A User-Friendly Technique for Implementing Survey Weights Using Stata

Islam Rabiul¹ Sweetman Arthur²

¹Ph.D. Candidate Department of Economics McMaster University

²Professor Department of Economics McMaster University

Canadian Stata Conference, September 23, 2021

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Table of Contents

Motivation

- 2 The Method
- Overview of Results
- ④ Simulation Strategy
- **5** Simulation Results
- 6 The Stata Program
- Example with Real Data
 - 8 Conclusions

∃ >

Motivation

• Survey data frequently suffer from bias for many reasons

- Non-random non-response
- Non-random attrition
- Non-random solicitation of respondents
- Survey statisticians recommend using survey weights to improve quality of estimation when selection on observables & if "sufficient" auxiliary data available
- Auxiliary data available from a large sample or population
 - Data that come from out of sample to calibrate with are known as Auxiliary data

Motivation

- **Reintroducing:** An easy to use GMM method of weighted regression analysis using auxiliary data by Imbens & Lancaster, and Hellerstein and Imbens
 - Developing Stata program
 - Easy to implement in Stata
- This method can be used for wide variety of estimators (any GMM estimators)
 - We implement OLS/Logit/Probit
 - In this presentation, focus only on Logit
- Simulation to compare the proposed method to:
 - Unweighted model
 - Weighted model with weights generated by iterative proportional fitting (IPF) raking, using command *ipfraking.ado presented in a 2014 Stata Journal article by Kolenikov, S.*

- Imbens and Lancaster (1994) "Combining Micro and Macro Data in Microeconometric Models" *Review of Economic Studies*
- Hellerstein and Imbens (hereafter H&I) (1999) "Moment Restrictions From Auxiliary Data by Weighting" *Review of Economics* and Statistics
- H&I use moment restrictions from auxiliary/population data to (implicitly) re-weight survey data
 - Generally requires uncentered first, second and cross moments

★ ∃ ► < ∃ ►</p>

- Auxiliary data are assumed to represent the population
- H&I differs from conventional (e.g., raking) methods because
 - Conventional methods create general purpose weights
 - H&I simultaneously estimates coefficients of the model of interest, and generates model-specific weights by matching sample moments to population moments
 - However, H&I can also be used in generating general purpose weights when model is not specified
- Can be extended to virtually any GMM model
- Suitable for auxiliary data on continuous and discrete variables

A B A A B A

Moment restrictions

$$E \ \rho(y, x, \beta, \lambda) = E \begin{bmatrix} \rho_1(y, x, \beta, \lambda) \\ \rho_2(y, x, \lambda) \end{bmatrix} = E \begin{bmatrix} \frac{x \ f(\beta'x)}{1 + e^{\lambda' h(y, x)}} \\ \frac{h_m(y, x)}{1 + e^{\lambda' h(y, x)}} \end{bmatrix} = 0$$

 ρ_{1} : weighted score functions from log-likelihood for Logit/Probit model (or weighted normal equations for OLS)

 ρ_2 : weighted distance of individual observation for each weighting variable from the respective auxiliary/population moment

• GMM chooses -simultaneously-

 β : the coefficients of the model of interest to minimize its weighted criterion function

AND

 λ : to make the weighted moments in the sample as close to that (those) in the population as possible

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• In:
$$E\left[\frac{\frac{x f(\beta'x)}{1+e^{\lambda' h(y, x)}}}{\frac{h_m(y, x)}{1+e^{\lambda' h(y, x)}}}\right] = 0$$

 $h_m(y, x)$: deviates the survey variables from their respective auxiliary/population moments

• $E[weighted h_m(y, x)] = 0$

• For example, age, female, and age*female are weighting variables

• then,

$$\begin{split} h_{Age} &= Age_i - \overline{Age_{pop}}; \ i = 1....n \\ h_{female} &= female_i - \overline{female_{pop}} \ ; \ i = 1....n \\ \text{and} \\ h_{female*age} &= female*age_i - \overline{female*age_{pop}} \ ; \ i = 1....n \end{split}$$

• • = • • = •

Overview of Results

- H&I improves precision of estimates in small simple random samples
- With sufficient auxiliary data on **x** and *y*, H&I performs better in a setting with biased sampling based on observables than unweighted regression and ipfraking
 - Largely comes from variance reduction and sometimes moderately from bias reduction
- With insufficient auxiliary data on **x** and particularly, no auxiliary data on *y* leads the unweighted method performing better than H&I and ipfraking

