# Meta-analysis of Individual Participant Diagnostic Test Data

Ben A. Dwamena, MD

The University of Michigan Radiology & VAMC Nuclear Medicine, Ann Arbor, Michigan

Canadian Stata Conference, Banff, Alberta - May 30, 2019



### Outline

- 1 Objectives
- 2 Diagnostic Test Evaluation
- 3 Current Methods for Meta-analysis of Aggregate Data
- 4 Modeling Framework for Individual Participant Data
- 5 References



## **Objectives**

- Review underlying concepts of medical diagnostic test evaluation
- Discuss a recommended model for meta-analysis of aggregate diagnostic test data
- 3 Describe framework for meta-analysis of individual participant diagnostic test data
- Illustrate implementation with MIDASIPD, a user-written STATA routine



# Medical Diagnostic Test

Any measurement aiming to identify individuals who could potentially benefit from preventative or therapeutic intervention

### This includes:

- Elements of medical history
- 2 Physical examination
- Imaging procedures
- 4 Laboratory investigations
- 5 Clinical prediction rules



# Diagnostic Accuracy Studies

Figure: Basic Study Design





# Diagnostic Accuracy Studies

Figure: Distributions of test result for diseased and non-diseased populations defined by threshold (DT)





# Philosophical View Regarding Things

aka Epictetus (55-135 AD), Greek

- 1 They are what they appear to be
- They neither are nor appear to be
- 3 They are but do not appear to be
- 4 They are not but appear to be



# Diagnostic Test Results as Things

- 1 They are what they appear to be: True Positive
- 2 They neither are nor appear to be: True Negative
- 3 They are but do not appear to be: False Negative
- 4 They are not but appear to be: False Positive



## Binary Test Accuracy: Data Structure

### Data often reported as $2\times 2$ matrix

|               | Reference Test (Diseased) | Reference Test (Healthy) |  |  |
|---------------|---------------------------|--------------------------|--|--|
| Test Positive | True Positive (a)         | False Positive (b)       |  |  |
| Test Negative | False Negative (c)        | True Negative (d)        |  |  |

- 1 The chosen threshold may vary between studies of the same test due to inter-laboratory or inter-observer variation
- The higher the cut-off value, the higher the specificity and the lower the sensitivity

# Binary Test Accuracy

Measures of Test Performance

Sensitivity (true positive rate) The proportion of subjects with disease who are correctly identified as such by test (a/a+c)

Specificity (true negative rate) The proportion of subjects without disease who are correctly identified as such by test (d/b+d)

Positive predictive value The proportion of test positive subjects who truly have disease (a/a+b)

Negative predictive value The proportion of test negative subjects who truly do not have disease (d/c+d)



# Binary Test Accuracy

Measures of Test Performance

Likelihood ratios (LR) The ratio of the probability of a positive (or negative) test result in the patients with disease to the probability of the same test result in the patients without the disease (sensitivity/1-specificity) or (1-Sensitivity/specificity)

Diagnostic odds ratio The ratio of the odds of a positive test result in patients with disease compared to the odds of the same test result in patients without disease (LRP/LRN)



# Diagnostic Meta-analysis

Critical review and statistical combination of previous research

### Rationale

- 1 Too few patients in a single study
- Too selected a population in a single study
- 3 No consensus regarding accuracy, impact, reproducibility of test(s)
- 4 Data often scattered across several journals
- 5 Explanation of variability in test accuracy
- 6 etc.



