbf{x}_1\boldsymbol{\beta}_1 + a_1)] = \Phi(\mathbf{x}_1\boldsymbol{\beta}_{a_1})$$ where $$\beta_{a1} = \beta_1/(1+\sigma_{a_1}^2)^{1/2}$$. - Happily, these are precisely the parameters that are identified. - If (a_1, v_2) is jointly normal, a two-step control function method is valid (Wooldridge, 2005). Note that the distribution of y_1 is not further restricted. - (i) Regress y_{i2} on \mathbf{z}_i and obtain the residuals, \hat{v}_{i2} . - (ii) Use "probit" of y_{i1} on \mathbf{x}_{i1} , \hat{v}_{i2} to estimate parameters with different scales, say $\hat{\boldsymbol{\beta}}_{e1}$ and $\hat{\gamma}_{e1}$. (Can implement as a "generalized linear model.") - The "average structural function" (ASF) is consistently estimated as $$\widehat{ASF}(y_2,\mathbf{z}_1) = N^{-1} \sum_{i=1}^{N} \Phi(\mathbf{x}_1 \hat{\boldsymbol{\beta}}_{e1} + \hat{\gamma}_{e1} \hat{v}_{i2}),$$ and this can be used to obtain APEs with respect to y_2 or \mathbf{z}_1 (Wooldridge, 2005). • What about a quasi-LIML approach? Can show that $$E(y_1|y_2,\mathbf{z}) = \Phi \left[\frac{\mathbf{x}_1 \mathbf{\beta}_{r1} + (\rho_1/\tau_2)(y_2 - \mathbf{z}\mathbf{\delta}_2)}{(1 - \rho_1^2)^{1/2}} \right]$$ and so we can plug this mean function into the Bernoulli quasi-log likelihood. This gives $q_1(y_1, y_2, \mathbf{z}, \boldsymbol{\theta}_1, \boldsymbol{\theta}_2)$. Identify δ_2 and τ_2 using the Gaussian QLL, which gives $q_2(y_2, \mathbf{z}, \boldsymbol{\theta}_2)$. - The same objective function we get for MLE with y_1 binary can be used when y_1 is fractional continuous or otherwise. - In other words, ivprobit could be easily modified and use robust inference. • A similar argument holds when y_2 is binary and follows a probit model: $$y_2 = 1[\mathbf{z}\mathbf{\delta}_2 + v_2 \ge 0]$$ $$v_2|\mathbf{z} \sim Normal(0, 1)$$ • Can show that $E(y_1|y_2, \mathbf{z})$ has the same form as the response probability in the so-called "bivariate probit" model. • For example, $$E(y_1|y_2=1,\mathbf{z}) = \int_{-\mathbf{z}\delta_2}^{\infty} \Phi\left[\frac{\mathbf{x}_1\boldsymbol{\beta}_{r1} + \rho_1\boldsymbol{v}_2}{(1-\rho_1^2)^{1/2}}\right] d\boldsymbol{v}_2$$ - So for $q_2(y_2, \mathbf{z}, \boldsymbol{\theta}_2)$ we use the usual probit log-likelihood. For $q_1(y_1, y_2, \mathbf{z}, \boldsymbol{\theta}_1, \boldsymbol{\theta}_2)$ we use the Bernoulli QLL associated with bivariate probit. - So if y_1 were allowed to be fractional, biprobit with a "robust" option could be used. ## 4. Linear Unobserved Effects Models with Unbalanced Panels • Model for a random draw *i* has *T potential* time periods: $$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it}, t = 1, \dots, T$$ $$E(u_{it}|\mathbf{x}_{i1}, \dots, \mathbf{x}_{iT}, c_i) = 0.