A B b A B b

Simulation Strategy

- Computer generated population
 - Logistic distribution
 - Five regressors: three are continuous (x) and two are discrete (d)
 - Size: 100,050
 - Correlation among regressors:

Variables Name	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	d_1	d_2
<i>x</i> ₁	1				
<i>x</i> ₂	0.50	1			
<i>x</i> ₃	0	0.20	1		
d_1	0.48	0.32	0.28	1	
<i>d</i> ₂	0	0.43	0	0	1

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Simulation Strategy

- Computer generated population
 - y is generated with pr(y = 1) = 0.5
 - The Logit probability: $pr(y = 1) = \frac{exp(\beta'x)}{1 + exp(\beta'x)}$
 - $\beta' x = 2 + 5x_1 2x_2 + 3x_3 + d_1 7d_2$

Sample

▶ *n* = 200, 500 and 2500

- Selection on x(s) and/or y variables (selection on y sometime called "choice based sampling" or "endogenous sampling") and simple random sample
- Selection on y can happen in a sample of 500 observations if we draw 300 observations with y = 0 and 200 observations with y = 1

• Iterations: 1000

<日

<</p>

Simulation Strategy

• Various models based on auxiliary data used

	Moments used		
Models	x & <i>y</i>	Only x	comments
1	First		
2	First & Second		Theoretical world, assuming moments are available from auxiliary data on each variable
3	First, Second & Cross		, , , , , , , , , , , , , , , , , , ,
4	First & Cross		
5	Same as model-3 but no moments on x ₂ & d ₂		
6	Same as model-4 but no moments on x ₂ & d ₂		
7		First, Second & Cross	More practical world, assuming moments may not be available on each variable
8		First & Cross	
9	Same as model-3 but without first moment on d_2 , cross moment on x_1d_1 and second moment on x_3		

★ ∃ ►

Simulation Results (sample only on y)

- Results from 200 observations are not presented
- Size 500 & 2500
- 60% observations with y = 0 and 40% with y = 1
- All statistics presented under various models unless otherwise mentioned are ratios of mean squared errors (MSE)
- If any ratio is less than one, e.g., 0.31, it means the MSE of the method in the numerator is only 31% of that of the denominator
- In subsequent tables, if any ratio is marked as 'Black," it is better compared to the benchmark method, & if it is "Red," it is worse

(4) (3) (4) (4) (4)

Simulation Results (sample only on y)

• Model-3 (first, second and cross moments of x, d and y)

	H&I/Unweighted	ipf/Unweighted	H&I/ipf	H&I/Unweighted	ipf/Unweighted	H&I/ipf
		n=500			n=2500	
const	0.31	0.48	0.65	0.06	0.10	0.64
x_1	0.81	1.08	0.75	0.72	0.92	0.78
<i>x</i> ₂	0.69	1.00	0.69	0.63	0.92	0.69
<i>x</i> 3	0.63	0.93	0.68	0.51	0.83	0.62
d_1	0.41	0.57	0.72	0.39	0.52	0.75
<i>d</i> ₂	0.69	0.91	0.76	0.60	0.73	0.82

• Model-5 (first, second and cross moments of all but x_2 , d_2)

	H&I/Unweighted	ipf/Unweighted	H&I/ipf	H&I/Unweighted	ipf/Unweighted	H&I/ipf
		n=500			n=2500	
const	0.59	0.60	0.99	0.12	0.13	0.96
<i>x</i> ₁	1.02	1.05	0.97	0.97	1.01	0.96
<i>x</i> ₂	1.05	1.04	1.01	1.02	1.03	1.00
<i>x</i> 3	0.93	0.96	0.96	0.82	0.91	0.90
d_1	0.79	0.83	0.95	0.81	0.82	0.99
d_2	1.07	1.06	1.01	1.04	1.04	1.00

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの

Islam, Sweetman	svywt	Stata 2021 14 / 29
-----------------	-------	--------------------

Simulation Results (sample only on y)

• Model-9 (Have some moments on each variable, but not all of them)

	H&I/Unweighted	ipf/Unweighted	H&I/ipf	H&I/Unweighted	ipf/Unweighted	H&I/ipf
		n=500			n=2500	
const	0.59	0.50	1.19	0.12	0.10	1.17
<i>x</i> ₁	0.93	1.10	0.84	0.78	0.93	0.84
<i>x</i> ₂	0.76	1.02	0.75	0.67	0.91	0.73
<i>x</i> 3	0.82	0.95	0.87	0.62	0.83	0.75
d_1	0.55	0.57	0.97	0.56	0.58	0.97
<i>d</i> ₂	0.83	0.88	0.94	0.76	0.74	1.02