# Diagnostic Meta-analysis

Scope

- I Identification of the number, quality and scope of primary studies
- Quantification of overall classification performance (sensitivity and specificity), discriminatory power (diagnostic odds ratios) and informational value (diagnostic likelihood ratios)
- 3 Assessment of the impact of technological evolution (by cumulative meta-analysis based on publication year), technical characteristics of test, methodological quality of primary studies and publication selection bias on estimates of diagnostic accuracy
- 4 Highlighting of potential issues that require further research



# Diagnostic Meta-analysis

Methodological Concepts

- Meta-analysis of diagnostic accuracy studies may be performed to provide summary estimates of test performance based on a collection of studies and their reported empirical or estimated smooth ROC curves
- Statistical methodology for meta-analysis of diagnostic accuracy studies focused on studies reporting estimates of test sensitivity and specificity or two by two data
- 3 Both fixed and random-effects meta-analytic models have been developed to combine information from such studies



- Meta-analysis of sensitivity and specificity separately by direct pooling or modeling using fixed-effects or random-efffects approaches
- Meta-analysis of postive and negative likelihood ratios separately using fixed-effects or random-effects approaches as applied to risk ratios in meta-analysis of therapeutic trials
- Meta-analysis of diagnostic odds ratios using fixed-effects or random-efffects approaches as applied to meta-analysis of odds ratios in clinical treatment trials
- 4 Summary ROC Meta-analysis using fixed-effects or random-efffects approaches

Bivariate Mixed Model

### Level 1: Within-study variability: Approximate Normal Approach

$$\begin{pmatrix} \texttt{logit}\left(p_{Ai}\right) \\ \texttt{logit}\left(p_{Bi}\right) \end{pmatrix} \sim N \left( \begin{pmatrix} \mu_{Ai} \\ \mu_{Bi} \end{pmatrix}, C_i \right)$$

$$C_i = \begin{pmatrix} s_{Ai}^2 & 0 \\ 0 & s_{Bi}^2 \end{pmatrix}$$

 $p_{Ai}$  and  $p_{Bi}$  Sensitivity and specificity of the *i*th study

 $\mu_{Ai}$  and  $\mu_{Bi}$  Logit-transforms of sensitivity and specificity of the ith study

C<sub>i</sub> Within-study variance matrix

 $s_{Ai}^2$  and  $s_{Bi}^2$  variances of logit-transforms of sensitivity and specificity

Bivariate Mixed Model

### Level 1: Within-study variability: Exact Binomial Approach

$$y_{Ai} \sim Bin(n_{Ai}, p_{Ai})$$

$$y_{Bi} \sim Bin(n_{Bi}, p_{Bi})$$

 $n_{Ai}$  and  $n_{Bi}$  Number of diseased and non-diseased

 $y_{Ai}$  and  $y_{Bi}$  Number of diseased and non-diseased with true test results

 $p_{Ai}$  and  $p_{Bi}$  Sensitivity and specificity of the *i*th study



Bivariate Mixed Model

### Level 2: Between-study variability

$$\begin{pmatrix} \mu_{Ai} \\ \mu_{Bi} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} M_A \\ M_B \end{pmatrix}, \Sigma_{AB} \end{pmatrix}$$
$$\Sigma_{AB} = \begin{pmatrix} \sigma_A^2 & \sigma_{AB} \\ \sigma_{AB} & \sigma_B^2 \end{pmatrix}$$

 $\mu_{Ai}$  and  $\mu_{Bi}$  Logit-transforms of sensitivity and specificity of the ith study  $M_A$  and  $M_B$  Means of the normally distributed logit-transforms

 $\Sigma_{AB}$  Between-study variances and covariance matrix



Bivariate Mixed Binary Regression

### . midas tp fp fn tn

SUMMARY DATA AND PERFORMANCE ESTIMATES

```
Number of studies = 10
Reference-positive Units = 953
Reference-negative Units = 3609
Pretest Prob of Disease = 0.21
```

| Parameter                 | Estimate |       | 95% CI |
|---------------------------|----------|-------|--------|
| Sensitivity               | 0.72 [   | 0.60, | 0.81]  |
| Specificity               | 0.90 [   | 0.84, | 0.94]  |
| Positive Likelihood Ratio | 7.3 [    | 4.9,  | 10.7]  |
| Negative Likelihood Ratio | 0.31 [   | 0.22, | 0.44]  |
| Diagnostic Odds Ratio     | 23 [     | 16,   | 34]    |



