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Inconsistency of FE estimator in dynamic panels

A major advantage of panel data is that repeated
observations on the same units allows to analyze individual
dynamics, typically modeled by adding lagged dependent
variables to the individual effects panel model specification

BUT the standard Fixed Effects (FE) estimator is
inconsistent when N →∞ while T is fixed (Nickell, 1981)

⇒ Various alternative estimators have been proposed
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Generalized method of moments estimators

Difference GMM by Arellano & Bond (1991); System GMM
by Arellano & Bover (1995) and Blundell & Bond (1998)

Advantage: Under appropriate assumptions: asymptotically
unbiased when N tends to infinity and T is finite

Disadvantage: Poor small-sample properties given
instrumental-variables technique:

I relatively large standard deviation compared with the
FE estimator (Arellano & Bond, 1991; Kiviet, 1995)

I finite-sample bias due to weak-instrument problems
(Ziliak, 1997; Bun & Windmeijer, 2010)

I highly unstable GMM estimates over alternative
instrument sets (Roodman, 2009)
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Kiviet (1995) bias-corrected FE estimator

Based on an analytical approximation of the standard FE
estimator’s small sample bias in a first-order dynamic panel
data model (see xtlsdvc by Bruno, 2015)

Advantage: Superior small sample properties compared to
GMM estimators (removes most of the bias of the FE
estimator while maintaining its relatively small coefficient
uncertainty)

Disadvantage: Bias expression of the FE estimator is
derived under strict set of assumptions (homoscedasticity,
etc.)
→ Correction procedure needs to be re-derived to be
applicable in less restrictive settings (see e.g. Bun, 2003, or
Bun & Carree, 2006)
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Everaert & Pozzi (2007) bias-corrected FE
estimator

Develop a bootstrap-based bias correction procedure with
similar small sample properties as those of Kiviet’s (1995)
analytical bias-corrected FE estimator

Advantages:

I Does not require an analytical expression for the bias of
the FE estimator as this is numerically evaluated using
bootstrap resampling

I Applicable in non-standard cases through an adequate
modification of the bootstrap resampling scheme
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Contribution of the paper

Stata routine, xtbcfe, that executes a bootstrap-based
bias-corrected FE (BCFE) estimator building on Everaert &
Pozzi (2007), yet

I simplifying the core of their bootstrap algorithm

I extending the algorithm to allow for higher order and
unbalanced panels

I inference can be carried out using either a parametric or
non-parametric bootstrapped variance-covariance
matrix or percentile intervals

I allowing for a variety of initialization and resampling
schemes to accommodate general heteroscedasticity
patterns and error cross-sectional dependence (CSD)
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Error (re)sampling schemes

To accommodate various distributional assumptions about
the error term εit, our bootstrap algorithm includes several
parametric error sampling and non-parametric error
resampling options

All of these rely in some way on the rescaled error terms ε̂rit

ε̂rit = ε̂it

√
NT

NT − k −N
(1)
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Parametric sampling schemes

Draw εbit from the i.i.d. N
(
0, σ̂2it

)
distribution, and allowing

for

I cross-sectional heteroscedasticity:
σ2it = σ̂2i = 1

T

∑T
t=1 (ε̂rit)

2

I temporal heteroscedasticity: σ2it = σ̂2t = 1
N

∑N
i=1 (ε̂rit)

2

I assuming homoskedasticity σ̂2it = σ̂2

No account of general heteroscedastiticy (σ2it) or error CSD
(σijt 6= 0) (would require specific assumptions about the
functional form of these error structures)
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Non-parametric resampling schemes

Obtain εbit by resampling the rescaled error terms ε̂rit
I no distributional assumptions required about εit while

its covariance structure can be preserved by an
appropriate design of the resampling scheme

jit and sit denote cross-section and time series bootstrap
indices drawn specifically for cross-section i at time t

The way these indices are drawn (with replacement) from the
cross-section index (1, . . . , N) and the time index (1, . . . , T )
is aligned with the alleged covariance structure in εit
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Non-parametric sampling schemes II
1. Homoscedasticity (σ2

it = σ2): resample ε̂rit both over
cross-sections and time, i.e. draw jit from (1, . . . , N) and sit
from (1, . . . , T )

2. Pure cross-sectional heteroscedasticity (σ2
it = σ2

i ):
resample ε̂rit over time within cross-sections, i.e. draw sit
from (1, . . . , T ) while:

2.1 if σ2
i random over cross-sections → draw entire

cross-sections and resample over time within
cross-sections: jit = ji

2.2 if σ2
i cross-section specific → resample over time within

cross-sections: jit = i

3. Pure temporal heteroscedasticity (σ2
it = σ2

t ): resample ε̂rit
over cross-sections within time periods, i.e. draw jit from
(1, . . . , N) while

3.1 Unconditional → draw entire time periods and
resample over cross-sections within time periods:
sit = st

3.2 Conditional → resample over the cross-sectional
dimension: sit = t
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Non-parametric sampling schemes III

4 General heteroscedasticity (σ2
it): use wild bootstrap

suggested by Liu (1988) and Mammen (1993) to preserve
both the cross-sectional and the temporal structure of the
error terms

4.1 If unconditional variance σ2
i is random over

cross-sections, first resample entire cross-sections and
next apply the wild bootstrap, i.e. εbit = ιitε̂

r
ji,t

4.2 If unconditional variance σ2
i is cross-section specific,

apply a pure wild bootstrap, i.e. εbit = ιitε̂
r
it

5 Error CSD (σijt 6= 0): the covariance between εit and εjt is
non-zero and may be different at each point in time:

5.1 Under global CSD: resample over cross-sections within
time periods

5.2 Under local CSD: resample over time in the same way
for each cross-section, i.e. restrict jit = i as under 2.2
and sit = st as under 3.2
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Initialization

The calculation of the bootstrap data ybit of the algorithm
requires initial values for the lags of the dependent variable
(ybi,−(p−1), . . . , y

b
i0)

How these initial values are chosen to be generated depends
implicitly on the decision about the initial conditions of the
data

The initialization choice will influence

I the statistical properties of the estimator

I numerical properties of the algorithm in small datasets
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Deterministic initialization

Fastest and most straightforward: set (ybi,−(p−1), . . . , y
b
i0)

equal to the observed (centered) initial values
(ỹi,−(p−1), . . . , ỹi0) in each bootstrap sample

Advantages

I No assumptions needed about how the initial conditions
are generated (Everaert & Pozzi, 2007)

I Avoid generating initial conditions when the data is not
rich enough

But risk of inducing a spurious dependency over bootstrap
samples, especially if T is small!
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Analytic inititialization

Draw initial observations from the multivariate normal
distribution (

ybi0, . . . , y
b
i,−(p−1)

)
∼ N

(
µ̂0i , Σ̂

0
i

)
In the case of a single lagged dependent variable (p = 1), for
instance:

Σ̂0
i =

1

T

T∑
t=1

(
ỹit −

X̃itβ̂

1− γ̂1

)2

,

which is the variance of yit around its unconditional mean
X̃itβ̂ /(1− γ̂1) observed over the sample
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Burn-in initialization

Alternative: start in the distant past from initial values set
to zero, e.g. (ybi,−50−p+1 = 0, . . . , ybi,−50 = 0), and then

generate the series ybil, with l = −49, . . . , 0, setting

X̃il = X̃i0

Then simply use (ybi,−(p−1), . . . , y
b
i0) as initial values and

discard the earlier generated values

Advantage: does not require a distributional assumption for
the initial conditions plus the error resampling scheme used
to generate the actual sample can also be used to generate
the initial values



Bootstrap-based
bias correction

De Vos, Everaert
and Ruyssen

Motivation

Contribution

Bias correction

The xtbcfe routine

Monte Carlo

Conclusion

Inference

The small sample distribution of the BCFE estimator can be
simulated by resampling the original data and applying the
bootstrap bias-correction to the FE estimates obtained in
each of the constructed samples

From this simulated distribution we then calculate standard
errors and confidence intervals

The resampling of the original data can be done using a
parametric or a non-parametric approach
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Parametric approach

In the last iteration over the bias-correction procedure, we
already obtained J bootstrap samples from a population
where our bias-corrected FE estimate δ̂bc is used as a proxy
for the population parameter vector δ

⇒ the distribution of the BCFE estimator can be obtained
by applying the bias-correction procedure to the J FE
estimates δ̂bj obtained in the iterative bootstrap procedure