→ Ξ →

Simulation Results (Sample on x_3 and d_1)

- Size 500 & 2500
- Four strata based on values of x_3 , and d_1

	$d_1 = 0$	$d_1 = 1$
$x_3 < \bar{x_3}$	Oversampling (by 56%)	Under-sampling (by 36%)
$x_3 \geq \bar{x_3}$	Under-sampling (by 36%)	Oversampling (by 56%)

→ Ξ →

Simulation Results (Sample on x_3 and d_1)

• Model-3 (first, second and cross moments of x, d and y)

	H&I/Unweighted	ipf/Unweighted	H&I/ipf	H&I/Unweighted	ipf/Unweighted	H&I/ipf
		n=500			n=2500	
const	0.56	0.89	0.63	0.45	0.68	0.66
x_1	0.86	1.18	0.72	0.75	1.06	0.71
<i>x</i> ₂	0.73	1.12	0.65	0.68	1.10	0.62
<i>x</i> 3	0.70	0.99	0.71	0.64	0.91	0.71
d_1	0.42	0.61	0.68	0.43	0.65	0.66
<i>d</i> ₂	0.69	0.96	0.73	0.62	0.82	0.75

• Model-5 (first, second and cross moments of all but x_2 , d_2)

	H&I/Unweighted	ipf/Unweighted	H&I/ipf	H&I/Unweighted	ipf/Unweighted	H&I/ipf
		n=500			n=2500	
const	1.00	1.05	0.95	0.91	0.98	0.93
x_1	1.06	1.14	0.93	1.02	1.13	0.90
<i>x</i> ₂	1.08	1.16	0.93	1.06	1.16	0.91
<i>x</i> 3	0.91	0.99	0.91	0.86	0.97	0.88
d_1	0.88	0.97	0.92	0.90	1.00	0.90
d_2	1.11	1.15	0.96	1.10	1.17	0.94

4日 + 4日 + 4目 + 4目 + 日 - 900

Islam, Sweetman	svywt	Stata 2021 17 / 29
-----------------	-------	--------------------

Simulation Results (Sample on x_3 and d_1)

• **Model**-9 (Have some moments on each variable, but but not all of them)

	H&I/Unweighted	ipf/Unweighted	H&I/ipf	H&I/Unweighted	ipf/Unweighted	H&I/ipf
		n=500			n=2500	
const	1.06	0.92	1.15	0.92	0.70	1.32
x_1	0.96	1.21	0.79	0.90	1.07	0.85
<i>x</i> ₂	0.76	1.19	0.64	0.73	1.10	0.67
<i>x</i> 3	0.89	1.09	0.82	0.77	0.91	0.85
d_1	0.66	0.71	0.94	0.65	0.69	0.93
d_2	0.95	1.02	0.93	0.86	0.83	1.05

- In simple random samples, H&I also performs better
 - Improvement entirely comes from reduced variance

< ∃ > <

The Stata Program

• Syntax

Suggestions for program name or further options appreciated

options	Description
* wtvar(varlist)	list of variables to be used in matching sample moments to population moments
* moments (numlist)	list of respective moment values for the wtvar
popsize(#)	the size of the population from which the sample is drawn
model (name)	the name of the model, which could be logit or probit, the default is OLS
owobst()	weight only or bootstrap option defined by <i>stonly</i> or <i>boot</i> , the default is as is the model()
noextract	suppress weights from showing up both as variables and statistics
nocompare	suppress comparison of sample means to weighted means and population means
noconstant	suppress constant both from regression model and instruments
nolog	suppress log from GMM

svywt depvar indepvar(s) [if] [in], wtvar(varlist) moments(numlist)[options]

* wtvar() and moments() are required.

A D N A B N A B N A B N

Example with Real Data

- Stata's sample NHANES-II data
 - NHANES-II no StatCan data because of RDC access limitations
- Toy/illustrative model
- Two different sets of *auxiliary data:*
 - Implied moments based on NHANES-II weights
 - Moments (count totals) used by Kolenikov, S. in a 2014 Stata Journal article illustrating ipfraking from projected 2011 Census data
- 2011 Census data is a completely different set of auxiliary data than from which NHANES-II data are sampled

```
. svywt obesity i.age20_39 i.age40_59 i.female i.black ///
>i.age20_39#i.female i.age40_59#i.female i.black#i.female, ///
>wtvar(male_age20_39 male_age40_59 female_age20_39 female_age40_59 ///
>region1 region2 region3 female black orace) ///
>mom(0.2364 0.1601 0.2484 0.1754 ///
>0.2069 0.2489 0.2653 0.5206 0.0955 0.0253) ///
>mo(logit) pop(117157513)
```