Bivariate Summary ROC Meta-analysis

. midas tp fp fn tn, sroc(curve mean data conf pred) level(95)





# Bivariate Random Effects Modeling of Individual Participant Data

### Level 1: Within-study variability

 $y_{1ik} \sim Bernoulli(p_{1i})$ 

 $y_{0ij} \sim Bernoulli\left(p_{0i}\right)$ 

 $y_{1ik}$  test response of patient k in study i who has disease

 $y_{0ij}$  test response of patient j in study i who does not have disease

 $y_{1ik}$  and  $y_{0ij}$  Equal to 1 if test response is correct and 0 otherwise

 $p_{1i}$  and  $p_{0i}$  Sensitivity and specificity of the *i*th study



### Level 2: Between-study variability

$$\begin{pmatrix} \beta_{1i} \\ \beta_{2i} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} mu_1 \\ mu_0 \end{pmatrix}, \Sigma_{AB} \end{pmatrix}$$

$$\Sigma_{12} = \begin{pmatrix} \sigma_{11}^2 & \sigma_{12} \\ \sigma_{12} & \sigma_{22}^2 \end{pmatrix}$$

 $eta_{1i}$  and  $eta_{0i}$  Logit-transforms of sensitivity and specificity of the ith study  $mu_1$  and  $mu_2$  Means of the normally distributed logit-transforms

 $\Sigma_{12}$  Between-study variances and covariance matrix



### Explanation of Heterogeneity Beyond Chance

Investigate Accuracy-Covariate Effects

- Significant heterogeneity than that due to chance alone re: diagnostic meta-analysis.
- 2 Addressed with covariate regression.
- 3 Covariate values may be binary, categorical or continuous
- 4 Across-study effects based on study-level variables
- 5 Within-study effects using patient-level variables
- 6 Mixed-study effects using both study-level and patient-level variables



### Methods for Individual Dichotomized Data

**Investigate Accuracy-Covariate Effects** 

- Meta-analysis methods relying on AD estimate only the across-study effects using meta-regression
- Across-study effect estimates are used to make inferences about the within-study effects
- 3 Assumption: across-study effects are unbiased estimates of the within-study effects
- 4 Ecological bias and confounding may affect this assumption



Covariate heterogeneity

- PATIENT-LEVEL COVARIATES vary within studies (e.g. the age of patients) and across studies (e.g. the mean age of patients).
- The WITHIN-STUDY EFFECTS describe relationship between diagnostic accuracy and individual covariate values; i.e. the sensitivity-covariate and specificity-covariate effects
- The ACROSS-STUDY EFFECTS describe association between the mean covariate value in each study (e.g. mean age) and the underlying mean logit-sensitivity and mean logit-specificity across studies

Covariate heterogeneity

- The WITHIN-STUDY EFFECTS: change in individual logit-sensitivity/logit specificity per a unit increase in patient level covariate value
- The ACROSS-STUDY EFFECTS change in mean logit-sensitivity/logit-specificity per a unit increase in study level covariate value



Fisherian/Frequentist Model Estimation

Maximum Likelihood/Simulated Maximum Likelihood marginalizing study-specific logit-sensitivity and logit specificity over random effects

- meglm with family(bernoulli), link(logit) and covariance(unstructured)
- melogit using family(bernoulli) and covariance(unstructured)
- **3 gllamm** using **denom**(1) and **link**(logit)



Bayesian Model Estimation

Markov Chain Monte Carlo Simulation with Metropolis-Hastings Algorithm and Gibbs Sampling

- bayesmh using likelihood(dbernoulli())
- bayesmh using likelihood(binlogit)
- **3 bayes** prefix **meglm** or **melogit**



### Stata Code

Fisherian/Frequentist Model Estimation

```
meglm (parameter 'logitsen' 'logitspe' /// null fixed effects
'wslogitsen' 'wslogitspe' /// within-study effects
'aslogitsen' 'aslogitspe', noconstant) /// across-study effects
('_study': 'logitsen' 'logitspe', noconstant cov(un)), /// var-cov
family(bernoulli) link('link') /// likelihood
intmethod('intmethod') intp('nip')
```