Advantage: the resampling of the data used to obtain the
small sample distribution of the BCFE estimator is exactly
the same as the resampling of the data used to bias-correct
the FE estimator
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Non-parametric approach

As suggested by Kapetanios (2008), resample the original
data for cross-sectional units as a whole with replacement

Advantages

I Preserves the dynamic panel structure without the need
to make parametric assumptions

I Valid under general heteroscedasticity patterns and a
global CSD structure in the data (e.g. a common factor
structure)

Yet not valid under local CSD (e.g. a spatial panel structure)
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Xtbcfe syntax

The bootstrap procedures presented and tested in this paper
are all contained in the xtbcfe routine. The basic syntax is
as follows:

xtbcfe depvar
[
indepvars

] [
if
] [

, lags(#)

resampling(string) initialization(string) bciters(#)

criterion(#) inference(string) infiters(#)

distribution(string) level(#) param te
]

The program adds the lagged dependent variable(s) as the
first explanatory variable(s) and can fit the simple
autoregressive model without covariates
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Xtbcfe options I
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Xtbcfe options II
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Xtbcfe options III
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Xtbcfe options IV
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Xtbcfe stored results
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Xtbcfe post-estimation
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Monte Carlo experiments BCFE

Using Monte Carlo simulations, Everaert & Pozzi (2007)
show that the BCFE estimator

I outperforms the difference and system GMM
estimators, both in terms of bias and inference, in
samples with small to moderate T

I is insensitive to non-normality of the errors, conditional
heteroscedasticity or non-stationary initial conditions

I has a bias comparable to the analytical bias corrections
of Kiviet (1995) and Bun and Carree (2005)

Further Monte Carlo simulation results illustrate the finite
sample properties of our simplified BCFE bootstrap
algorithm and its extension to higher-order dynamic models
and error CSD
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MC data generation

Data are generated from (??) with xit restricted to be a
single exogenous explanatory variable, generated as

xit = ρxi,t−1 + ξit, ξit ∼ i.i.d. N (0, σ2ξ ) (2)

I Normalize the long-run impact of xit to one by setting
β = 1−

∑p
s=1 γs

I Each experiment is based on 1000 iterations, where in
each sample we generate 50 + T periods and discard
the first 50 observations

I The BCFE estimator is implemented setting the number
of bootstrap iterations (bciters) to 250

I Analyze the performance of alternative initialization
schemes and adjust the bootstrap resampling scheme
according to the properties of the DGP of yit
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MC reporting

We report

(i) mean bias (bias)

(ii) standard error (se)

(iii) mean estimated standard error (ŝe)

(iv) real size (size)

We also include results for Pooled OLS (POLS), FE and for
the analytical correction (BCFEan) implemented in the
xtlsdvc routine developed by Bruno(2005) initiated with
the Anderson-Hsiao estimator and standard errors obtained
through 200 bootstrap iterations
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Simplification bootstrap algorithm
Monte Carlo results for an AR(1) model with γ1 = 0.8

bias se ŝe size bias se ŝe size

appr 1000 50 appr se ci appr 1000 50 appr se ci

T = 4, N = 20 T = 9, N = 20

POLS 0.04 0.06 0.06 - - 0.12 - - 0.04 0.04 0.04 - - 0.22 - -
FE −0.51 0.13 0.12 - - 0.97 - - −0.24 0.07 0.07 - - 0.96 - -
BCFEan −0.18 0.17 0.16 - - 0.21 - - −0.05 0.08 0.08 - - 0.09 - -
BCFEor −0.14 0.15 - - - - - 0.25 −0.04 0.09 - - - - - 0.11
BCFEde 0.07 0.17 0.13 0.17 0.17 0.15 0.16 0.09 0.03 0.10 0.07 0.09 0.08 0.21 0.14 0.08
BCFEan 0.00 0.16 0.13 0.16 0.15 0.08 0.09 0.05 0.00 0.09 0.07 0.08 0.08 0.11 0.09 0.08
BCFEbi −0.04 0.17 0.13 0.16 0.16 0.13 0.10 0.09 −0.01 0.09 0.07 0.08 0.08 0.11 0.09 0.10