note: model is exactly identified

イロト 不得下 イヨト イヨト 二日

Number of parameters = 18 Number of moments = 18 Initial weight matrix: Unadjusted Number of obs = 10,351								
		Robust						
	Coef.		z	P> z	[95% Conf.	. Interval]		
	+							
obesity								
1.age20_39	328409	.1043887	-3.15	0.002	5330071	1238108		
1.age40_59	.17323	.1058513	1.64	0.102	0342347	.3806946		
1.female	.482482	.0910516	5.30	0.000	.304024	.6609399		
1.black	.2891128	.1455402	1.99	0.047	.0038593	.5743663		
age20 39#female								
agezo_59#remare 1 1	2916567	.1356623	-2.15	0.032	55755	0257635		
11	2910507	.1550025	-2.15	0.052		0257055		
age40 59#female								
age==0_55#1emaie 1 1	1878141	.1371215	-1.37	0.171	- 4565674	.0809391		
11	10/0141	.15/1215	-1.57	0.1/1	4303074	.0009391		
black#female								
1 1	.6830749	.1795611	3.80	0.000	.3311415	1.035008		
11	.0050745	.1/95011	5.00	0.000		1.055000		
cons	-1.907744	.071204	-26.79	0.000	-2.047301	-1.768186		
	+							
xb								
W male age20 39	-1.632836	.05756	-28.37	0.000	-1.745652	-1.52002		
W male age40 59	-1.756258	.073151	-24.01	0.000	-1.899631	-1.612884		
W female age20 39	-1.486732	.0537084	-27.68	0.000	-1.591998	-1.381465		
W female age40 59	-1.656894	.0679773	-24.37	0.000	-1.790127	-1.52366		
W_region1	.1697596	.0673058	2.52	0.012	.0378427	.3016766		
W region2	.3775347	.0606526	6.22	0.000	.2586578	.4964116		
W region3	.2543315	.0619542	4.11	0.000	.1329036	.3757595		
W female	0635953	.0414605	-1.53	0.125	1448564	.0176659		
W black	.2217372	.0661167	3.35	0.001	.0921509	.3513235		
W orace	3378578	.1980346	-1.71	0.088	7259984	.0502828		

GMM estimation

Stata 2021 22 / 29

・ロト・西ト・モン・ビー シック

Instruments for equation first: 0b.age20_39 1.age20_39 0b.age40_59 1.age40_59 0b.female 1.female 0b.black 1.black 0b.age20_39#0b.female 0b.age20_39#10.female 10.age20_39#0b.female 1.age20_39#1.female 0b.age40_59#0b.female 0b.age40_59#10.female 10.age40_59#0b.female 1.age40_59#1.female 0b.black#0b.female 0b.black#10.female 10.black#0b.female 1.black#1.female _cons

Instruments for equation eqn1: _cons Instruments for equation eqn2: _cons Instruments for equation eqn3: _cons Instruments for equation eqn4: _cons Instruments for equation eqn5: _cons Instruments for equation eqn6: _cons Instruments for equation eqn7: _cons Instruments for equation eqn8: _cons Instruments for equation eqn10: _cons

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

		hiweight		
	Percentiles	Smallest		
1%	.1642301	.1480108		
5%	.1782058	.1480108		
10%	.1877105	.1480108	Obs	10,351
25%	.2214596	.1480108	Sum of Wgt.	10,351
50%	.5260476		Mean	.4341402
		Largest	Std. Dev.	.1772344
75%	.5781396	.7197252		
90%	.6181775	.7197252	Variance	.031412
95%	.6386414	.7197252	Skewness	4250065
99%	.6763764	.7197252	Kurtosis	1.402055
		normweight		
	Percentiles	Smallest		
1%	.3782881	.3409287		
5%	.4104798	.3409287		
10%	.432373	.3409287	Obs	10,351
25%	.5101108	.3409287	Sum of Wgt.	10,351
50%	1.2117		Mean	1
		Largest	Std. Dev.	.4082423
75%	1.331689	1.657817		
90%	1.423912	1.657817	Variance	.1666618
95%	1.471049	1.657817	Skewness	4250065
99%	1.557968	1.657817	Kurtosis	1.402055
		popweight		
	Percentiles	Smallest		
1%	4281.643	3858,792		
5%	4646.004	3858.792		
10%	4893.802	3858.792	Obs	10,351
25%	5773.675	3858.792	Sum of Wgt.	10,351