### Stata Code

Bayesian Model Estimation

```
bayes, remargl burn(5000) mcmcs(5000) thin(2) ///
saving("c:\ado\personal\bayesben.dta", replace) rseed(1356):
meglm (parameter 'logitsen' 'logitspe' ///null fixed effects
'wslogitsen' 'wslogitspe' ///within-study effects
'aslogitsen' 'aslogitspe', noconstant) /// across-study effects
('_study': 'logitsen' 'logitspe', noconstant cov(un)), ///
family(bernoulli) link('link') ///
intmethod('intmethod') intp('nip') nogroup nolrt
```



Estimation Syntax

a wrapper for meglm programmed as an estimation command with replay and post-estimation graphics

```
#delimit;
syntax varlist(min=2 max=2)
[if] [in] , ID(varname) EFFects(string) COvar(varname) [
Link(string) INTegration(string) NIP(integer 30)
SORTby(varlist min=1) LEVEL(integer 95)
noTABLE noHSROC noFITstats noHETstats
REVman *];
#delimit cr
```



Replay/Post-Estimation Syntax

```
#delimit;
syntax [if] [in] [, Level(cilevel)
noTABLE noHSROC noFITstats noHETstats
DIAGplot REVman UPVstats(numlist min=2 max=2)
FORest(string) BVroc(string) SROC(string)
FAGAN(numlist min=1 max=3) CONDIProb(string)
LRMAT(string) EBayes(string) BIASse(string)
*];
```



Demonstration

### Ultrasound for diagnosis of malignancy in women with breast masses

| Number of studies               | = | 8    |
|---------------------------------|---|------|
| Number of participants          | = | 2824 |
| Reference-positive Participants | = | 1072 |
| Reference-negative Participants | = | 1752 |
| Pretest Prob of Disease         | = | 0.39 |



### Demonstration

```
discard
cd c:/ado/personal/
use "E:\statacanadadata1.dta", clear
//set trace on
midasipd y dtruth, id(author) eff(across) covar(age)
midasipd, forest(generic)
midasipd, fagan(0.5)
midasipd, fagan(0.25 0.5 0.75)
midasipd, condiprob(full)
midasipd, condiprob(trunc)
```



### Demonstration

```
discard
use "E:\statacanadadata2.dta"", clear
midasipd y dtruth, id(author) eff(none) covar(age)
midasipd, diagplot
midasipd, bvroc(weighted mean confe predr lgnd)
midasipd, sroc( cregion tcurve lgnd)
midasipd, lrmat(colregion)
```



# Summary Test Performance

| UTTHIM |  |
|--------|--|
|        |  |

|      | 1 | Coef.  | Std. Err. | z       | P> z   | [95% Conf. | Interval] |
|------|---|--------|-----------|---------|--------|------------|-----------|
| Sens | i | 0.8818 | 0.0259    | 34.0694 | 0.0000 | 0.8311     | 0.9325    |
| Spec | 1 | 0.7652 | 0.0562    | 13.6123 | 0.0000 | 0.6550     | 0.8754    |
| DOR  | 1 | 3.1908 | 0.2336    | 13.6571 | 0.0000 | 2.7329     | 3.6487    |
| LRP  | 1 | 3.7554 | 0.8286    | 4.5322  | 0.0000 | 2.1314     | 5.3794    |
| LRN  | I | 0.1545 | 0.0275    | 5.6253  | 0.0000 | 0.1007     | 0.2083    |

