f_able: Estimation of marginal effects with transformed covariates

Flexible model specifications: How far will margins take us

Rios-Avila, Fernando¹

¹friosavi@levy.org Levy Economics Institute

Belgian Stata Conference, June 2021

Table of Contents

Introduction

- 2 How to estimate marginal/partial effects
- 3 Margins and Factor
 - Limitations
- 5 f_able. Going Beyond margins

Conclusions

< □ > < □ > < □ > < □ > < □ > < □ >

Introduction

• Marginal effects tells us how the dependent variable y changes when an independent variable x changes, assuming everything else constant (e and z's).

$$\mathsf{E}(y|x,z) = b_0 + b_1 x + b_2 z$$

- Under credible assumptions (E(e|x, z) = 0), this allows us to identify causal effects.
- For linear models, with no interactions or polynomials, marginal effects are equal to their coefficients:

$$\frac{dE(y|.)}{dx} = b_1 \& \frac{dE(y|.)}{dz} = b_2$$

• However, when there are interactions, polynomials, or other transformations, further work is needed.

< □ > < □ > < □ > < □ > < □ > < □ >

Estimating Marginal Effects

• When interactions or polynomials are used, marginal effects should account for the interrelationship across (constructed) variables:

$$E(y|.) = b_0 + b_1 x + b_2 x^2 + b_3 z + b_4 z x$$
$$\frac{dE(y|.)}{dx} = b_1 + 2b_2 x + b_4 z$$
$$\frac{dE(y|.)}{dz} = b_3 + b_4 x$$

- Main difference with simple linear model?
 - Marginal effects no longer constant (observed heterogeneity)
 - Coefficients alone are (often) not useful
 - Partial derivatives are needed to identify partial/marginal effects.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Estimating Marginal Effects: Non-linear model

• When the model is nonlinear, the problem is :

$$E(y|.) = G(b_0 + b_1x + b_2x^2 + b_3z + b_4zx) \rightarrow E(y|.) = G(XB)$$
$$\frac{dE(y|.)}{dx} = \frac{dG(XB)}{d(XB)} * (b_1 + 2b_2x + b_4z)$$

- In addition to obtaining derivatives of XB wrt x, we also need to find the derivative of G() wrt XB
- G() is the link function between the index XB and the outcome of interest. (Probit, fractional model, poisson, etc)

・ 何 ト ・ ヨ ト ・ ヨ ト

Estimating Marginal Effects

How to proceed in this case?

Marginal effects will vary with observed values. (observed heterogeneity), so what should one report?

There are many options:

$$APE = E\left(\frac{dE(y|.)}{dx}\right)$$

$$PEA = \frac{dE(y|.)}{dx} | X = \bar{x}; z = \bar{z}$$

$$PE_{at_{x}} X = \frac{dE(y|.)}{dx} | X = X; z = Z$$

Or report "ALL" effects for each observation in the data. Then "simply" estimate SE.

< □ > < □ > < □ > < □ > < □ > < □ >

Empirical Estimation of Marginal effects

- Before Stata 11, estimation of marginal effects for models with interactions was "hard".
- You needed to create the variables "by hand", and adjust marginal effects on your own:
 - . webuse dui, clear
 - . gen fines2=fines*fines
 - . reg citations fines fines2
 - . sum fines
 - . lincom _b[fines]+2*_b[fines2]*'r(mean)'
- Otherwise, using the old -mfx- or the new -margins- would give you incorrect results.
- why? because Stata does not recognize that *fines*2 = *fines*². Fines2 is assumed constant.

イロト 不得 トイラト イラト 一日

Margins and Factor notation, and limitations

- Stata 11 introduced the use of factor notation, and margins.
- Factor notation (c. # i.) facilitates adding interactions to models, so that correct marginal effects can be estimated using margins
- Marginal effects for the previous model can be easily estimated:
 - . webuse dui, clear
 - . reg citations fines c.fines#c.fines
 - (where c.fines#c.fines=fines^2)
 - . margins, dydx(fines)
- Internally, margins understand c.fines#c.fines depends on fines. (And probably estimates analytical derivatives to obtain the PE).
- when nonlinear models are involved margins calls on predict if one is interested on an outcome different from the linear index.