$$ • Given access to a balanced random sample, the zero conditional mean assumption is sufficient for FE to be consistent (as $N \to \infty$, T fixed) and \sqrt{N} -asymptotically normal, provided all elements of \mathbf{x}_{it} have some time variation. - Let $\{s_{it}: t=1,...,T\}$ be a sequence of "selection indicators": $s_{it}=1$ if and only if observation (i,t) is used. These are generally outcomes of random variables. - The number of time periods available for unit i is $T_i = \sum_{r=1}^{T} s_{ir}$; this is properly viewed as random. #### **Fixed Effects on the Unbalanced Panel** • The time-demeaned data uses a different number of time periods for different *i*. Let $$\ddot{\mathbf{y}}_{it} = \mathbf{y}_{it} - T_i^{-1} \sum_{r=1}^{T} s_{ir} \mathbf{y}_{ir}$$ $$\ddot{\mathbf{x}}_{it} = \mathbf{x}_{it} - T_i^{-1} \sum_{r=1}^{T} s_{ir} \mathbf{x}_{ir}$$ • The FE estimator is then $$\hat{\boldsymbol{\beta}}_{FE} = \left(N^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} s_{it} \mathbf{\ddot{x}}_{it}' \mathbf{\ddot{x}}_{it} \right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} s_{it} \mathbf{\ddot{x}}_{it}' \ddot{y}_{it} \right),$$ • A sufficient condition for consistency of FE on the unbalanced panel is an extension of the usual strict exogeneity assumption: $$E(u_{it}|\mathbf{x}_i,\mathbf{s}_i,c_i) = 0, t = 1,...,T$$ $$\mathbf{s}_i = (s_{i1},...,s_{iT})$$ - Both the covariates and selection are strictly exogenous conditional on c_i . Rules out selection in any time period depending on the shocks in any time period. That is, the condition is generally violated if $Cov(s_{ir}, u_{it}) \neq 0$ for any (r, t) pair. - Importantly, it allows s_{it} to depend on c_i in an unrestricted way. - xtreg allows unbalanced panels and properly computes standard errors and test statistics. #### **Random Effects on the Unbalanced Panel** \bullet The quasi-time-demeaning value for unit i is $$\hat{\theta}_i = 1 - \left\{ \frac{1}{[1 + T_i(\hat{\sigma}_c^2/\hat{\sigma}_u^2)]} \right\}^{1/2}.$$ Now define $$\ddot{y}_{it} = y_{it} - \hat{\theta}_i \bar{y}_i$$ where $\bar{y}_i = T_i^{-1} \sum_{r=1}^T s_{ir} y_{ir}$, and similarly for \mathbf{x}_{it} . Then, RE is POLS of \mathbf{y}_{it} on \mathbf{x}_{it} using the $s_{it} = 1$ data points. • Useful equivalence result (Wooldridge, 2010, unpublished). Define $$\mathbf{\bar{x}}_i = T_i^{-1} \sum_{r=1}^T s_{ir} \mathbf{x}_{ir}$$ and consider either POLS or RE estimation of the following equation on the unbalanced panel: $$y_{it} = \alpha + \mathbf{x}_{it}\mathbf{\beta} + \mathbf{\bar{x}}_{i}\mathbf{\xi} + v_{it}$$ Then $$\hat{\boldsymbol{\beta}}_{POLS} = \hat{\boldsymbol{\beta}}_{RE} = \hat{\boldsymbol{\beta}}_{FE}$$. Generally, $\hat{\boldsymbol{\xi}}_{POLS} \neq \hat{\boldsymbol{\xi}}_{RE}$ - Must be careful in constructing $\bar{\mathbf{x}}_i$; only use periods where all variables are observed ($s_{it} = 1$). - Must now include the time averages of year dummies because these are no longer constants in an unbalanced panel. - Same result holds when add any other time-constant covariates. Implies that the CRE is robust even with unbalanced panels. - Basis for robust Hausman test. H_0 : $\xi = 0$. Use RE with all time-constant controls included. ### **Heterogeneous Slopes** • Suppose the population model is $$E(y_{it}|\mathbf{x}_i,a_i,\mathbf{b}_i)=a_i+\mathbf{x}_{it}\mathbf{b}_i,$$ so, in the population, $\{\mathbf{x}_{it}: t=1,...,T\}$ is strictly exogenous conditional on (a_i,\mathbf{b}_i) . • Define $a_i = \alpha + c_i$, $\mathbf{b}_i = \mathbf{\beta} + \mathbf{d}_i$ and write $$y_{it} = \alpha + \mathbf{x}_{it}\mathbf{\beta} + c_i + \mathbf{x}_{it}\mathbf{d}_i + u_{it}$$ where $E(u_{it}|\mathbf{x}_i, a_i, \mathbf{b}_i) = E(u_{it}|\mathbf{x}_i, c_i, \mathbf{d}_i) = 0$ for all t. • Assume that selection may be related to $(\mathbf{x}_i, a_i, \mathbf{b}_i)$ but not the idiosyncratic shocks: $$E(u_{it}|\mathbf{x}_i,a_i,\mathbf{b}_i,\mathbf{s}_i)=0,\ t=1,\ldots,T.