T = 4, N = 100 T = 9, N = 100

POLS 0.05 0.03 0.03 - - 0.47 - - 0.05 0.02 0.02 - - 0.76 - -
FE −0.51 0.06 0.06 - - 1.00 - - −0.23 0.03 0.03 - - 1.00 - -
BCFEan −0.13 0.08 0.09 - - 0.30 - - −0.03 0.04 0.04 - - 0.14 - -
BCFEor −0.13 0.07 - - - - - 0.80 −0.04 0.04 - - - - - 0.35
BCFEde 0.09 0.07 0.06 0.07 0.07 0.40 0.31 0.20 0.03 0.05 0.03 0.05 0.04 0.32 0.13 0.07
BCFEan 0.04 0.08 0.06 0.07 0.07 0.20 0.15 0.07 0.00 0.04 0.03 0.04 0.04 0.14 0.08 0.07
BCFEbi −0.02 0.09 0.06 0.09 0.08 0.21 0.07 0.05 −0.01 0.04 0.03 0.04 0.04 0.13 0.06 0.07
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Error CSD

Non-standard scenario with cross-sectionally dependent
errors: focus on a pure (β = 0) first-order autoregressive
model with γ1 = 0.8 and assume that the error term εit has
the following common factor structure

εit = λiFt + εit,

with Ft ∼ i.i.d. N (0, 1) and εit ∼ i.i.d. N (0, 1)

We follow Sarafidis & Robertson (2009) and generate the
factor loadings as λi ∼i.i.d.U (1, 4) and set the individual
effect variance to σ2α = (1− γ1)(1 + γ1)

−1(µ2λ + σ2λ + 1),
with µλ and σ2λ being the mean and variance of the factor
loading distribution
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Error CSD
Monte Carlo results for an AR(1) model with γ1 = 0.8

bias se ŝe rmse sizet sizeci bias se ŝe rmse sizet sizeci
T = 5, N = 20 T = 10, N = 20

POLS 0.088 0.049 0.046 0.101 0.53 - 0.090 0.037 0.032 0.098 0.77 -
FE −0.443 0.120 0.104 0.459 0.98 - −0.226 0.075 0.061 0.238 0.94 -
BCFEan −0.169 0.148 0.134 0.225 0.25 - −0.053 0.087 0.077 0.102 0.13 -
BCFEcsd 0.041 0.159 0.143 0.165 0.17 0.09 0.019 0.100 0.084 0.102 0.15 0.10
BCFEthet −0.020 0.167 0.146 0.168 0.15 0.10 −0.002 0.097 0.084 0.097 0.13 0.11

T = 5, N = 100 T = 10, N = 100

POLS 0.098 0.020 0.020 0.101 0.99 - 0.098 0.014 0.014 0.099 1.00 -
FE −0.430 0.056 0.046 0.434 1.00 - −0.220 0.034 0.027 0.222 1.00 -
BCFEan −0.105 0.076 0.074 0.130 0.30 - −0.029 0.044 0.038 0.053 0.16 -
BCFEcsd 0.070 0.086 0.078 0.111 0.24 0.13 0.022 0.047 0.044 0.052 0.09 0.07
BCFEthet −0.003 0.085 0.080 0.085 0.09 0.07 −0.001 0.044 0.042 0.044 0.07 0.08
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Second-order dynamic model

Subsequently, assume αi ∼ i.i.d. N (0, 1) and εit ∼ i.i.d.
N (0, 1), with xit generated from (2) setting ρ = 0.5 and
assuming ξit ∼ i.i.d. N (0, 1)

Results for a series with strong temporal dependence, setting
either

I γ1 = 0.6 and γ2 = 0.2→ an unbiased estimator is
expected to lie between POLS and FE, but probably
closer to the former than to the latter

I γ1 = 1.1 but maintain the stationarity assumption by
setting γ2 to -0.2 → an unbiased estimator is expected
to lie closer to the POLS estimator for γ1 but closer to
the FE estimator for γ2

Conclusion: xtbcfe performs well in the 2nd order dynamic
model with near perfect test size as N becomes large
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Second-order dynamic model
Monte Carlo resuts for an AR(2) model

Case 1: γ1 = 0.6 and γ2 = 0.2
γ1 γ2 γ1 γ2

bias se ŝe sizet bias se ŝe sizet bias se ŝe sizet bias se ŝe sizet
T = 5, N = 20 T = 10, N = 20