Limitations of margins

- What if one is interested in using other variable transformations, for example: fines⁵, log(fines), splines, fracpoly, etc
- In any of these cases, margins will not work.
- why? Because these variables will have to be created manually, and Margin will not recognized they all depend on fines.
- One solution, estimate the derivatives manually, and calculate corresponding SE.
- Same as before factor notation.

A B A A B A

Beyond factor notation

- Some other commands in Stata are already able to control for "unusual" variable transformations (nl and npregress series).
- However, for any command being able to use those capabilities, one needs to solve three problems:
 - Store information of how a variable is created.
 - Identify that a variable is a constructed variable.
 - Use that information to update constructed variables, and obtain partial effects.
- Here is where **f_able** helps solving these problems.

(4) (5) (4) (5)

Stata 2021

10 / 26

Storing Information: fgen and frep

• fgen and frep are wrappers around generate and replace that stores how a variable is generated, as a label or note.

. ssc install f_able . qui:fgen fines2=fines^2 . describe fines2							
	storage	display	value				
variable name	type	format	label	variable label			
fines2	double	%10.0g		fines ²			
. qui:frep fines2=fines*fines . describe fines2							
	storage	display	value				
variable name	type	format	label	variable label			
fines2	double	%10.0g		fines*fines			

A B A A B A

Identifying constructed variables: f_able

- **f_able** is a post estimation command that is used to declare what variables in a model are "constructed" variables, adding information to any previously estimated model, and redirecting the predict sub-command to **f_able_p**.
 - . qui:reg citations fines fines2
 - . f_able fines2
 - . ereturn list, all
 - scalars: (omitted)
 - macros: (other macros omitted)
 - e(nldepvar) : "fines2"
 - e(predict) : "f_able_p"
 - e(predict_old) : "regres_p"
 - Hidden macros: (other hidden macros omitted)

```
e(_fines2) : "fines*fines"
```

Updating Constructed Vars: f_able_p

- f_able_p is passive command uses the information left by f_able to update all constructed values when the original variable changes, before using predict for the margins estimation.
- Note: when calling margins we need to include the option nochain, so numerical derivatives are used.

A B A A B A

f_able syntax

* Step 1: Generate variables
fgen/frep fx1= "gen-able" function of x's
fgen/frep fx2= "gen-able" function of x's
fgen/frep fxk= "gen-able" function of x's

* Step 2: Model estimation: Any model reg, probit, logit, qreg, etc.

* Step 3: Declare constructed variables: f_able, nl(fx1 fx2 ... fxk) f_able fx1 fx2 ... fxk, auto

* Step 4: Margins
margins, dydx(x1 x2 ..) [nochain numerical] [other options]

* Step 5: Additional post estimation (if no SE produced)
f_symev/f_symrv

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

f_able NEW syntax

```
* Step 1: Generate variables
fgen/frep fx1= "gen-able" function of x's
f_spline/f_rcspline Spline creation/restricted cube spline
```

* Step 2: Model estimation with f_reg f_reg cmd depvar [indepvar], options

* Step 3: Margins margins, dydx(x1 x2 ..) [other options]

* Step 4: Additional post estimation (if no SE produced)
f_symev/f_symrv

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Stata 2021

15 / 26

Example: A model of Charity

```
ssc install bcuse
bcuse charity, clear
fgen lavggift=log(avggift)
fgen lweekslast=log(weekslast)
fgen lmailsyear=log(mailsyear)
fgen lpropresp=log(propresp)
```

```
*Simple OLS
reg gift resplast weekslast mailsyear propresp avggift , robust
margins, dydx(*) post
est sto model1
*OLS with LOG(Var)
f_reg reg gift resplast weekslast mailsyear propresp avggift ///
```

```
l*, robust
margins, dydx(*) post
```

```
est sto model2
```

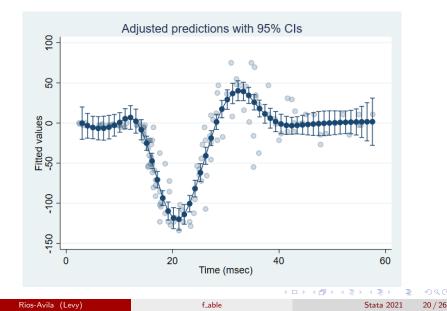
▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