#### ACROSS

|      | I | Coef.  | Std. Err. | z       | P> z   | [95% Conf. | Interval] |
|------|---|--------|-----------|---------|--------|------------|-----------|
| Sens | i | 0.9751 | 0.0767    | 12.7093 | 0.0000 | 0.8247     | 1.1255    |
| Spec | 1 | 0.7416 | 0.8720    | 0.8505  | 0.3950 | -0.9674    | 2.4507    |
| DOR  | 1 | 4.7233 | 3.7544    | 1.2581  | 0.2084 | -2.6352    | 12.0818   |
| LRP  | 1 | 3.7741 | 12.5681   | 0.3003  | 0.7640 | -20.8590   | 28.4072   |
| LRN  | 1 | 0.0335 | 0.0869    | 0.3860  | 0.6995 | -0.1367    | 0.2038    |

#### MIXED

|      | l<br> | Coef.  | Std. Err. | z       | P> z   | [95% Conf. | Interval] |
|------|-------|--------|-----------|---------|--------|------------|-----------|
| Sens | i     | 0.9821 | 0.0571    | 17.1881 | 0.0000 | 0.8701     | 1.0941    |
| Spec | 1     | 0.8004 | 0.7165    | 1.1171  | 0.2639 | -0.6039    | 2.2047    |
| DOR  | 1     | 5.3922 | 3.1435    | 1.7153  | 0.0863 | -0.7690    | 11.5534   |
| LRP  | 1     | 4.9201 | 17.4572   | 0.2818  | 0.7781 | -29.2955   | 39.1356   |
| LRN  | I     | 0.0224 | 0.0588    | 0.3809  | 0.7032 | -0.0928    | 0.1376    |



# Extent of heterogeneity

#### WITHIN

| 1      | Coef.  |           |         |        | [95% Conf. | _         |
|--------|--------|-----------|---------|--------|------------|-----------|
| Isqsen | 0.9526 |           | 43.9303 |        | 0.9101     |           |
| Isqspe | 0.7960 | 0.1035    | 7.6911  | 0.0000 | 0.5932     | 0.9989    |
| Isqbiv | 0.8368 | 0.0173    | 48.3878 | 0.0000 | 0.8029     | 0.8707    |
| <br>   |        |           |         |        |            |           |
| <br>   |        |           |         |        | [95% Conf. | Interval] |
|        | 0.9569 |           | 9.2852  |        | 0.7549     | 1.1589    |
| Isqspe | 0.4290 | 0.7699    | 0.5572  | 0.5774 | -1.0800    | 1.9379    |
| Isqbiv | 0.5001 | 0.7587    | 0.6591  | 0.5098 | -0.9869    | 1.9871    |
| KED    |        |           |         |        |            |           |
| 1      |        | Std. Err. |         |        | [95% Conf. |           |
|        | 0.9465 |           | 6.2710  | 0.0000 | 0.6507     | 1.2423    |
| Isqspe | 0.3654 | 0.7533    | 0.4851  | 0.6276 | -1.1110    | 1.8419    |
| Isqbiv | 0.6301 | 0.2699    | 2.3349  | 0.0195 | 0.1012     | 1.1591    |
|        |        |           |         |        |            |           |



### **FOREST PLOT**

code:

midasipd, forest(cochrane) nohead noestimates

#### result:





- Logit estimates of sensitivity, specificity and respective variances are used to construct a hierarchical summary ROC curve.
- The summary ROC curve may be displayed with or without
  - Observed study data,
  - Summary operating point,
  - 95% Confidence region and/or
  - 95% Prediction region.



- 1 The 95% confidence region around the summary estimate of sensitivity and specificity may be viewed as a two-dimensional confidence interval.
- 2 The main axis of the 95% confidence region reflects the correlation between sensitivity and specificity (threshold effect).
- 3 The 95% prediction region depicts a two-dimensional standard deviation of the individual studies.
- 4 The area of the 95% prediction region beyond the 95% confidence region reflects extent of between-study variation.