$$ • Multiply population equation by the selection indicator: $$s_i y_{it} = s_{it} \alpha + s_{it} \mathbf{x}_{it} \boldsymbol{\beta} + s_{it} c_i + s_{it} \mathbf{x}_{it} \mathbf{d}_i + s_{it} u_{it}$$ • Find an estimating equation by conditioning on $$\{(s_{it}, s_{it}\mathbf{x}_{it}) : t = 1, ..., T\}.$$ • Let $\mathbf{h}_i \equiv \{\mathbf{h}_{it} : t = 1, ..., T\} \equiv \{(s_{it}, s_{it}\mathbf{x}_{it}) : t = 1, ..., T\}$ and consider $$E(s_i y_{it} | \mathbf{h}_i) = s_{it} \alpha + s_{it} \mathbf{x}_{it} \boldsymbol{\beta} + s_{it} E(c_i | \mathbf{h}_i) + s_{it} \mathbf{x}_{it} E(\mathbf{d}_i | \mathbf{h}_i)$$ and then make assumptions concerning $E(c_i|\mathbf{h}_i)$ and $E(\mathbf{d}_i|\mathbf{h}_i)$. • We might choose $$\mathbf{w}_i \equiv (T_i, \mathbf{\bar{x}}_i)$$ as the exchangeable functions satisfying $$E(c_i|\mathbf{h}_i) = E(c_i|\mathbf{w}_i), E(\mathbf{d}_i|\mathbf{h}_i) = E(\mathbf{d}_i|\mathbf{w}_i).$$ • A flexible specification with $g_{ir} \equiv 1[T_i = r]$: $$E(c_i|T_i,\bar{\mathbf{x}}_i) = \sum_{r=1}^T \psi_r(g_{ir} - \rho_r) + \sum_{r=1}^T g_{ir} \cdot (\bar{\mathbf{x}}_i - \boldsymbol{\mu}_r) \boldsymbol{\xi}_r$$ $$E(\mathbf{d}_i|T_i,\bar{\mathbf{x}}_i) = \sum_{r=1}^T (g_{ir} - \rho_r) \boldsymbol{\kappa}_r + \sum_{r=1}^T g_{ir} \cdot (\bar{\mathbf{x}}_i - \boldsymbol{\mu}_r) \otimes \mathbf{I}_K] \boldsymbol{\eta}_r,$$ where the μ_r are the expected values of $\bar{\mathbf{x}}_i$ given r time periods observed and ρ_r is the fraction of observations with r time periods: $$\mu_r = E(\mathbf{\bar{x}}_i | T_i = r), \ \rho_r = E\{1[T_i = r]\}$$ • This formulation is identical to running separate regressions for each T_i : $$y_{it}$$ on 1, \mathbf{x}_{it} , $\mathbf{\bar{x}}_{i}$, $(\mathbf{\bar{x}}_{i} - \hat{\boldsymbol{\mu}}_{r}) \otimes \mathbf{x}_{it}$, for $s_{it} = 1$ where $\hat{\boldsymbol{\mu}}_r = N_r^{-1} \sum_{i=1}^N \mathbb{1}[T_i = r] \mathbf{\bar{x}}_i$ and N_r is the number of observations with $T_i = r$. • The coefficient on \mathbf{x}_{it} , $\hat{\boldsymbol{\beta}}_r$, is the APE given $T_i = r$. Average these across r to obtain the overall APE. Cannot identify the APE for $T_i = 1$. • A simple test of the null that the β_r do not change. Augmented equation is $$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + 1[T_i = 2] \cdot \mathbf{x}_{it}\boldsymbol{\gamma}_2 + \ldots + 1[T_i = T - 1] \cdot \mathbf{x}_{it}\boldsymbol{\gamma}_{T-1} + c_i + u_{it}$$ where the base group is $T_i = T$. Use FE on the unbalanced panel and obtain a fully robust test of $$H_0: \boldsymbol{\gamma}_2 = \boldsymbol{0}, \ldots, \, \boldsymbol{\gamma}_{T-1} = \boldsymbol{0}$$ This is like a Chow test where the slopes are allowed to differ by the number of available time periods for each unit. - . use meap94_98 - . xtset schid year - . egen tobs = sum(1), by(schid) - . tab tobs | tobs | Freq. | Percent | Cum. | |-------------|-------------------------|-------------------------|--------------------------| | 3