POLS 0.08 0.09 0.10 0.10 0.10 0.09 0.10 0.17 0.09 0.07 0.07 0.25 0.09 0.07 0.07 0.26
FE −0.39 0.12 0.11 0.92 −0.20 0.11 0.11 0.40 −0.18 0.08 0.07 0.63 −0.11 0.07 0.07 0.33
BCFE −0.03 0.14 0.13 0.09 −0.02 0.13 0.13 0.07 −0.01 0.09 0.08 0.09 −0.01 0.08 0.08 0.08

T = 5, N = 100 T = 10, N = 100

POLS 0.09 0.04 0.04 0.59 0.09 0.04 0.04 0.58 0.09 0.03 0.03 0.87 0.09 0.03 0.03 0.87
FE −0.38 0.05 0.05 1.00 −0.19 0.05 0.05 0.97 −0.17 0.04 0.03 1.00 −0.11 0.03 0.03 0.90
BCFE −0.01 0.07 0.07 0.07 −0.01 0.06 0.06 0.06 −0.01 0.04 0.04 0.08 −0.01 0.04 0.04 0.07

Case 2: γ1 = 1.1 and γ2 = −0.2
γ1 γ2 γ1 γ2

bias se ŝe sizet bias se ŝe sizet bias se ŝe sizet bias se ŝe sizet
T = 5, N = 20 T = 10, N = 20

POLS 0.02 0.10 0.10 0.05 0.07 0.10 0.10 0.09 0.04 0.07 0.07 0.07 0.05 0.07 0.07 0.10
FE −0.42 0.12 0.11 0.95 −0.02 0.11 0.11 0.06 −0.18 0.08 0.07 0.66 −0.04 0.08 0.07 0.09
BCFE −0.05 0.13 0.13 0.08 0.00 0.13 0.13 0.09 −0.00 0.09 0.08 0.10 −0.01 0.08 0.08 0.09

T = 5, N = 100 T = 10, N = 100

POLS 0.04 0.04 0.04 0.16 0.05 0.04 0.04 0.19 0.05 0.03 0.03 0.28 0.05 0.03 0.03 0.33
FE −0.40 0.06 0.05 1.00 −0.02 0.05 0.05 0.08 −0.18 0.04 0.03 1.00 −0.04 0.03 0.03 0.21
BCFE −0.01 0.06 0.06 0.06 −0.00 0.06 0.06 0.05 −0.00 0.04 0.04 0.06 −0.00 0.03 0.04 0.05
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”Xtbcfe” Take-Home

Iterative bootstrap-based bias-corrected FE estimator for
dynamic panels building on Everaert & Pozzi (2007)

Various bootstrap error resampling schemes to account for
general heteroscedasticity and contemporaneous CSD →
choose the alternative that incorporates the highest degree
of randomness in the resampling process

Inference using parametric or non-parametric bootstrapped
variance-covariance matrices or percentile intervals

MC: the simplification of the original algorithm results in a
BCFE estimator that is virtually unbiased for very small T ;
support the BCFE in higher order dynamic panels and panels
with contemporaneous error CSD
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Thank you!

Questions? Comments? Suggestions?

Ilse Ruyssen
Department of Economics, Ghent University & UNU-CRIS
Sint-Pietersplein 6, B-9000 Ghent, Belgium
Ilse.Ruyssen@Ugent.be
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The model

Homogeneous dynamic panel data model of order p

yit = αi +

p∑
s=1

γsyi,t−s + xitβ + εit, (3)

with

I i = 1, ..., N and t = 1, ..., T being the cross-section and
time-series dimension, respectively

I yit is the dependent variable

I xit is a (1× (k − p)) vector of strictly exogenous
explanatory variables, where k is the total number of
time-varying regressors

I αi is an unobserved individual effect that may be
correlated with xit
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Assumptions

Assumptions regarding the error term εit:

(i) E [εitεjs] = 0, ∀i, j and t 6= s,

(ii) E
[
ε2it
]

= σ2it, ∀i, t,
(iii) E [εitεjt] = σijt, ∀i, j, t and i 6= j,

Initial values (yi,−(p−1), . . . , yi0) are observed such that T is
the actual time series dimension available for estimation

While the bias-correction algorithm allows for an unbalanced
dataset, we present the methodology with a balanced data
set for simplicity
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Stacked version