- The area under the curve (AUROC), serves as a global measure of test performance.
- 2 The AUROC is the average TPR over the entire range of FPR values.
- The following guidelines have been suggested for interpretation of intermediate AUROC values:
  - **low** accuracy (0.5 >= AUC <= 0.7),
  - moderate accuracy (0.7 >= AUC <= 0.9), or
  - high accuracy (0.9 >= AUC <= 1)</p>



#### code:

midasipd, sroc(mean prede confe data lgnd) /// nohead noestimates

#### result:





#### code:

midasipd, sroc(fcurve predr confr data lgnd) ///
nohead noestimates

#### result:





### FAGAN NOMOGRAM

- I The patient-relevant utility of a diagnostic test is evaluated using the likelihood ratios to calculate post-test probability(PTP) as follows: Pretest Probability=Prevalence of target condition PTP= LR  $\times$  pretest probability/[(1-pretest probability) $\times$  (1-LR)]
- 2 This concept is depicted visually with Fagan's nomograms.
- 3 When Bayes theorem is expressed in terms of log-odds, the posterior log-odds are linear functions of the prior log-odds and the log likelihood ratios.



#### FAGAN NOMOGRAM

- A Fagan plot consists of a vertical axis on the left with the prior log-odds, an axis in the middle representing the log-likelihood ratio and an vertical axis on the right representing the posterior log-odds.
- 2 Lines are then drawn from the prior probability on the left through the likelihood ratios in the center and extended to the posterior probabilities on the right.



### FAGAN NOMOGRAM

#### code:

midasipd, fagan(0.25 0.50 0.75) nohead noestimates

#### result:





### CONDITIONAL PROBABILITY PLOTS

- 1 The conditional probability of disease given a positive OR negative test, the so-called positive (negative) predictive values are critically important to clinical application of a diagnostic procedure.
- 2 They depend not only on sensitivity and specificity, but also on disease prevalence (p).
- The probability modifying plot is a graphical sensitivity analysis of predictive value across a prevalence continuum defining low to high-risk populations.
- 4 It depicts separate curves for positive and negative tests.
- The user draws a vertical line from the selected pre-test probability to the appropriate likelihood ratio line and then reads the post-test probability off the vertical scale.

### CONDITIONAL PROBABILITY PLOTS

#### code:

midasipd, condiprob(full) nohead noestimates
result:





### CONDITIONAL PROBABILITY PLOTS

#### code:

midasipd, condiprob(trunc) nohead noestimates result:





## UNCONDITIONAL PREDICTIVE VALUES

- General summary statistics have also been introduced for when it may be of interest to evaluate the effect of prevalence(p) on predictive values: unconditional positive and negative predictive values, which permit prevalence heterogeneity.
- These measures are obtained by integrating their corresponding conditional (on p) versions with respect to a prior distribution for p.
- The prior posits assumptions about the risk level in a hypothetical population of interest, e.g. low, high, moderate risk, as well as the heterogeneity in the population.



#### UNCONDITIONAL PREDICTIVE VALUES

#### code:

midasipd, upv(0.25 0.75) nohead noestimates

#### result:

Prevalence Heterogeneity/Unconditional Predictive Values

Prior Distribution (Uniform) = 0.25 - 0.75

Unconditional Positive Predictive Value = 0.93 [0.93 - 0.93]

Unconditional Negative Predictive Value = 0.75 [0.75 - 0.75]



### **SUMMARY**

- Meta-analysis of diagnostic IPD Useful for unbiased estimation of impact of patient- and study level covariate heterogeneity
- Meta-analysis of diagnostic IPD may mitigate ecological bias and confounding associated with meta-regression of AD
- **midasipd** facilitates both frequentist and bayesian meta-analysis of diagnostic IPD using Stata
- 4 midasipd is an estimation command with multiple post-estimation graphical analyses
- **midasipd** allows the separation of within-study and across-study effects of a covariate



#### References I



Aertgeerts B., Buntinx F., and Kester A.

The value of the CAGE in screening for alcohol abuse and alcohol dependence in general clinical populations: a diagnostic meta-analysis.

J clin Epidemiol 2004;57:30-39



Arends L.R., Hamza T.H., Von Houwelingen J.C., Heijenbrok-Kal M.H., Hunink M.G.M. and Stijnen T.