4
5 | 1,512
1,028
4,610 | 21.15
14.38
64.48 | 21.15
35.52
100.00 | | Total | ,
 7,150 | 100.00 | | - . gen tobs4 = tobs == 4 - . gen tobs3 = tobs == 3 - . gen tobs3_lavgrexp = tobs3*lavgrexp - . gen tobs4_lavgrexp = tobs4*lavgrexp . xtreg math4 lavgrexp lunch lenrol y95 y96 y97 y98, fe cluster(distid) • (Std. Err. adjusted for 467 clusters in distid | math4 | Coef. | Robust
Std. Err. | t | P> t | [95% Conf. | Interval | |--|---|--|--|---|---|--| | lavgrexp
lunch
lenrol
y95
y96
y97
y98
_cons | 6.288376
0215072
-2.038461
11.6192
13.05561
10.14771
23.41404
11.84422 | 3.132334
.0399206
2.098607
.7210398
.9326851
.9576417
1.027313
32.68429 | 2.01
-0.54
-0.97
16.11
14.00
10.60
22.79
0.36 | 0.045
0.590
0.332
0.000
0.000
0.000
0.000 | .1331271
0999539
-6.162365
10.20231
11.22282
8.26588
21.3953
-52.38262 | 12.44363
.0569395
2.085443
13.0361
14.8884
12.02954
25.43278
76.07107 | | sigma_u
sigma_e
rho | 15.84958
 11.325028
 .66200804 | (fraction | of varia | nce due t | co u_i) | | • (Std. Err. adjusted for 467 clusters in distid | math4 | Coef. | Robust
Std. Err. | t | P> t | [95% Conf. | Interval | |---|---|--|--|---|--|---| | lavgrexp tobs3_lavg~p tobs4_lavg~p lunch lenrol y95 y96 y97 y98 _cons | 3.501465
8.048717
9.103049
0292364
-2.169307
12.01813
13.56065
10.60934
23.84989
10.6043 | 3.547611
4.190867
6.809195
.0380268
2.074624
.69288
.9018155
.9648135
1.061322
31.12293 | 0.99
1.92
1.34
-0.77
-1.05
17.35
15.04
11.00
22.47
0.34 | 0.324
0.055
0.182
0.442
0.296
0.000
0.000
0.000
0.000 | -3.469832
1866205
-4.277481
1039616
-6.246084
10.65657
11.78852
8.713416
21.76432
-50.55438 | 10.47276
16.28405
22.48358
.0454889
1.90747
13.37968
15.33278
12.50526
25.93546
71.76297 | | sigma_u
sigma_e
rho | 41.080099
11.319318
.92943391 | (fraction | of varia | nce due t |
:o u i) | | . test tobs3_lavgrexp tobs4_lavgrexp - (1) tobs3_lavgrexp = 0 - (2) tobs4_lavgrexp = 0 $$F(2, 466) = 2.37$$ $Prob > F = 0.0942$. * Might get away with using the pooled equations. ## 5. Nonlinear UE Models with Unbalanced Panels • Adapted from Wooldridge (2010, unpublished). Interested in $$E(y_{it}|\mathbf{x}_{it},\mathbf{c}_i),$$ where $0 \le y_{it} \le 1$ and \mathbf{c}_i is unobserved heterogeneity. (Binary response as special case.) • Again, unbalanced panel. Assume strictly exogenous covariates conditional on \mathbf{c}_i and ignorable selection: $$E(y_{it}|\mathbf{x}_i,\mathbf{c}_i,\mathbf{s}_i) = E(y_{it}|\mathbf{x}_{it},\mathbf{c}_i), t = 1,\ldots,T.$$ - Do not model serial correlation. Make inference robust. - Specify models for $$D(\mathbf{c}_i | \{(s_{it}, s_{it}\mathbf{x}_{it}) : t = 1, ..., T\}).$$ • Let \mathbf{w}_i be a vector of known functions of $\{(s_{it}, s_{it}\mathbf{x}_{it}) : t = 1, ..., T\}$ that act as sufficient statistics, so that $$D(\mathbf{c}_i|\{(s_{it},s_{it}\mathbf{x}_{it}):t=1,\ldots,T\}) = D(\mathbf{c}_i|\mathbf{w}_i)$$ • For simplicity, take $$E(y_{it}|\mathbf{x}_i,c_i)=E(y_{it}|\mathbf{x}_{it},c_i)=\Phi(\mathbf{x}_{it}\boldsymbol{\beta}+c_i),\,t=1,\ldots,T$$ where \mathbf{x}_{it} can include time dummies or other aggregate time variables. • Assume that selection is conditionally ignorable for all t, that is, $$E(y_{it}|\mathbf{x}_i,c_i,\mathbf{s}_i) = E(y_{it}|\mathbf{x}_i,c_i).