Stacking observations over time and cross-sections we obtain

y = Wδ +Dα+ ε, (4)

where

I y is the (NT × 1) vector stacking the observations yit
I W = (y−1, . . . , y−p, X) is the (NT × k) matrix

stacking observations on the lags of the dependent
variable (yi,t−1, . . . , yi,t−p) and the exogenous
explanatory variables xit

I δ = (γ′, β′)′ is the k × 1 parameter vector of interest

I D is a NT ×N dummy variable matrix calculated as
D = IN ⊗ ιT with ιT a T × 1 vector of ones

I the variance-covariance matrix of ε is denoted Σ
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The FE estimator

Let MD = IN ⊗
(
IT −D(D′D)−1D′

)
denote the symmetric

and idempotent matrix that transforms the data into
deviations from individual specific sample means

Since MDD = 0, the individual effects α can be eliminated
from the model by multiplying equation (??) by MD

MDy =MDWδ +MDDα+MDε,

ỹ =W̃ δ + ε̃, (5)

where ỹ = MDy denotes the centered dependent variable
and similarly for the other variables. The least squares
estimator for δ in model (5) defines the FE estimator:

δ̂ =
(
W̃ ′W̃

)−1
W̃ ′ỹ =

(
W ′MDW

)−1
W ′MDy. (6)
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An unbiased estimator
The FE estimator δ̂ is biased but still an unknown function
of the true parameter vector, i.e.

E(δ̂ |δ,Σ, T ) =

∫ +∞

−∞
δ̂f
(
δ̂ |δ,Σ, T

)
dδ̂ 6= δ, (7)

If we are able to generate a sequence
(
δ̂1, . . . , δ̂J |δ,Σ, T

)
of

J biased FE estimates δ̂ for δ, the integral in equation (7)
can be written as

E(δ̂ |δ,Σ, T ) = lim
J→∞

1

J

J∑
j=1

δ̂j |δ,Σ, T . (8)

⇒ δ̂bc is an unbiased estimator for δ if it satisfies

δ̂ = lim
J→∞

1

J

J∑
j=1

δ̂j

∣∣∣δ̂bc,Σ, T . (9)
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Proposition in Everaert & Pozzi (2007)

For any specific value of δ∗, the condition in equation (9)
can be evaluated by generating J bootstrap samples from
the data generating process in equation (??) and applying
FE to each of the samples to obtain the sequence(
δ̂1, . . . , δ̂J |δ∗,Σ, T

)
The bias-corrected δ̂bc can then be obtained by searching
over different parameter values δ∗ until equation (9) is
satisfied

The search for δ̂bc can be performed efficiently by iteratively
updating the parameter vector δ∗ used for the creation of
bootstrap samples, taking the original biased FE estimate as
the best initial guess (δ∗(0) = δ̂).



Bootstrap-based
bias correction

De Vos, Everaert
and Ruyssen

Motivation

Contribution

Bias correction

The xtbcfe routine

Monte Carlo

Conclusion

Outline bootstrap algorithm

The iterative bootstrap bias-correction procedure is given by
the following steps:

1. Using equation (5) and the original centered data,

calculate the residuals as ε̂ = ỹ − W̃ δ∗(κ)
2. Obtain J bootstrap samples, where in each sample
j = 1, . . . , J :

2.1 Draw a bootstrap sample εb from ε̂ according to a
specified (re)sampling scheme.

2.2 Calculate the bootstrap sample yb = W bδ∗(κ) + εb where

W b = (yb−1, . . . , y
b
−p, X̃)

2.3 Use FE to estimate δ̂bj = (W b′MDW
b)−1W b′MDy

b

3. Calculate ω(k) = δ̂ − 1
J

∑J
j=1 δ̂

b
j

4. Update the parameter vector δ∗(κ+1) = δ∗(κ) + ω(κ)
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Notes

The bias of the FE estimator is invariant to the variance of
the individual effects α as these are effectively wiped out by
centering the data→ we simplify the bootstrap algorithm as
there is no need to estimate the individual effects α and use
them to generate the data

In step 2(a) the bootstrap errors εb should be drawn
consistently with the variance-covariance structure in the
population error terms ε, as represented by Σ → Various
(re)sampling schemes are discussed in the paper

Furthermore, the calculation of the bootstrap data ybit in
step 2(b) requires initial values for (ybi,−(p−1), . . . , y

b
i0) →

The choice of how these initial values should be generated
implicitly entails a decision about the initial conditions of the
data
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