Bivariate Random Effects Meta-Analysis of ROC Curves.

Med Decis Making 2008;28:621-628



Begg C.B. and Mazumdar M.

Operating characteristics of a rank correlation test for publication bias.

Biometrics 1994:50:1088-1101



Chu H. and Cole S.R.

Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach.

J Clin Epidemiol 2006;59:1331-1332



Dendukuri N., Chui K. and Brophy J.M.

Validity of EBCT for coronary artery disease: a systematic review and meta-analysis. BMC Medicine 2007:5:35

### References II



Dukic V. and Gatsonis C.

Meta-analysis of diagnostic test accuracy studies with varying number of thresholds. Biometrics 2003;59:936-946



Dwamena, B.

midas: Module for Meta-Analytical Integration of Diagnostic Accuracy Studies Boston College Department of Economics, Statistical Software Components 2007; s456880: http://ideas.repec.org/c/boc/bocode/s456880.html.



Ewing J.A.

Detecting Alcoholism: The CAGE questionnaire. JAMA 1984:252:1905-1907



Harbord R.M., Deeks J.J., Egger M., Whitting P. and Sterne J.A. Unification of models for meta-analysis of diagnostic accuracy studies. Biostatistics 2007:8:239-251



Harbord R.M., Whitting P., Sterne J.A.C., Egger M., Deeks J.J., Shang A. and Bachmann L.M.

An empirical comparison of methods for meta-analysis of diagnostic accuracy showed hierarchical models are necessary

Journal of Clinical Epidemiology 2008;61;1095-1103

#### References III



Harbord R.M., and Whitting P.

metandi: Meta-analysis of diagnostic accuracy using hierarchical logistic regression Stata Journal 2009;2:211-229



Irwig L., Macaskill P., Glasziou P. and Fahey M.

Meta-analytic methods for diagnostic test accuracy.

J Clin Epidemiol 1995;48:119-30



Kester A.D.M., and Buntinx F.

Meta-Analysis of ROC Curves.

Med Decis Making 2000;20:430-439



Littenberg B. and Moses L. E.

Estimating diagnostic accuracy from multiple conflicting reports: a new meta-analytic method.

Med Decis Making 1993;13:313-321



Macaskill P.

Empirical Bayes estimates generated in a hierarchical summary ROC analysis agreed closely with those of a full Bayesian analysis.

J Clin Epidemiol 2004;57:925-932

#### References IV



Moses L.E., Shapiro D. and Littenberg B.

Combining independent studies of a diagnostic test into a summary ROC curve: data-analytic

approaches and some additional considerations.

Stat Med 1993;12:1293-13116



Pepe M.S.

Receiver Operating Characteristic Methodology.

Journal of the American Statistical Association 2000;95:308-311



Pepe M.S.

The Statistical Evaluation of Medical Tests for Classification and Prediction.

2003; Oxford: Oxford University Press



Reitsma J.B., Glas A.S., Rutjes A.W.S., Scholten R.J.P.M., Bossuyt P.M. and Zwinderman A.H.

Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews.

J Clin Epidemiol 2005;58:982-990



Riley R.D., Dodd S.R., Craig J.V., Thompson J.R. and Williamson P.R.

Meta-analysis of diagnostic test studies using individual patient data and aggregate data Stat Med 2008;27:6111-6136

#### References V



Rutter C.M., and Gatsonis C.A.

A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations Stat Med 2001;20:2865-2884



Toledano A. and Gatsonis C.A.

Regression analysis of correlated receiver operating characteristic data.

Academic Radiology 1995;2:S30-S36



Tosteson A.A. and Begg C.B.

A general regression methodology for ROC curve estimation.

Medical Decision Making 1988;8:204-215



Williams R.

Using Heterogeneous Choice Models To Compare Logit and Probit Coefficients Across Groups

Sociological Methods and Research 2009;37: 531-559



White I.R.

Multivariate Random-effects Meta-analysis.

Stata Journal 2009;1:40-56