$$ - All that is left is to specify a model for $D(c_i|\mathbf{w}_i)$ for suitably chosen functions \mathbf{w}_i of $\{(s_{it}, s_{it}\mathbf{x}_{it}) : t = 1, ..., T\}$. Simplest is the time average on the selected periods, $\mathbf{\bar{x}}_i$, and the number of time periods, T_i . - A specification linear in $\bar{\mathbf{x}}_i$ but with intercept and slopes different for each T_i is $$E(c_i|\mathbf{w}_i) = \sum_{r=1}^T \psi_r 1[T_i = r] + \sum_{r=1}^T 1[T_i = r] \cdot \overline{\mathbf{x}}_i \xi_r$$ • At a minimum, should let the variance of c_i change with T_i : $$Var(c_i|\mathbf{w}_i) = \exp\left(\tau + \sum_{r=1}^{T-1} 1[T_i = r]\mathbf{\omega}_r\right)$$ • If we also maintain that $D(c_i|\mathbf{w}_i)$ is normal, then we obtain the following: $$E(y_{it}|\mathbf{x}_{it},\mathbf{w}_i,s_{it}=1) = \Phi \left[\frac{\mathbf{x}_{it}\boldsymbol{\beta} + \sum_{r=1}^T \psi_r g_{ir} + \sum_{r=1}^T g_{ir} \cdot \overline{\mathbf{x}}_i \boldsymbol{\xi}_r}{\exp(\sum_{r=2}^T g_{ir}\omega_r)^{1/2}} \right]$$ where $g_{ir} = 1[T_i = r]$. • No difficulty in adding $g_{ir} \cdot \bar{\mathbf{x}}_i$ for r = 1, ..., T to the variance function. - Can use "heteroskedastic probit" software provided the response variable can be fractional. - The explanatory variables at time t are $(1, \mathbf{x}_{it}, g_{i1}, \dots, g_{iT}, g_{i1} \cdot \overline{\mathbf{x}}_{i}, \dots, g_{iT} \cdot \overline{\mathbf{x}}_{i})$ and the explanatory variables in the variance are simply the dummy variables (g_{i2}, \dots, g_{iT}) , or also add $g_{i1} \cdot \overline{\mathbf{x}}_{i}, \dots, g_{iT} \cdot \overline{\mathbf{x}}_{i}$. • Might want to impose restrictions, such as constant slopes on $\bar{\mathbf{x}}_i$. • The average partial effects are easy to obtain from the estimated "average structural function": $$\widehat{ASF}(\mathbf{x}_t) = N^{-1} \sum_{i=1}^{N} \Phi \left[\frac{\mathbf{x}_t \hat{\boldsymbol{\beta}} + \sum_{r=1}^{T} \hat{\psi}_r g_{ir} + \sum_{r=1}^{T} g_{ir} \cdot \overline{\mathbf{x}}_i \hat{\boldsymbol{\xi}}_r}{\exp(\sum_{r=2}^{T} g_{ir} \hat{\omega}_r)^{1/2}} \right],$$ where the coefficients with "^" are from the pooled heteroskedastic fractional probit estimation. • The functions of $(T_i, \bar{\mathbf{x}}_i)$ are averaged out, leaving the result a function of \mathbf{x}_t . Take derivatives or changes with respect to x_{tj} . ## . use meap94_98 xtset schid year panel variable: schid (unbalanced) time variable: year, 1994 to 1998, but with gaps delta: 1 unit ## . tab tobs | number of
time
periods | Freq. | Percent | Cum. | |----------------------------------|-------------------------|-------------------------|--------------------------| | 3
4
5 | 1,512
1,028
4,610 | 21.15
14.38
64.48 | 21.15
35.52
100.00 | | Total | 7,150 | 100.00 | | - . gen tobs3 = tobs == 3 - . gen tobs4 = tobs == 4 - . replace math4 = math4/100 (7150 real changes made) Prob > chi2 = 0.0000 (Std. Err. adjusted for 1683 clusters in schid | |