Example: A model of Charity

```
*Poisson with LOG(var)
f_reg poisson gift resplast weekslast mailsyear propresp avggift //.
l*, robust
margins, dydx(*) post
est sto model3
*Tobit with LOG(var)
f_reg tobit gift resplast weekslast mailsyear propresp avggift ///
l*, vce(robust) ll(0)
margins, dydx(*) predict(ystar(0,.)) post
est sto model4
```

Example: A model of Charity

. esttab model1 model2 model3 model4, ///
mtitle("S OLS" "OLS w/Logs" "Poisson" "Tobit") ///
se star(* .1 ** .05 *** .01)


	(1) S OLS	(2) OLS w/Logs	(3) Poisson	(4) Tobit
resplast	1.514**	3.527***	2.743***	3.094***
	(0.719)	(0.990)	(0.634)	(0.605)
weekslast	-0.0186***	0.0755***	0.105***	0.0953***
	(0.00590)	(0.0212)	(0.0178)	(0.0182)
mailsyear	1.992***	0.605	1.241***	0.913***
·	(0.396)	(0.464)	(0.339)	(0.309)
propresp	11.64***	15.67***	11.08***	14.12***
	(1.283)	(1.942)	(1.224)	(1.170)
avggift	0.0199	0.847***	0.437***	0.394***
	(0.0176)	(0.0753)	(0.0198)	(0.0327)
N	4268	4268	4268	4268
	ors in parenthese	s		
* p<.1, ** p	<.05, *** p<.01		< <p>< <p>< <p>< <p>< <p>< <p>< <p><</p></p></p></p></p></p></p>	

```
Example: Motorcycle acceleration
```

```
webuse motorcycle,clear
f_spline spt=time, degree(3) np(7)
f_reg reg accel time spt*
margins, at(time=(3(1.01)58)) plot
```

イロト イボト イヨト イヨト

Example: Motorcycle acceleration

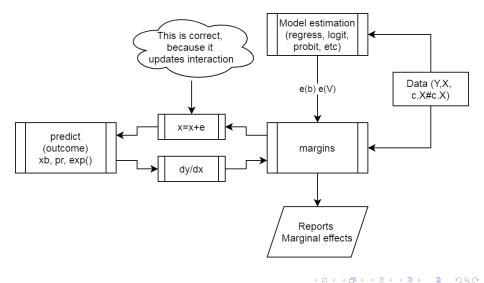
Conclusions

- This presentation introduces the package f_able, as a post estimation command that enables margins to estimate marginal effects with transformed covariates
- This strategy has some limitations.
 - It can be slow (numerical derivatives)
 - it may be less precise because it relies on FORCED numerical differentiation.
- However, it can provide researchers with a simple tool to make the best of more flexible model specifications.

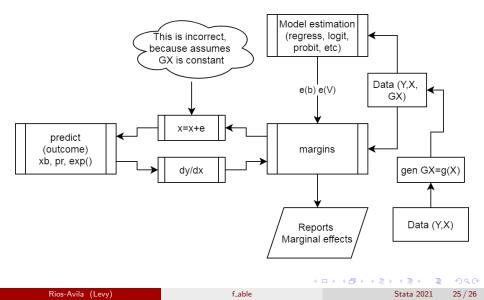
For more examples see the help file "ssc install f_able" and get the latest files here: https://tinyurl.com/fablebe

(4) (日本)

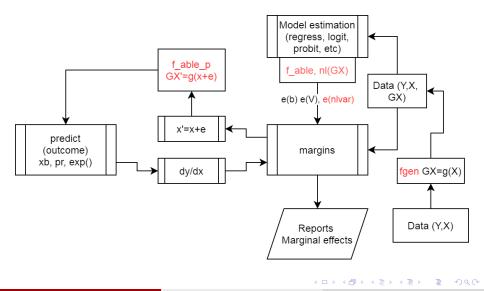
Thank you! Questions or comments welcome



• • • • • • • • • • • •


References

Rios-Avila, F. 2021. Estimation of marginal effects for models with alternative variable transformations. Stata Journal 21: 81-96.


How margins Works?

Why does it fail?

How does f_able works?