4893.802	3858.792	Obs	10,351
5773.675	3858.792	Sum of Wgt.	10,351
13714.59		Mean	11318.47
	Largest	Std. Dev.	4620.68
15072.68	18763.96		
16116.51	18763.96	Variance	2.14e+07
16650.03	18763.96	Skewness	4250065
17633.81	18763.96	Kurtosis	1.402055

50%

75% 90% 95% 99%

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Qc[10,3]

	Samp_avg	Weighted_avg	pop_moments
male_age2~39	.18220462	.2364	.2364
male_age4~59	.11709014	.1601	.1601
female_ag~39	.19862815	.2484	.2484
female_ag~59	.13051879	.1754	.1754
region1	.20249251	.2069	.2069
region2	.26799343	.2489	.2489
region3	.27562554	.2653	.2653
female	.52516665	.5206	. 5206
black	.1049174	.0955	.0955
orace	.0193218	.0253	.0253
+ 004 CD 10.	20.42		

r; t=224.63 18:39:42

• Comparison of estimates using NHANES-II (implicit) auxiliary data

	Unweig	ghted	NHANES weighted		NHANES weighted ipf		NHANES weighted H&I	
	Coef	S.E.	Coef	S.E.	Coef	S.E.	Coef	S.E.
age20_39	-0.34	0.10	-0.35	0.12	-0.35	0.12	-0.33	0.10
age40_59	0.17	0.11	0.15	0.12	0.15	0.12	0.17	0.11
female	0.49	0.09	0.46	0.10	0.46	0.10	0.48	0.09
black	0.26	0.13	0.29	0.16	0.29	0.16	0.29	0.15
$age20_39\#$ female	-0.28	0.13	-0.31	0.15	-0.31	0.15	-0.29	0.14
$age40_59\#$ female	-0.19	0.14	-0.20	0.15	-0.20	0.15	-0.19	0.14
black#female	0.67	0.17	0.66	0.20	0.66	0.20	0.68	0.18
cons	-1.90	0.07	-1.91	0.08	-1.91	0.08	-1.91	0.07

• Comparison using 2011 census moments same as Kolenikov, S. (2014)

	Unweig	ghted	NHAN	ES weighs	2011 m	oments ipf	2011 m	oments H&I
	Coef	S.E.	Coef	S.E.	Coef	S.E.	Coef	S.E.
age20_39	-0.34	0.10	-0.35	0.12	-0.26	0.13	-0.11	0.12
age40_59	0.17	0.11	0.15	0.12	0.22	0.13	0.38	0.12
female	0.49	0.09	0.46	0.10	0.49	0.11	0.57	0.11
black	0.26	0.13	0.29	0.16	0.38	0.17	0.32	0.15
$age20_39\#female$	-0.28	0.13	-0.31	0.15	-0.41	0.17	-0.43	0.16
$age40_59\#$ female	-0.19	0.14	-0.20	0.15	-0.23	0.17	-0.31	0.15
black#female	0.67	0.17	0.66	0.20	0.65	0.21	0.71	0.19
cons	-1.90	0.07	-1.91	0.08	-1.99	0.08	-2.10	0.08

• Comparison of weights from different auxiliary data

	Mean	Std. Dev.	Min	Max
	NHAN	ES (implicit)	momer	nts
NHANES	11318	7304	2000	79634
ipfraking	11318	7305	2000	79806
H&I	11318	4623	3693	18800
	2011 C	ensus mome	nts	
ipfraking	22055	19227	4050	338675
H&I	22055	17561	5679	100453

A D N A B N A B N A B N

Conclusions

- H&I performs very well if appropriate moments are provided in the restrictions
- Can perform worse than unweighted without appropriate moment restrictions, which is also true of *ipfraking (or weighting in general)*
- The command we develop is very easy to use

Thanks You

イロト イヨト イヨト イヨト

References

- Hellerstein and Imbens (1999). "Moment Restrictions From Auxiliary Data by Weighting" *Review of Economics and Statistics.*
- Imbens and Lancaster (1994). "Combining Micro and Macro Data in Microeconometric Models" *Review of Economic Studies*.Kolenikov, S. (2014). "Calibrating Survey Data using Iterative
- Proportional Fitting (raking)" The Stata Journal, 14(1), 22-59.