 | Robust | | | | | |-----------|-----------|-----------|-------|--------|------------|----------| | math4 | Coef. | Std. Err. | Z | P> z | [95% Conf. | Interval | | eq1 |
 | | | | | | | lavgrexp | .1142198 | .0735598 | 1.55 | 0.120 | 0299547 | .2583943 | | lunch | 0013961 | .001221 | -1.14 | 0.253 | 0037891 | .0009969 | | lenrol | 067624 | .0561521 | -1.20 | 0.228 | 1776801 | .0424321 | | y95 | .3241894 | .0150181 | 21.59 | 0.000 | .2947545 | .3536243 | | у96 | .3724917 | .0203004 | 18.35 | 0.000 | .3327036 | .4122797 | | y97 | .2830853 | .0217498 | 13.02 | 0.000 | .2404565 | .325714 | | у98 | .7162732 | .0239386 | 29.92 | 0.000 | .6693544 | .7631921 | | lavgrexpb | .1622914 | .0957332 | 1.70 | 0.090 | 0253422 | .349925 | | lunchb | 0126246 | .0012652 | -9.98 | 0.000 | 0151044 | 0101448 | | lenrolb | 0029272 | .0610953 | -0.05 | 0.962 | 1226718 | .1168175 | | y95b | .8794288 | .5371528 | 1.64 | 0.102 | 1733713 | 1.932229 | | y96b | .7270724 | .2073897 | 3.51 | 0.000 | .320596 | 1.133549 | | y97b | .6338092 | .4187642 | 1.51 | 0.130 | 1869536 | 1.454572 | | y98b | .2733774 | .4579278 | 0.60 | 0.551 | 6241446 | 1.170899 | | tobs3 | .022217 | .056255 | 0.39 | 0.693 | 0880406 | .1324747 | | tobs4 | .088465 | .0891877 | 0.99 | 0.321 | 0863396 | .2632697 | | _cons | -1.856404 | .6052342 | -3.07 | 0.002 | -3.042641 | 6701668 | | eq2 |
 | | | | | | | tobs3 | .2007713 | .0566528 | 3.54 | 0.000 | .0897339 | .3118087 | | tobs4 | .5504922 | .1162983 | 4.73 | 0.000 | .3225517 | .7784327 | . ml model lf frac_probit (math4 = lavgrexp lunch lenrol y95 y96 y97 y98 lavgrexpb lunchb lenrolb y95b y96b y97b y98b tobs3 tobs4), vce(cluster schid . ml max Log pseudolikelihood = -4420.8672 Prob > chi2 = 0.0000 (Std. Err. adjusted for 1683 clusters in schid | math4 | Coef. | Robust
Std. Err. | z | P> z | [95% Conf. | Interval | |-----------|-----------|---------------------|--------|--------|------------|-----------| | lavgrexp | .1227898 | .0669842 | 1.83 | 0.067 | 0084967 | .2540764 | | lunch | 0008316 | .0010475 | -0.79 | 0.427 | 0028847 | .0012215 | | lenrol | 0556512 | .0490405 | -1.13 | 0.256 | 1517689 | .0404665 | | y95 | .3186249 | .0143788 | 22.16 | 0.000 | .2904429 | .3468069 | | у96 | .3647386 | .0189796 | 19.22 | 0.000 | .3275393 | .4019379 | | y97 | .2860664 | .0201033 | 14.23 | 0.000 | .2466647 | .3254682 | | у98 | .6760248 | .0217182 | 31.13 | 0.000 | .6334579 | .7185917 | | lavgrexpb | .1658169 | .08903 | 1.86 | 0.063 | 0086786 | .3403125 | | lunchb | 0113902 | .0010958 | -10.39 | 0.000 | 0135381 | 0092424 | | lenrolb | .0202697 | .0531842 | 0.38 | 0.703 | 0839694 | .1245088 | | y95b | .9325259 | .3529265 | 2.64 | 0.008 | .2408026 | 1.624249 | | y96b | .5439736 | .1438847 | 3.78 | 0.000 | .2619647 | .8259826 | | y97b | .6807815 | .2587424 | 2.63 | 0.009 | .1736557 | 1.187907 | | y98b | .2624711 | .338214 | 0.78 | 0.438 | 4004161 | .9253584 | | tobs3 | 0431248 | .044767 | -0.96 | 0.335 | 1308666 | .044617 | | tobs4 | 0771368 | .0413601 | -1.87 | 0.062 | 158201 | .0039274 | | _cons | -2.194584 | .5328879 | -4.12 | 0.000 | -3.239025 | -1.150142 |